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ABSTRACT: The accurate and systematically improvable frozen natural
orbital (FNO) and natural auxiliary function (NAF) cost-reducing
approaches are combined with our recent coupled-cluster singles, doubles,
and perturbative triples [CCSD(T)] implementations. Both of the closed-
and open-shell FNO-CCSD(T) codes benefit from OpenMP parallelism,
completely or partially integral-direct density-fitting algorithms, checkpoint-
ing, and hand-optimized, memory- and operation count effective
implementations exploiting all permutational symmetries. The closed-shell
CCSD(T) code requires negligible disk I/O and network bandwidth, is MPI/
OpenMP parallel, and exhibits outstanding peak performance utilization of
50−70% up to hundreds of cores. Conservative FNO and NAF truncation
thresholds benchmarked for challenging reaction, atomization, and ionization energies of both closed- and open-shell species are
shown to maintain 1 kJ/mol accuracy against canonical CCSD(T) for systems of 31−43 atoms even with large basis sets. The cost
reduction of up to an order of magnitude achieved extends the reach of FNO-CCSD(T) to systems of 50−75 atoms (up to 2124
atomic orbitals) with triple- and quadruple-ζ basis sets, which is unprecedented without local approximations. Consequently, a
considerably larger portion of the chemical compound space can now be covered by the practically “gold standard” quality FNO-
CCSD(T) method using affordable resources and about a week of wall time. Large-scale applications are presented for
organocatalytic and transition-metal reactions as well as noncovalent interactions. Possible applications for benchmarking local
CCSD(T) methods, as well as for the accuracy assessment or parametrization of less complete models, for example, density
functional approximations or machine learning potentials, are also outlined.

1. INTRODUCTION

Well-converged coupled-cluster (CC) computations, due to
their beneficial size-extensive and systematically improvable
properties, have been repeatedly found in agreement with
experiments for various properties of matter at the atomic
scale.1−4 For single-reference cases, the CC model with single
and double excitations (CCSD) augmented with perturbative
triples correction [CCSD(T)]5 is widely regarded as the “gold
standard” of quantum chemistry. Although the CC treatment of
multireference systems remains actively investigated,6 the
applicability domain of single-reference closed- and open-shell
CCSD(T) covers a large portion of the current chemical
questions including reaction mechanisms and catalysis,
molecular interactions, and partly also processes involving
radicals, ions, or excited states. The main technical limitations of
conventional CCSD(T) implementations are the steep ( )4 -
and ( )7 -scaling data storage and operation count complexity
with system size , restricting the reach of conventional
implementations to systems of up to 20−25 atoms.
The ( )4 -scaling storage challenges posed by the two-

electron four-center electron repulsion integrals (ERIs) have
been addressed via density fitting (DF, or resolution-of-
identity)7−12 or Cholesky decomposition (CD)7,13,14 techni-

ques, and further improvements are expected from promising
tensor factorization ideas.15−22 The benefits of a DF-based
reconstruction of the four-center ERI have been demonstrated
by DePrince and Sherrill,9 which was developed further to
exploit graphics processing units (GPUs).23,24 The DF-CCSD-
(T) implementations of Peng, Valeev, and co-workers10,25 and
of Scheffler, Shen, and co-workers11 also reassemble some of the
ERIs to reduce disk and network use. Our recent DF-CCSD(T)
implementation also exploits DF-based reassembly of all ERIs
needed for the integral-direct t1-transformed CCSD iteration
and for our integral-direct (T) algorithm.12 Further technical
details of these implementations were discussed in previous
reports.9−12,24

Regarding the operation count bottleneck, recent develop-
ments have successfully exploited the tools of modern high-
performance computing, such as various accelerators,10,23,24,26,27
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shared-memory intranode (Open Multi-Processing, OpenMP)
and/or multinode (Message Passing Interface, MPI) parallel-
ism.10−13,25,28−35 However, parallelization alone can only
moderately deal with the ( )7 -scaling operation count of
CCSD(T). For this reason, reduced-cost and reduced-scaling
CCSD(T) approaches are also intensively developed. Here, we
employ frozen natural orbitals (FNOs) to compress the space
spanned by the virtual molecular orbitals (MOs). This is
beneficial for both the CCSD and the (T) components for which
the rate-determining operations scale with the fourth power of
the number of virtual MOs.
In our recent MPI/OpenMP DF-CCSD(T) implementation,

(i) disk I/O and network use are rigorously avoided during both
the CCSD iterations and the (T) step, (ii) the operation count
and the memory requirement are fully optimized by exploiting
the permutational symmetry of all amplitude, residual, and ERI
tensors, and (iii) all terms of the CCSD equations are optimized
and parallelized with the same efficiency, not only the usually
considered particle−particle−ladder (PPL) term.12 The latter is
surprisingly important also in the FNO context as the PPL term
experiences fourth-power scaling cost reduction, while the non-
PPL terms benefit only from at most third-power scaling cost
reduction. For that reason, the combination of our integral-
direct DF-CCSD(T) implementation with FNOs is expected to
be highly competitive.
Additional cost reduction is realized here by compressing the

auxiliary basis set used for the DF approximation, exploiting the
so-called natural auxiliary functions (NAFs).36 The NAFs,
discussed in detail in Section 2.3, are analogous to FNOs in the
sense that they are combined from the original auxiliary
functions (AFs) via unitary transformations. Moreover, these
unitary rotations are determined so that the four-center ERIs
assembled in the truncated NAF basis will approximate the exact
DF integrals optimally in the least-squares sense.36 As the
number of different orbital product densities decreases
quadratically with the number of dropped FNOs, a considerable
portion of the original auxiliary basis, which is responsible for the
description of the discarded FNO pair densities, can also be
dropped. In the context of our integral-direct DF-CCSD(T)
implementation, the NAF approach is thus beneficial to reduce
the cost of repeated ERI assembly steps in both the CCSD and
(T) parts.
Interestingly, in spite of the active development of high-

performance CCSD(T) implementations10−13,25,28−35 and the
reliability of the FNO approach, there appears to be only a
surprisingly small number of large-scale CCSD(T) applications
in the literature, especially originating outside of the developer
community.37,38 Conventional CCSD(T) computations have
been presented so far with up to about 1000 atomic orbitals
(AOs), and about 20−40 atoms, in triple- and quadruple-ζ basis
sets.10−13,31,32,34,39 Recently, we demonstrated that systems with
up to 1500 AOs can also be tackled using affordable resources12

and without relying on a high level of spatial symmetry34 or
hundred thousand cores.40 To the best of our knowledge,
multinode parallelization and orbital space truncation techni-
ques were combined in the CCSD(T) context at the largest scale
for 36 atoms, about 1300 AOs, and 750 retained MOs.13

Here, we demonstrate that the FNO approach is a powerful
tool to extend the reach of CCSD(T) to amuch broader range of
systems. For that goal, we explored potential reasons that could
hinder the wider adaptation of the FNO-CCSD(T) method for
molecules of current chemical interest and addressed these

concerns in our method development and benchmarking efforts
presented here:

(i) Although impressive scaling performance has been
r e p o r t e d w i t h r e c e n t p a r a l l e l CCSD(T)
codes,10−13,30,31,34 it is challenging to maintain high
peak performance utilization for thousands of cores. We
find that, on easily accessible computer clusters, it is
simpler to obtain access to a small number of nodes with
recent many core CPUs than to obtain thousands of cores
and exploit the outstanding peak performance utilization
and parallel scaling of our DF-CCSD(T) implementa-
tion.12 The issue of the longer runtimes potentially
exceeding wall time limits has also been effectively
overcome in our code by frequent checkpointing. We
expect that the combination of more manageable
hardware requirements and reduced arithmetic demand
because of the use of FNOs and NAFs will make highly
accurate CCSD(T) benchmarks accessible for a wider
audience.

(ii) We have revisited and benchmarked best practices
regarding the correction scheme employed for the frozen
orbitals, the variable choice governing the truncation
process, and extrapolation schemes toward truncation-
free CCSD(T). The best performing correction and
extrapolation approaches facilitate the use of almost an
order of magnitude looser truncation thresholds
compared to the uncorrected results and thereby increase
the efficiency of FNO-CCSD(T) even further.

(iii) We have also extended the benchmark data available for
the accuracy of the FNO method41−47 for frequently
employed test sets covering complicated reactions with
multiple bond breaking,48,49 as well as atomization and
ionization processes including open-shell species.50,51 We
also show that conservative truncation thresholds
performing well for relatively small systems and large
basis sets up to quadruple-ζ quality also yield highly
accurate correlation and reaction energies (max. 1 kJ/mol
error) up to the largest conventional CCSD(T) reference
data available to date in the 30−40-atom range.12 Thus,
FNO-CCSD(T) is expected to remain highly accurate
also for the 50−75 atoms targeted here.

(iv) The rapid development of local CCSD(T)methods could
also play a role in the moderate popularity of FNO-
CCSD(T) methods. Indeed, highly efficient implementa-
tions39,52−54 and extensive benchmarks reporting thou-
sands of examples55,56 demonstrate the applicability of
these local approximations for various chemical systems.
Latest implementations can utilize sufficiently large basis
sets and were shown to scale up to the range of a few
hundred53,54 or even to a few thousand39,56 atoms.
However, considering the moderate number of local
CCSD(T) applications so far, these methods have not yet
reached their full potential in solving chemical problems.
For instance, there is still more to learn about the
performance of current local approximations on partic-
ularly challenging systems exhibiting extended π-
systems54,56,57 and/or moderate nondynamic correla-
tion.54,57,58 However, assessing the accuracy of such
methods against CCSD(T) benchmarks is hindered by
the scarcity of reliable reference data above the 30-atom
range.56 Thus, well-converged FNO-CCSD(T) results
are also valuable for the assessment of local approx-
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imations for extended systems often targeted using local
CCSD(T) methods.

(v) The relatively slow basis set convergence of CCSD(T)
requires the use of at least triple- and quadruple-ζ basis
sets, and thus practical applications face various CPU time
and storage bottlenecks already in the 20−30-atom range.
Here, we show that well-converged FNO-CCSD(T)
computations can be performed for systems of up to 75
atoms with triple-ζ and up to 51 atoms (2124 AOs) with
quadruple-ζ basis sets. While only a small fraction of
modern chemistry fits into 20−30 atoms, by doubling the
size of the computable systems the covered chemical
space increases tremendously. The capabilities of our
implementation for systems in the 50−75-atom range are
demonstrated for organocatalytic and transition-metal
reactions of recent interest, as well as for the noncovalent
interaction energies (NCIEs) of molecular complexes.
Considering that these computations required wall times
of only a few days to about a week with 112 CPU cores,
the presented FNO-CCSD(T) implementation can
contribute significantly to the wider adoption of accurate
CCSD(T) references in computational chemistry.

The paper is organized as follows. Sections 2 and 3 provide
theoretical background and algorithmic and computational
details for CCSD(T), FNOs, and NAFs. Sections 4.1−4.3
illustrate the truncation threshold dependence of the FNO and
NAF errors and explores various truncation and extrapolation
ideas to decrease the above sources of error. A statistical analysis
of the compound FNO and NAF errors is carried out in Section
4.4 for benchmark sets collecting small- to medium-sized
molecules with both closed- and open-shell character. Large-
scale applications and timings are presented in Sections 4.5 and
4.6.

2. THEORETICAL BACKGROUND AND ALGORITHMS
The CCSD(T)5 model is considered assuming a single-
reference determinant. Indices i, j, k, ... (a, b, c, ...) will refer to
the occupied (virtual) orbitals, whereas p, q, r, and s are generic
MO indices and P and Q will denote auxiliary basis functions. N
will refer to the total number of orbitals and no, nv, and na will
denote the dimension of the occupied, virtual, and auxiliary
spaces, respectively.
2.1. CCSD(T) Method. Here, we recapitulate the relevant

aspects of CCSD(T) and refer to the literature for additional
details.1−5,12,59 The CCSD correlation energy in a spin−orbital
basis reads as

E f t ai bj aj bi

t t t t t

1
4

( ) ( )
ia

ai i
a

ijab

ij
ab

i
a

j
b

i
b

j
a

CCSD ∑ ∑= + [ | − | ]

[ + − ] (1)

where the summation indices run over occupied (i and j) and
virtual (a and b) spin orbitals, fai denotes the elements of the
Fock matrix, ti

a and tij
ab stand for the singles and doubles cluster

amplitudes, respectively, and (pq|rs) is a two-electron integral in
Mulliken notation.
The evaluation of the CCSD equations determining the

singles and doubles amplitudes requires a number of sixth
power-scaling operations. For instance, the PPL term requires
∑cdtij

cd(ac|bd) type of matrix multiplications exhibiting
n n( /4)v

4
o
4 -scaling. In the case of relatively small nv/no ratios

of 5−10, which occurs with double- or triple-ζ basis sets or

compressed FNO virtual subspaces, the computational cost of
the n n(4 )v

3
o
3 -scaling terms are also comparable to that of the

PPL term.12 Finally, the rate-determining step of the
perturbative triples correction is dominated by n n( )v

4
o
3 -scaling

terms [see Section S1 of the Supporting Information].
2.2. Frozen Natural Orbitals. Orbital transformation

techniques have been particularly successful to compress the
space spanned by the virtual MOs. Optimized virtual orbitals
(OVOs) were introduced by Adamowicz and Bartlett60,61 and
also adopted by Neograd́y, Pitoňaḱ, Urban, and co-workers,13,62

while FNOs proposed by Löwdin63 were introduced into the
CC context by Taube and Bartlett.41,42 Both OVOs and FNOs
can be obtained using the cost-efficient second-order Møller−
Plesset (MP2) model and exhibited similar accuracy in previous
comparisons.46,47 We find the FNO method more beneficial as
the FNO construction is simpler to scale up to thousands of
orbitals, especially with reduced scaling one-particle density
matrix (OPDM) approximations,64−67 and it has been extended
also for analytic gradients42 and various excited-state meth-
ods.43,44,68−70

The NOs are defined as the eigenvectors of the OPDM,D. In
practice, the OPDM is approximated at the level of MP2,
although density matrix expressions depending on the CCSD
amplitudes could potentially provide a more compact NO basis
for applications in the CCSD(T) context.71 The MP2 OPDM
expression reads in the spin−orbital basis as

D
ci aj ci bj ci aj bi cj( )( ) ( )( )

( )( )ab
ijc i j a c i j b c

MP2 ∑
ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ

=
| | − | |

+ − − + − − (2)

where ϵp denotes the canonical orbital energy of orbital p. The
MP2 OPDM of eq 2 and its closed-shell counterpart are
evaluated using the efficient DF-MP2 implementation of the
MRCC suite, which can handle systems with more than 5000
AOs.72 A reduced cost NO construction option is discussed in
Section S2 of the Supporting Information, but it is not employed
in the presented computations.
The NOs and the natural occupation numbers are obtained as

the eigenvectors and eigenvalues of D. Then, n̅v pieces of active
virtual NOs are selected, while the remaining FNOs are not
treated at the CCSD(T) level. The active virtual NOs are
transformed into a semi-canonical representation by diagonal-
izing the virtual−virtual block of the Fock matrix.
For the selection of the active virtual NOs, one assumes that

NOs with larger occupation numbers are more important for the
accurate representation of the wavefunction and for well-
converged correlation energies. A frequently employed method
for the selection of the retained NOs is to sum up the largest
occupation numbers in decreasing order until a certain threshold
is reached relative to the sum of all occupation numbers. The
cutoff parameter governing this procedure will be referred to as
the cumulative occupation threshold (COT). Alternatively, an
occupation number threshold (ONT) can be employed for the
selection of the retained or frozen NOs based on their OPDM
eigenvalues. The active NOs can also be determined by fixing
the percentage of virtual orbitals (PVO), that is, by keeping a
fixed ratio of the NOs with the largest possible occupation
numbers. The performance of the three alternatives will be
compared in Section 4.1.
The truncation error caused in the CCSD(T) correlation

energy can be straightforwardly reduced by utilizing the MP2
energies computed with the entire virtual space and with the
FNO basis. The difference of these MP2 correlation energies
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estimate the truncation error of CCSD(T) at the MP2 level.41

This approach will be referred to as ΔMP2. Alternatively, the
FNO errors can also be decreased by exploiting the systematic
convergence of the correlation energies toward the approx-
imation free value as the truncation threshold is tightened. There
are again several promising possibilities for the extrapolation,
and in Section 4.2, we compare techniques taken from the
literature43,45 with some novel ideas presented here.
Note that the above FNO construction and energy correction

methods also rely on the applicability of the single-reference
MP2 ansatz. An additional benefit of using FNOs over, for
example, OVOs, is that they can be straightforwardly extended
to multireference cases invoking well-established multireference
second-order methods, although this avenue is yet to be
explored.
The rate-determining steps of both CCSD and (T) scale with

the fourth power of the number of virtual orbitals, nv.
Consequently, a theoretical speedup of (nv/n̅v)

4 is anticipated
for the PPL contraction and ERI assembly steps of CCSD, and
for the most demanding steps of the triples amplitude
contraction in (T). The next most operation intensive terms
scale with the third power of nv; hence, the overall theoretical
speedup in FNO-CCSD(T) is expected to be (nv/n̅v)

s with 3 < s
< 4. Because the operations scaling with nv

4 dominate the
computational costs for large basis sets, the operation count
reduction should approach (nv/n̅v)

4 with increasing AO basis
sets. Additionally, the memory requirement of the three-center
ERI integrals required for the DF method and the double
amplitudes also decreases by a factor of (nv/n̅v)

2, while a factor of
(nv/n̅v)

3 compression is realized for intermediates required for
the “ijkabc” (T) algorithm.12,59,73−75 The data compression has
an additional positive effect on our integral-direct CCSD(T)
algorithm because more memory remains for the storage of the
blocks of the four-center ERIs and fewer ERI assembly steps
have to be repeated.
2.3. Natural Auxiliary Functions. In the DF approxima-

tion,76,77 the fourth-order two-electron integral tensor is
approximated as the product of third-order tensors

pq rs J J( )
P

pq
P

rs
P∑| =

(3)

DF-CCSD(T) algorithms usually assemble the four-center
ERIs from the three-center integral-dependent J matrices
because the N n( )a

4 scaling of the assembly is smaller than
the six- and seventh-power scaling cost of CCSD and (T). In our
integral-direct DF-CCSD algorithm, integral assembly is
performed in each iteration, which can still be demanding in
realistic applications with large basis sets. The ratio of operation
counts of the PPL and assembly steps scales about as n n( / )o

2
a

and thus decreases with the increasing AO basis set size for a
given molecule. In spite of the decreasing relative cost of the ERI
assembly with the number of electrons, for the largest systems
considered here, it could require up to 30−40 and 40−70% of a
single FNO-CCSD iteration with triple-ζ and quadruple-ζ basis
sets, respectively.
Because of this potentially sizable integral assembly cost, it

would be beneficial to compress the auxiliary basis, especially
when the FNO method is invoked. To that end, we successfully
employed the combination of FNOs and NAFs previously to
reduce the costs of the direct random phase approximation
(dRPA) method,72 as well as those of the linear-response
second-order CC (CC2)68 and second-order algebraic-dia-

grammatic construction [ADC(2)]65 approaches. FNOs and
NAFs are also vital in the context of our local correlation
methods.39,56,59,72,78 The gain in operation count is obvious for
these applications as the rate-determining steps in MP2, CC2,
and ADC(2) calculations scale linearly36,65,68 with the number
of AFs, while a quadratic-scaling speedup can be achieved for
dRPA.72 In the context of integral-direct DF-CCSD(T), the ERI
assembly of both the CCSD and the (T) steps benefits from the
compression of the auxiliary space.
Moreover, in combination with the FNO approach, the

number of different orbital product densities decreases
considerably when only the active NOs are correlated at the
CCSD(T) level. Consequently, AF combinations required for
the fitting of the product densities involving the frozen NOs can
also be discarded. The optimal AF combinations for that
purpose are determined by the singular value decomposition
(SVD) of J̅,36 where J̅ holds the J tensor transformed into the
active NO basis, as

J M NTΣ̅ = (4)

Unitary matrices M and N collect the left and right singular
vectors and the diagonalΣmatrix contains the singular values of
J ̅. Because of the largememory requirement of SVD, J̅ is not used
directly, but the right singular vectors are obtained as the
eigenvalues of

W J JT= ̅ ̅ (5)

where W has eigenvalues equal to the singular values of J ̅
squared.
The elements of N are called the NAFs36 because of the

analogy with NOs. Moreover, the eigenvalues ofW can be used
to truncate the NAF basis because the r largest eigenvalues ofW,
or equivalently the r largest singular values of J ̅, and the
corresponding singular vectors define the best rank r
approximation of J̅. Here, we employ an occupation number
like threshold for the truncation of the NAF basis according to
the eigenvalues ofW, and the Eh

2 unit of the NAF threshold will
be omitted for the sake of simplicity.
Let us briefly note that the NAF approach combines the

benefits associated with both the DF and the CD techniques.
NAFs provide a systematically improvable and system
specifically compact expansion in resemblance to the properties
of the Cholesky vectors7,13,14 of the CD method. At the same
time, the construction of NAFs fromERIs in any of the AO,MO,
or FNO bases remains relatively straightforward with efficient,
fourth-power scaling algorithms. On the other hand, it would be
challenging to employ CD on ERIs in the MO or FNO basis at
the 1000 orbital range because of the highly expensive and data
intensive four-center integral transformation steps.
In practice, matrixW should contain contributions from every

independent generalized product density exactly once, that is,
the summation in the matrix product of eq 5 runs over only the
Jp̅q
P elements, where p ≥ q. In the case of an unrestricted MO
basis, the spin-dependent construction of NAFs would be
problematic, for instance, because four-center ERIs with both
spin up and spin down orbital indices also have to be assembled.
For this reason, spin independentNAFs are constructed usingW
= (Wα +Wβ)/2, whereWα andWβ are built from the spin up and
spin down J̅ tensors, respectively.
For the correction of the NAF truncation error, we can

combine two cost-effective approaches.36 First, the ΔMP2
correction introduced for the FNO approach can also reduce the
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NAF error. To that end, the MP2 energies obtained with the full
MO and AF bases as well as with the active NO and NAF bases
are employed. Additionally, the two-external four-center ERIs
needed for the correlation energy expression of eq 1 are
computed and stored using the complete AF basis. These NAF
error-free ERIs can be contracted with the MP2 and CCSD
amplitudes obtained with the active NO and NAF bases, which
circumvents any NAF error contribution to the correlation
energies from the integrals. In other words, only the amplitudes
are affected by the NAF approximation. Note that the second
NAF error reduction technique would be significantly more
demanding and would bring smaller improvement in accuracy
for the (T) term, and thus it is not employed beyond CCSD.
Considering the benefits of the NAF approach from the

operation count perspective, a theoretical speedup scaling
linearly with the NAF compression ratio is achieved for the four-
center integral assembly step. However, for large AO basis sets
and in combination with the FNO approximation 50% or more
of the NAFs can be discarded with a negligible error in the
correlation energies. For such cases, the NAF approximation
alone can reduce the number of operations required for a CCSD
iteration by up to 30−40%. For the (T) part, in general modest
improvements can be expected, but there is a noticeable increase
in performance when limited memory is available. First, more
memory can be allocated to the storage of the three-external
ERIs because of the compression of the three-center integral
tensor transformed into the NAF basis. Second, the repeated
assembly of the three-external ERIs, which cannot be stored
during the (T) part, also benefit from a speedup proportional to
the NAF compression ratio.

3. COMPUTATIONAL DETAILS
The presented FNO and NAF basis set compression approaches
have been implemented in the closed- and open-shell CCSD(T)
codes of the MRCC suite of quantum chemical programs.79,80

The programs will be made available in a forthcoming release of
the package.
Benchmark calculations were performed on the reaction

energy test sets assembled by Adler and Werner (AW)48 as well
as by Neese, Wennmohs, and Hansen (NWH)49 for closed-shell
molecules. Additionally, atomization energies taken from the
“high-accuracy extrapolated ab initio thermochemistry”
(HEAT)50 compilation as well as vertical ionization potentials
(VIP)51 are also used containing both closed- and open-shell
species.

The benchmark timings were measured on Intel Xeon E5-
2670 v3 CPUs containing 12 physical cores, Intel Xeon
Platinum 8180M processors equipped with 28 physical cores,
8-core Intel Xeon E5-2609 v4 CPUs, and Intel Xeon Gold 6138
CPUs containing 20 physical cores. The corresponding
theoretical peak performances of those CPUs in giga floating
point operations per second (GFLOP/s) are 441.6, 1523.2,
217.6, and 832, respectively.
The Cartesian coordinates of the species of Table 5 are

available in the Supporting Information of ref 12. The
coordinates of the largest species of Table 7 are taken from
the original publications: GC-dDMP-B system,30 ruthenium-
complex,81 organocatalytic reaction,82 and corannulene dimer.83

Correlation consistent basis sets, cc-pVXZ84 with the
corresponding DF auxiliary bases, cc-pVXZ-RI85 and triple-
and quadruple-ζ valence basis sets (def2-TZVP and def2-
QZVP), including polarization86 and diffuse functions87 (def2-
TZVPPD and def2-QZVPPD) with the corresponding auxiliary
basis sets,88 were utilized. The 28-electron Stuttgart−Köln
effective core potential developed for the def2 basis sets89 were
employed for the Ru atom. The calculation for the GC-dDMP-B
molecule was performed with the 6-311++G(d,p) basis set
according to ref 30 and the aug-cc-pVTZ-RI auxiliary basis. The
core electrons were not correlated in any of the presented cases.
The extrapolation to the complete basis set (CBS) limit was
performed using the formula of Helgaker and co-workers.90

The accuracy of the approximations will be characterized by
the mean absolute error (MAE), the root mean square error
(RMS), and the maximum absolute error (MAX) of the
computed quantities.

4. RESULTS AND DISCUSSION
In this section, we analyze the accuracy and efficiency of the
FNO and NAF approximations. First, we explore the
convergence of both approximations toward the truncation
free reference and suggest default thresholds yielding sub-kJ/
mol accuracy and considerable cost reduction. Various
extrapolation and error correction schemes are also considered
to increase the rate of convergence toward conventional
CCSD(T). The combined error of the FNO and NAF
approximations is characterized on a set of challenging reaction
energies containing both closed- and open-shell species48−50 as
well as on ionization potentials. The scaling of the truncation
errors and the gains in efficiency are also assessed on some of the
largest systems for which conventional CCSD(T) is still

Figure 1. Relationship of the various truncation strategies for the FNO (left panel) and the NAF (right panel) approximations. The values were
averaged over the molecules of the AW test set.
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feasible,12 containing 31−43 atoms. Finally, several large-scale
applications illustrate the current domain of applicability of the
implementation in the 50−75 atom range.
4.1. Relationship of the Various Truncation Strategies.

The truncation of both the virtual and the auxiliary subspaces
can be carried out as a function of various measures, but there is
no clear consensus in the literature on which variable to choose.
Thus, here, we explore the relation of multiple possibilities:
COT, ONT, and PVO. The left panel of Figure 1 plots the PVO
and COT criteria as a function of the ONT, that is, the
corresponding data points represent the numerical value of the
three measures with an identical number of frozen NOs
averaged over the AW compilation. As expected, the percentage
of the retained virtual NOs tends to 100% more steeply for the
cc-pVQZ basis set than for cc-pVTZ, indicating the potential to
achieve larger savings in computation time in the case of the
larger cc-pVQZ basis. Especially with the cc-pVQZ basis set,
ONT and COT show an almost linear dependence for the AW
test set, suggesting that similar performance can be expected
from both measures. This relation is not obvious as the
distribution of the occupation numbers is not known and may
also be nonuniversal because of the basis set and molecule
dependence. An additional consequence of this observation is
that the conclusions of previous COT-based studies on
extrapolation toward the complete virtual space results43 could
potentially be transferable to the ONT criterion using the
appropriate quasi-linear transformation between them. On the
other hand, the steep nonlinear shape of the PVO curve suggests
that a stronger system dependence and consequently less
robustness can be expected from this measure, especially with a
larger basis set. Indeed, in contrast to ONT and COT, PVO is
not system specific and thus can be expected to adapt to the
electronic structure worse than ONT and COT.
In the case of the NAF truncations, it is straightforward to

consider an ONT-type variable because of the analogy between
the NAF eigenvalues and the NO occupation numbers. Unlike
the case of the NOs, the percentage of the retained NAFs
depends almost linearly on the NAF truncation threshold, as
shown in the right panel of Figure 1. Compared to that, the
cumulative eigenvalue threshold (CET, i.e., the analogue of
COT for the NAF approximation) shown in Figure 1 exhibits a
more pronounced nonlinear dependence on theNAF truncation
threshold, especially with the cc-pVTZ basis set around the 5 ×
10−2 value, which is recommended as a suitable default NAF
threshold choice below. For these reasons, primarily the ONT

criterion and its NAF analogue will be employed in the rest of
the present study.

4.2. Error Correction and Extrapolation Techniques.
The most straightforward way to correct the NO and NAF
approximations is to use an additive correction obtained at the
MP2 level (ΔMP2), as introduced in Sections 2.2 and 2.3. In
both cases, the difference of the MP2 correlation energies
obtained with the complete and the truncated orbital spaces is
added to the CCSD(T) results. This way the second-order
energy remains unaffected and only the higher-order energy
corrections are subject to the approximations.
Additionally, the systematic convergence of the CCSD(T)

correlation energies with tighter and tighter thresholds can also
be exploited via extrapolation approaches. To date, two
alternatives have been investigated to extrapolate the CCSD(T)
correlation energy toward the limit of the complete virtual space
relying on either linear extrapolation43 or nonlinear sequence
transformations.45 The choice of the transformation technique
is far from obvious because the form of the extrapolated
function, that is, the dependence of the CCSD(T) correlation
energy on the truncation threshold is not known. Moreover, the
rate of convergence can also be system dependent, and different
extrapolation techniques perform best for sequences with
different convergence properties.
Besides the choice of the extrapolation method, there are also

several possibilities for the selection of the independent variable.
It has been demonstrated that the COT criterion exhibits a close
to linear relationship with the truncation error over a wider
range than PVO.43 Because the occupation number-based
thresholds (COT and ONT) exhibit an almost linear relation-
ship with each other as shown above, they are both expected to
be more suitable for extrapolation than PVO. In order to provide
data comparable to previous studies, the case of the COT
criterion will be presented in this section.
Additionally, we propose the use of correlation energy-based

quantities as an alternative variable to be employed in the
extrapolation. The motivation is that the convergence, for
example, of the MP2 correlation energy with the FNO and NAF
thresholds might exhibit a similar pattern as the targeted
CCSD(T) correlation energy, which could be beneficial for the
extrapolation. To assess the performance of correlation energy-
based independent variables, we compare these to the
occupation number-based alternative employed so far. The left
and right panels of Figure 2 plot the percentage error of the
CCSD(T) correlation energy as a function of the COT value

Figure 2. Percentage error of the CCSD(T) correlation energy as a function of the discarded cumulative occupation (1-COT) (left panel) and the
percentage error of the MP2 correlation energy (right panel). Symbols and colors refer to five ONT thresholds ranging from 10−4 to 10−6, while
individual points mark a single species of the AW test set with the cc-pVQZ basis.
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and theMP2 correlation energy error, respectively, for all entries
of the AW compilation. In order to make the MP2 correlation
energies scattered over a wide range more comparable to the
COT, the part missing from the 100% MP2 correlation energy
and the part missing from the 100% cumulative occupation
number are compared for the same five ONTs. The correlation
of the CCSD(T) correlation energy with the MP2 correlation
energy evaluated using the same approximations (right panel of
Figure 2) appears clearly superior compared to the case of COT.
It is important to point out that the relation with the
approximated MP2 correlation energy is still neither completely
linear nor universal but gets much closer to ideal than COT in
these aspects.
Furthermore, the correlation of the MP2 and CCSD(T)

errors collected in Figure 2 indicates that simple linear
extrapolations using the MP2 energy as an independent variable
might perform significantly better than previous attempts relying
on the occupation number type variables. Besides the linear
extrapolations, we will also explore frequently employed
sequence transformations, namely, the Shanks transformation45

and the Richardson extrapolation.91 An advantage of these
transformation methods is that they can be repeated by
performing them on the extrapolated values themselves. This
repeated extrapolation could improve the extrapolated results
even further by taking into account deviations from the linear
behavior.
The sequence transformationmethodsmap a sequence, a, to a

new sequence [for example, the S(Ak) for Shanks and R
n(h,t) for

Richardson transformations defined below] that is expected to
converge faster than the original one. The Shanks trans-
formation operates on the kth partial sums of the original
sequence, Ak = ∑i=0

k ai
S, as

S A
A A A

A A A
( )

2k
k k k

k k k

1 1
2

1 1
=

−
− +

+ −

+ − (6)

For the Shanks transformation of correlation energies,
respective terms of the Taylor series of the correlation energy,
that is, ai

S = F(i)(h)(h0 − h)i, form the sequence that is subjected
to sequence transformation. Here, F(i) denotes the ith derivative
of the correlation energy as a function of the truncation
threshold h, and h0 stands for the value of the threshold with no
truncation, for example, h0 = 1 for COT. For instance, the
correlation energies obtained with three different thresholds
provide the partial sums of A0 = F(h),A1 = F(h) + F′(h)(h0− h),
A2 = F(h) + F′(h)(h0 − h) + 1/2F″(h)(h0 − h)2, and the
corresponding S(A1) is the updated approximation of the
correlation energy provided by the Shanks transformation.
In the case of the Richardson extrapolation, the a sequence is

assumed to be a function of a small parameter, h:
a h a Ch h( ) (0) ( )n nR R 1= + + + , where, in our case, aR(0) is
the truncation-free correlation energy, Chn is the nth order error
term, andC is a constant. The nth order error term is assumed to
vanish in the Richardson extrapolated sequence expressed from
aR obtained at two different threshold values, h and h/t

R h t
t a h t a h

t
a h( , )

( / ) ( )
1

(0) ( )n
n

n
n

R R
R 1= −

−
= + +

(7)

where Rn(h,t) is the Richardson extrapolated approximation of
the correlation energy. Because the form of the correlation
energy as a function of the truncation threshold, that is, aR(h) is
not known, the threshold-dependent error term of Chn is
assumed to be linear (n = 1) for the first Richardson

extrapolation, yielding R1(h,t). The Richardson extrapolation
can be repeated according to eq 7 with n = 2 by replacing the
original aR(h) sequence with R1(h,t), which is referred to as
“Richardson 2” below.
These various extrapolation methods are compared to the

uncorrected and not extrapolated results for the AW test set with
the cc-pVQZ and the aug-cc-pVTZ basis sets in Tables 1 and S1

of the Supporting Information for the correlation energies as
well as in Tables 2 and S2 of the Supporting Information for the
reaction energies, respectively. The general trends are similar for
the two basis sets, only the overall uncertainties are lower for the
aug-cc-pVTZ basis. Therefore, only the results for the cc-pVQZ
basis set will be presented in detail. The considered correction
methods are the additive MP2 correction (ΔMP2), the linear
extrapolation with the independent variables of COT (COT
linear) and with the MP2 correlation energy (MP2 linear), the
three-point Shanks transformation as discussed in the previous
example (Shanks), and the repeated Richardson extrapolation
(Richardson 2) as the function of the MP2 energy. The Shanks
transformation was performed on the terms of the Taylor series
as in ref 45, with the modification that the CCSD(T) correlation
energy was expressed as the function of the MP2 energy instead
of COT. Note that the first Richardson extrapolation as the
function of the MP2 energy is identical to a linear extrapolation
(MP2 linear), if n = 1 is assumed in eq 7. Note also that the linear
extrapolation of the ΔMP2 corrected correlation energies is
equal to the extrapolation of the uncorrected values because the
linear extrapolation of the MP2 correction term is zero at the
truncation-free limit. In other words, the linear extrapolation of
the ΔMP2 results would be identical to the ones labeled “MP2
linear”. Because the error term is assumed to be linear, the same
holds for the Richardson extrapolation as well. In the case of the
Shanks transformation, the extrapolation of the ΔMP2
corrected and the uncorrected correlation energies are not
necessarily the same, but in practice, they did yield essentially
identical results. For each column, that is, each ONT value of
Tables 1 and 2, the corresponding threshold and one (for COT
linear and MP2 linear) or two (for Shanks and Richardson 2)
looser thresholds were employed for the extrapolation.
Both the correlation energies and the reaction energies

converge to the exact values for every method as the threshold

Table 1. Average Relative (Maximum) Error of Correlation
Energies as the Percentage of the Conventional CCSD(T)
Correlation Energy for the AW Test Set with the cc-pVQZ
Basis Set and Various FNO Truncation Thresholdsa

threshold

technique 10−4 3.16 × 10−5 10−5 3.16 × 10−6 10−6

uncorrected 4.22
(5.32)

1.41 (2.43) 0.40
(1.18)

0.07 (0.19) 0.00
(0.03)

ΔMP2 0.93
(2.72)

0.51 (2.55) 0.20
(1.23)

0.04 (0.16) 0.00
(0.03)

COT linear 0.14 (1.79) 0.03
(0.43)

0.01 (0.02) 0.00
(0.01)

MP2 linear 0.22 (0.37) 0.05
(0.12)

0.00 (0.02) 0.00
(0.00)

Shanks 0.04
(0.10)

0.00 (0.02) 0.00
(0.00)

Richardson 2 0.03
(0.09)

0.00 (0.02) 0.00
(0.00)

aThe best performing methods are highlighted in bold for each ONT
value.
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gets tighter, which indicates the stability of all extrapolation
strategies. Consequently, every technique improves the
correlation energies compared to the uncorrected values. The
same holds for the reaction energies.
Considering the correlation energies, the ΔMP2 correction

usually improves upon the uncorrected results as much as
tightening the ONT by a factor of 3.16 10≈ . Similarly, linear
extrapolation as a function of the MP2 correlation energy is as
good as or slightly better than the ΔMP2 results obtained with

10 -times tighter thresholds. All extrapolation strategies
eliminate the error almost completely when 10−5 or tighter
thresholds are employed. When applicable, the repeated
Richardson extrapolation performs slightly but consistently
better than the alternatives, although this benefit is probably not
sufficient to outweigh the need for three data points instead of
the two required for the linear methods. In the case of the 3.16×
10−5 threshold, the “MP2 linear” extrapolation, equivalent to the
first Richardson extrapolation, appears to perform best because
of its excellent maximum error value. It is worth noting that for
correlation energies, every extrapolation method surpasses the
ΔMP2 correction in accuracy.
In the case of the reaction energies, the “MP2 linear”

extrapolation method as well as the three-point extrapolations
are again the best performers with thresholds below 10−5.
Interestingly, for the ONTs of 10−5 and above, the ΔMP2
correction outperforms all other methods and yields results
almost as good as the “uncorrected” values obtained with an
order of magnitude tighter threshold. The exceptional accuracy
of the ΔMP2 correction over the alternatives for reaction
energies does not follow from the ranking observed for the
correlation energies and can be attributed to the fortuitous

cancellation of errors. This can be understood better by
inspecting the individual reaction energy errors, which are
plotted for all entries of the AW set in Figure S1 of the
Supporting Information. In contrast to the case of ΔMP2 (left
panel of Figure S1), the linear extrapolated errors of the right
panel decrease systematically with a tighter FNO threshold and
thus exhibit a more reliable overall convergence pattern.
Compared to that, the oscillatory convergence of ΔMP2 leads
to smaller reaction energy errors on the average above the 10−5

ONT value. Because, in the remaining sections, we consider the
accuracy of energy differences, mostly of reaction energies, and
employ 5 × 10−5 to 10−5 ONT thresholds; we will utilize the
ΔMP2 correction.
Let us briefly note that similar trends can be observed with the

cc-pVTZ basis set as with the cc-pVQZ basis described above.
The only difference is that the ONT values corresponding to
similar levels of NO truncation and the error measures shift to
higher ONT values. For instance, the performance of ONT = 5
× 10−5 with the triple-ζ basis is comparable to that of ONT =
10−5 at the quadruple-ζ level.
Considering the choice of the independent variable, the MP2

energy-based extrapolation is found to perform better than the
ones carried out with occupation-based thresholds. The
extrapolation as a function of COT gives similar or slightly
lower average deviations than the MP2 energy-based extrap-
olation, but the corresponding maximum errors are 1.5−5 times
higher, that is, this scheme is less consistent. For reaction
energies, the MP2 energy-based extrapolation performs best in
all statistical measures.
Finally, let us point to further applications of the correlation

energy-based extrapolations. Because the linear as well as the

Table 2. Average (Maximum) Error of Reaction Energies [in kJ/mol] Compared to Conventional CCSD(T) Calculations for the
AW Test Set with the cc-pVQZ Basis Set and Various FNO Truncation Thresholdsa

threshold

technique 10−4 3.16 × 10−5 10−5 3.16 × 10−6 10−6

uncorrected 4.31 (14.81) 1.90 (6.55) 0.61 (2.65) 0.28 (1.15) 0.05 (0.17)
ΔMP2 0.71 (2.24) 0.45 (1.62) 0.13 (0.55) 0.13 (0.52) 0.03 (0.12)
COT linear 1.62 (6.49) 0.30 (1.58) 0.09 (0.67) 0.03 (0.09)
MP2 linear 0.78 (2.96) 0.22 (1.18) 0.03 (0.13) 0.01 (0.03)
Shanks 0.23 (1.22) 0.03 (0.13) 0.01 (0.08)
Richardson 2 0.21 (0.97) 0.03 (0.11) 0.01 (0.03)

aThe best performing methods are highlighted in bold for each ONT value.

Figure 3. Errors of CCSD(T) reaction energies [in kJ/mol] for the AW test set with various basis sets and truncation thresholds separately for the FNO
(left panel) and NAF (right panel) approximations. For clarity, the 3.69 kJ/mol RMS and 15.68 kJ/mol MAX errors obtained with the 10−1 NAF
threshold are not shown.
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nonlinear sequence transformation techniques are found to
perform better for correlation energies, theymight be superior to
MP2-based corrections for different molecular properties, where
error cancellations cannot occur, such as nuclear gradients,
dipole moments, or polarizabilities. These avenues will be
explored in a forthcoming study.
4.3. Convergence of Reaction Energies with the FNO

and NAF Approximations. Next, the convergence of the
correlation energies and the reaction energies with the FNO and
NAF truncation thresholds are inspected in order to determine
the default settings for practical use. Error measures are reported
using the ΔMP2 correction for the FNO truncation and both
correction techniques described in Section 2.3 for the NAF
approximation. Relative errors are evaluated compared to
conventional DF-CCSD(T), while statistical measures are
reported for the AW test set, containing 58 closed-shell species
of up to 18 atoms.
The two panels of Figure 3 show the absolute error of reaction

energies separately for the FNO and the NAF approximations.
The plotted numerical data are collected in Tables S4 and S7 of
the Supporting Information. The accuracy of both approx-
imations is highly satisfactory. Concerning the FNO truncation,
both the MAE and RMS measures are below the 1 kJ/mol mark
already with 10−4 ONT values, while MAX errors are lower than
0.5 kJ/mol using 5 × 10−5 for the cc-pVTZ and 10−5 for the cc-
pVQZ basis set. The latter two threshold-basis set combinations
correspond to 0.22 and 0.13 kJ/mol MAE in the reaction
energies and about 0.2% relative correlation energy errors (see
Table S3). As expected from the results of Section 4.2, the
absolute correlation energy errors are larger than the error of
their contribution to the reaction energies, there is a noticeable
error compensation, especially with the looser thresholds. Thus,
anticipating the size-extensive growth of correlation energy
errors and some error compensation in reaction energies,
thresholds 5 × 10−5 and 10−5 can be expected to maintain the
about 1 kJ/mol or better accuracy for cc-pVTZ and cc-pVQZ,
respectively, at least up to the targeted range of 50−75 atoms.
The basis set-dependent progression of the FNO errors can be

understood looking at the ratio of the retainedNOs (left panel of
Figure 4). Clearly, there are barely any NOs that can be dropped
from the most compact cc-pVDZ basis, thus one cannot expect
significant computational saving with double-ζ or smaller basis
sets. There is more room to compress the system independently
optimized larger basis sets using molecule-specific FNOs. The
similar performance of the 5 × 10−5 and 10−5 thresholds for the
triple- and quadruple-ζ basis sets is explained by the different

slopes of the trends in the retainedNO ratios and by the fact that
a similar portion of the NOs (77 and 72%, respectively) is kept
for the two basis sets with these truncations.
The convergence of the reaction energies with the NAF

threshold (see Figure 3) is even more rapid, the MAE (MAX)
values are already below 0.1 (0.25) kJ/mol with the 5 × 10−2

threshold for both cc-pVTZ and cc-pVQZ. However, the trend
in the ratio of retainedNAFs as a function of the basis set is quite
the opposite of the trend observed for the FNOs (cf. the two
panels of Figure 4). Because the number of terms yielding a
single element of theW matrix of eq 5 scales quadratically with
the number of AOs, the same NAF threshold introduces a more
severe truncation in the auxiliary space corresponding to the
smaller basis sets. This property explains the small number of
retainedNAFs and relatively large truncation errors observed for
the cc-pVDZ basis set. However, the recommended 5 × 10−2

threshold performs similarly well for the two larger basis sets
because of the comparable portion of retained NAFs (62 and
73%). Because the NAF approach provides smaller gains in the
computational cost, it is beneficial to keep the NAF errors
smaller than the FNO error. Indeed, the relative inaccuracies in
the correlation energies with the 5 × 10−2 threshold are, in
average, 0.08 and 0.02% for the cc-pVTZ and cc-pVQZ bases,
respectively (see Table S6). Similarly to the case of the DF
approximation, the NAF errors compensate excellently in
reaction energies.36 In the present case, a factor of 20 and 7
reduction is observed in the NAF reaction energy errors
compared to the corresponding correlation energy errors.

4.4. Accuracy of the Combined FNO and NAF
Approximations. The simultaneous use of the FNO and
NAF approximations is assessed on four test compilations. The
NWH set, containing 47 species of up to 36 atoms, is chosen to
test how the truncation errors change with the system size
compared to the case of the AW set collecting roughly twice
smaller molecules. Much less is known about the accuracy of the
FNO and NAF approximations for open-shell molecules, thus
we also examine the HEAT and the VIP test sets. The
atomization energies of the HEAT suite are expected to be
highly challenging because of the increased number of chemical
bond breakings and the presumably smaller error compensation.
The ionization potentials of the VIP list pose a different
challenge because the IPs resulting from the difference of two
large numbers being about 700−1300 kJ/mol could be more
sensitive to the relative errors.
Absolute reaction energy errors obtained with the suggested

10−5 FNO and 5 × 10−2 NAF thresholds are collected for the

Figure 4. Average percentage of retained virtual NOs (left panel) and NAFs (right panel) for the AW test set with various basis sets and truncation
thresholds. The plotted numerical data are collected in Tables S5 and S8 of the Supporting Information.
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AW and NWH sets in Table 3. The cumulative FNO and NAF
errors are roughly the sum of the individual errors found in

Section 4.3 for the AW test molecules, a minor compensation
can be observed for the cc-pVQZ basis. In accord with our
expectations, the ratio of the retained NAFs decreases further by
about 5−15% when used in combination with the FNO
approach without noticeable additional inaccuracy. Conse-
quently, the MAE (MAX) deviations remain below the highly
satisfactory 0.2 (0.8) kJ/mol for both cc-pVTZ and cc-pVQZ.
Furthermore, the accuracy appears to be well balanced for the
triple- and quadruple-ζ bases, and consequently, the average
(maximum) errors of the CBS(T,Q) scheme increase only by
0.1 (0.5) kJ/mol compared to cc-pVQZ when the basis set
extrapolation is employed.
Interestingly, the error measures are twice as small when

comparing the larger species of the NWH set to those of AW on
the same cc-pVTZ basis set. The smaller uncertainties obtained
for NWH can be explained by the relatively large number of
isomerization reactions in the NWH set, which benefit more
from error cancellation. The remaining (i.e., not isomerization)
reactions exhibit significantly larger errors than the isomer-
ization reactions (0.34 kJ/mol on average compared to 0.08 kJ/
mol obtained for the isomerizations), which resemble the
average errors of the AW test set more closely. Therefore, it can
be concluded that the error of the simultaneous NO and NAF
basis set compressions does not increase significantly for larger
molecules even if the isomerization reactions of the NWH
compilation are not considered.
The analogous performancemeasures obtained for the HEAT

and the VIP test sets are collected in Table 4. The ionization
potentials exhibit absolute errors comparable to the case of the
closed-shell molecules and, consequently, show exceptionally
small relative errors. It is worth noting that the number of
retained functions is found to be lower for diffuse basis sets. At
least for the aug-cc-pV(T+d)Z basis and the VIP test set, it was

sufficient to retain only about 65−70% of the virtual orbitals and
50% of the AFs with the same 10−5 FNO and 5 × 10−2 NAF
thresholds.
The case of the HEAT test set appears to differ from the

previous results, at least if only the same error measures are
considered. The significantly increased deviations found for the
atomization energies are somewhat unexpected in light of the
fact that the largest species of the HEAT suite contains only 4
atoms. More detailed analysis uncovers that these higher errors
for the case of the cc-pVQZ basis set can mostly be attributed to
the complete lack of error cancellation in the atomization
energies of hydrogen-containing species because of the zero
correlation energy of the hydrogen atom. Indeed, the average
(maximum) error for the cc-pVQZ basis set obtained without
the hydrogen-containing molecules of HEAT is 0.30 (0.88) kJ/
mol, in accordance with the error statistics of the other three test
sets. In other words, the atomization energies of the hydrogen-
containing species exhibit an average error of 0.87 kJ/mol per
hydrogen atom, which is almost exactly the half of the 1.72 kJ/
mol absolute error obtained for H2. Obviously, the FNO and
NAF errors affect all other atom types too, but the large
performance deviation of the HEAT set compared to the other
three ones can mostly be explained by the missing error
cancellation for hydrogen. Because atomization energies of
molecules with dozens of atoms are not in the focus of practical
interest, this shortcoming of the method can be accepted and
taken into account in the rare cases when it is relevant. A
different trend is observed for the case of the cc-pVTZ basis set,
where the truncation of the smaller AO basis sets leads to
somewhat higher errors for the non-hydrogen elements, and
thus for the atomization of the molecules without hydrogen
content. One should also point out that the CBS-extrapolated
results again preserve well the accuracy obtained for the cc-
pVTZ and cc-pVQZ bases.
Sherrill and DePrince previously invested significant effort

into the assessment of the FNO-CCSD(T) method on
noncovalent interaction energies.9,92 These authors found that
the average (maximum) FNO error does not exceed 0.4 (0.9)
kJ/mol with the aug-cc-pVTZ basis set and 0.1 (0.4) kJ/mol
with aug-cc-pVDZ for the S22 test set even with a looser 10−4

ONT. Compared to this, our tighter FNO thresholds are
expected to perform better even in combination with the NAF
approach.
The test sets considered so far contain only a handful of

molecules reaching 30 atom due to the high computational cost
of obtaining CCSD(T) references. To further demonstrate that
the performance does not deteriorate for extended systems, we
consider other test cases lying in the 31−43-atom range, for
which we have previously performed some of the largest
conventional CCSD(T) computations using triple- and
quadruple-ζ quality basis sets.12 First, the reaction energy and

Table 3. Combined FNO and NAF Truncation Errors (in kJ/
mol) Including all MP2-Based Corrections for the Reaction
Energies of the AW and the NWH Test Sets Using 10−5 FNO
and 5 × 10−2 NAF Thresholds

test set basisa MAE MAX RMS

AW cc-pVDZ 0.75 2.85 1.02
cc-pVTZ 0.19 0.75 0.24
cc-pVQZ 0.18 0.67 0.24
CBS(D,T) 0.41 1.93 0.55
CBS(T,Q) 0.30 1.18 0.41

NWH cc-pVTZ 0.10 0.37 0.14
aCBS(X,X+1) denotes results obtained with the basis set extrap-
olation using the cc-pVXZ and cc-pV(X+1)Z basis sets.

Table 4. Combined FNO and NAF Truncation Errors (in kJ/mol) Including All MP2-Based Corrections for the Atomization
Energies of the HEAT and the Ionization Potentials of the VIP Test Sets Using 10−5 FNO and 5 × 10−2 NAF Thresholds

all reactions no hydrogena

test set basis MAE MAX RMS MAE MAX RMS

HEAT cc-pVTZ 0.84 1.99 0.98 1.12 1.99 1.21
cc-pVQZ 0.96 2.71 1.20 0.30 0.88 0.39
CBS(T,Q) 1.34 3.96 1.73 0.57 1.46 0.74

VIP aug-cc-pV(T+d)Z 0.24 0.97 0.37

aCalculated from atomization energies excluding hydrogen-containing species.
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the corresponding barrier height are examined for a cyclic
dihydrooxazine N-oxide (OO) intermediate formed from β-
nitrostyrene (NS) and an enamine derivative (en-trans)82 as
depicted in Figure 10 of ref 12. Second, an alternative reaction
energy and barrier height are computed for the H2 activation by
a frustrated Lewis pair type catalyst (FLPO)93 (see Figure 11 of
ref 12). The third reaction involves a palladium catalyzed C−H
bond activation94 as depicted in Figure 12 of ref 12. The
corresponding errors in reaction energies and barrier heights
depicted in Figure 5 and gathered in Table S9 of the Supporting

Information are excellent being in the range of−0.01 to 0.48 kJ/
mol with the 10−5 threshold. Furthermore, the deviation from
the exact reference remains below 1 kJ/mol even for the
somewhat looser 5 × 10−5 threshold. While the remarkable
accuracy of 0.01 kJ/mol obtained for the C−H activation
reaction can be at least partly attributed to fortuitous error
cancellation, these examples suggest that we can still expect 1 kJ/
mol accuracy for large systems, at least in the 30−40 atom range.
Even more interestingly, the FNO and NAF errors in energy
differences appear to grow sub-linearly with system size

indicating that similar performance can be expected for our
largest applications with about twice as many atoms.

4.5. Timings and Computational Efficiency. The largest
species involved in the reactions of Figure 5 and Table S9 of the
Supporting Information are denoted by OO, TS1, FLPO, TSAdd,
FLPA, and ABP and contain 40, 40, 41, 43, 43, and 31 atoms,
respectively. The results of the corresponding wall time
measurements are collected in Table 5. The performance values
of Table 5 are obtained from the measured wall times divided by
the estimates for the optimal wall time corresponding to the
theoretical peak performance utilization of the employed CPUs.
The measurements demonstrate that highly accurate FNO-
CCSD(T) results became feasible with our implementation for
systems of about 40 atoms and 1000 AOs almost overnight (cca.
18−20 h) using 24 cores of two 6-year-old 12-core CPUs and at
most 100 GB memory. Such hardware resources should be
available to almost everyone in the computational chemistry
community.
Moreover, if very large basis sets are required to approach the

CBS limit of CCSD(T), quadruple-ζ level FNO-CCSD(T)
computations can also be performed in about a day at the 30
atom range. For that, we employed 112 cores of four many-core
CPUs resulting in about 17 h of runtime for the ABP molecule
because of the almost 60% peak performance utilization.
Compared to our previous measurements [performed with the
same DF-CCSD(T) implementation as was employed also in
the FNO-CCSD(T) context and for the same species (OO, TS1,
ABP) using the complete MO and auxiliary bases,12 here, we
find that the peak performance utilization does not change
significantly upon the compression of the MO and auxiliary
spaces. Note that for the FLPO, FLPA, and TSAdd systems, we
employed a considerably older CPU, which does not support
AVX-512 instructions. Moreover, we utilized less memory for
these cases leading to some redundant ERI assembly steps for
both CCSD and (T). All in all, the 34−55 and 41−60% peak
performance utilizations measured in these cases for CCSD and
(T), respectively, are still highly competitive compared to
currently available (reduced-cost) CCSD(T) implementations.
Most interestingly, we observe a two- and an eight-fold
reduction in the CPU time requirement for the OO (or TS1)
and the ABP molecules, respectively, because of the NAF and
FNO (with the tighter 10−5 threshold) approaches. These
speedups match the theoretical operation count reductions of

Figure 5. FNO-CCSD(T) reaction energy errors compared to the
conventional DF-CCSD(T) reference for medium-sized molecules of
31−43 atoms with two FNO thresholds and 5× 10−2 as NAF threshold.
Notations: “FLP TS” stands for FLPO + H2 → TSAdd, “FLP reac.” for
FLPO + H2 → FLPA, “orgcat. TS” for en-trans + nitrostyrene→ TS1,
“orgcat. reac.” for en-trans + nitrostyrene→OO, and “Pd reac.” for AA
+ BA + TBHP→ ABP + TBP + H2O. The plotted data are collected in
Table S9 of the Supporting Information.

Table 5. Wall Times and Corresponding Peak Performance Utilizations Measured for Medium-Sized Systems

wall time % performance

species atoms no. of AOs no. of AFs FNO threshold % NOa % NAFb CCSD [min]c (T) [h] CCSD (T)

FLPOd 41 1037 2500 5 × 10−5 60 39 13 15 47 50
10−5 81 53 40 57 53 45

TSAdd
d 43 1071 2578 5 × 10−5 59 38 15 16 47 55

10−5 81 53 47 74 53 42
FLPAd 43 1071 2578 5 × 10−5 59 38 15 16 47 55

10−5 81 53 45 75 55 41
OOe 40 1089 2620 5 × 10−5 63 41 5 4.6 35 55

10−5 82 53 13 13 37 58
TS1e 40 1089 2620 5 × 10−5 63 41 5 4.9 34 53

10−5 83 54 13 16 38 46
ABPe 31 1569 3671 5 × 10−5 41 31 4 2.6 35 51

10−5 65 48 17 13 44 60

aPercentage of active virtual NOs. bPercentage of retained NAFs with the threshold set to 5 × 10−2. cTime of one iteration. dPerformed on two 12-
core Intel Xeon E5-2670 v3 CPUs clocked at 2.3 GHz. ePerformed on four 28-core Intel Xeon Platinum 8180M CPUs clocked at 1.7 GHz.
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2.3 and 7.3 almost perfectly. An even higher speedup factor of 38
is obtained for the ABP molecule using the still practically error-
free 5 × 10−5 FNO threshold.
The performance of the closed-shell DF- and FNO-CCSD(T)

implementations is also demonstrated on the guanine−cytosine
deoxydinucleotide monophosphate (GC-dDMP-B) molecule
(see Figure 6), which has become one of the standard

benchmark systems to assess the performance of parallel CC
programs. Wall time measurements performed with the present
implementation of the MRCC suite,12 as well as with the
CCSD(T) programs of the NWChem30 and MPQC10 packages
and the CCSD code of TeraChem,24 are collected in Table 6.
The CCSD program of NWChem30 introduced pioneering
algorithmic developments to overcome the severe communica-
tion bottleneck related to the numerous four-center ERIs
needed during the CCSD iteration. The massively parallel (T)
implementation of NWChem30 has also achieved impressive
parallel scaling on 160,000 cores of 20,000 CPUs and,
consequently, surpassed the 1 PFLOP/s performancemilestone.
Recent optimization efforts in MPQC10 include the utilization
of DF in the CCSD part and the permutational symmetry of the
(T) energy expression. The latter is probably the largest
contributing factor to the noticeable jump in the performance
increase of MPQC over NWChem for the (T) term (cf. the 10
and 44% efficiencies). The most recent CCSD implementation
of TeraChem represents a significant step toward a large-scale
utilization of GPUs.24 Even though this GPU code has been
developed for a single node equipped with 1 TB memory and 8
of the most advanced V100 GPUs, the 14% peak performance

utilization appears to be highly advanced considering the
additional data transfer needed between the main memory and
the GPUs.
Compared to these advanced implementations, the efficiency

of our code facilitates the computation of the same system in a
comparable time using a fraction of compute cores, namely, only
112 cores. This markedly smaller hardware requirement in this
example can be attributed to the excellent 47 and 53% peak
performance utilization of our CCSD and (T) algorithms,
respectively. Note that, because of a lack of dedicated auxiliary
basis sets corresponding to the 6-311++G(d,p) basis, we
employed the aug-cc-pVTZ-RI basis, which contains about 5.1
times more AFs than the number of AOs in 6-311++G(d,p) (cf.
Table 7 below). In the case of Dunning and Ahlrichs basis sets
with dedicated RI fitting bases, this ratio is usually much smaller,
around 2.5 at the triple-ζ level. This resulted in an unnecessarily
high ERI assembly cost and decreased the efficiency compared
to NWChem, while the RI fitting basis choice was not
documented in ref 10.
In comparison with the above results, the present FNO and

NAF approximations further decrease the wall times by a factor
of 2.2−2.4, which now closely approach the runtime of the
highly optimized MPQC code using an order of magnitude
more cores for the considered approximation-free DF-CCSD-
(T) computation.10 The truncation error of the correlation
energy introduced by the FNO and NAF basis set compressions
is about 0.3%. This value is in close agreement with the average
correlation energy deviations obtained for the much smaller
systems of the AW set with triple-ζ basis set (see Table S3 of the
Supporting Information). Moreover, there are a number of
possible applications of the present FNO-CCSD(T) approach,
where, especially above 50 atoms, truncation errors above the 1
kJ/mol mark are equally sufficient because of the increase of the
uncertainty, for instance, in the relevant conformers, as well as
thermal, entropic, or solvent contributions. Thus, the use of
looser thresholds in such cases could further reduce the required
computational efforts, making the FNO and NAF approxima-
tion pair highly beneficial for large-scale and accurate CCSD(T)
computations.

4.6. Large-Scale Applications. In this section, we illustrate
the capabilities of the presented FNO-CCSD(T) implementa-
tion on current chemical questions, which would otherwise be
well out of the scope of conventional CCSD(T) implementa-
tions. Special attention was paid during the selection of the
demonstrative applications to keep the required resources in the

Figure 6. Guanine−cytosine deoxydinucleotide monophosphate (GC-
dDMP-B) system: 63 atoms, 1042 AOs.30

Table 6. Wall Times for CCSD(T) Calculations for the GC-dDMP-B Molecule Performed with the NWChem,30 MPQC,10 and
MRCC Suites,12 as well as the CCSD Program of TeraChem24

no. of CPUs no. of cores CCSD it. [min] (T) [day] % CCSD performancea % (T) performanceb

NWChem30 1100c 1100 72 11
NWChem30 20,000c 160,000d 13 0.06 3.4 10
MPQC10 128e 1024 43 1.98 24 44
TeraChem24 8f 40,960f 25 14
MRCC 4g 112 67 5.48 47 53
MRCC (FNO & NAF)h 4g 112 31 2.27 39 54

aEfficiency based on the operation count of an optimal CCSD algorithm estimated as the sum of the operation counts of the sixth-power scaling
terms, and in the case of a DF algorithm, the assembly of the four-external two-electron integrals utilizing the full permutational symmetry.
bEfficiency based on the operation count of an optimal (T) algorithm estimated as the operation count of the seventh-power scaling terms utilizing
the full permutational symmetry. cPerformed with 8-core AMD 6276 Interlagos CPUs clocked at 2.3 GHz. dThe CCSD calculation utilized one
core per node. ePerformed with 8-core Intel Xeon E5-2670 CPUs clocked at 2.6 GHz. fThe calculation was performed on 8 Tesla V100 GPUs. The
“no. of CPUs” column contains the number of GPUs, the “no. of cores” corresponds to the number of CUDA cores. gPerformed with four 28-core
Intel Xeon Platinum 8180M CPUs clocked at 1.7 GHz. hCalculated with a FNO threshold of 5 × 10−5 and a NAF threshold of 5 × 10−2.
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range of 100 compute cores and few days of runtime. Our
motivation was to present examples which can be relatively
routinely accessible for a broad audience supposing a widely
available number of cores and compute time quotas. Besides the
GC-dDMP-B system30 representing a small model of bio-
chemical systems, the three other examples include a ligand
exchange reaction of a ruthenium complex81 (Figure 7), a barrier
height in an organocatalytic reaction82 (Figure 8), and the NCIE
of the corannulene dimer83,95 (Figure 9).

The organometallic ligand exchange reaction is taken from the
recent metal organic reaction (MOR41) test compilation of
Checinski and co-workers.81 This reaction, number 28 of the
MOR41 set, contains two Ru-complexes related by the exchange

of 1,2-bis(dimethylphosphino)ethane (dmpe) and 1,5-cyclo-
octadiene (COD) ligands. The educt and product Ru-
complexes, labeled ED28 and PR28, contain 47 and 51 atoms,
respectively, and these are the largest systems considered in the
present work using quadruple-ζ basis sets. Table 7 collects the
dimensions of the corresponding orbital spaces reaching 2124
AOs and 4745 AFs for the PR28 system. To the best of our
knowledge, these are by far the largest orbital spaces ever
involved in a CCSD(T) computation without relying on local
approximations. The PR28 computation has clearly become
feasible on 112 cores by compressing the virtual MO (with the
tighter 10−5 threshold) and the AF dimensions to about 65 and
49% of the original, which correspond to a theoretical speedup
of 5.8.
The MOR41 reference energies were evaluated using local

CCSD(T) methods, and the authors of ref 81 also found it
important to estimate the accuracy of the employed local
approximations compared to conventional CCSD(T). How-
ever, the computation of such reference energies is challenging
using quadruple-ζ basis sets, and the limitations of the
CCSD(T) implementation employed in ref 81 emerged already
for reaction 5 containing species with at most 14 atoms. Thus, in
such cases the present FNO-CCSD(T) implementation can
triple the size of the accessible systems in similar state-of-the-art
benchmark studies, where the accuracy assessment of local
CCSD(T) methods is also of interest. The CBS-extrapolated
local CCSD(T) reaction energy of ref 81 was reported to be
−36.3 kcal/mol, which, considering the remaining basis set
incompleteness as well as FNO, NAF, and local errors, is
consistent with our FNO-CCSD(T)/def2-QZVP result of
−35.1 kcal/mol (see Figure 10 and Table S10 of the Supporting
Information).
The motivation for the consideration of the remaining two

examples is similar, namely, to provide reliable references for
particularly challenging systems that we encountered during the
development and application of our local CCSD(T) meth-
od.39,56 One step of an organocatalytic Michael addition
reaction is selected leading to a transition state (TSCC

RS ) along
the C−C bond formation between NS and an enamine formed
from the propanal reactant and a diphenylprolinol silyl ether
catalyst.82 As sizable noncovalent interactions between the
reactant and the catalyst contribute considerably to the
energetics and thus to the overall stereochemistry, well-
converged local CCSD(T) results were used to benchmark
the employed density functional approximation (DFA).56,82

Previously, we closely studied an analogous but slightly larger
system, the complex of TSCC

RS with the p-nitrophenol
cocatalyst,56,82 and we have found an unexpectedly large (T)
contribution of −7.8 kcal/mol to the barrier height. Here, the
CBS extrapolation using aug-cc-pVTZ and aug-cc-pVQZ basis

Table 7. Dimensions of the Various Orbital Spaces Employed for the Largest Systems of 47−75 Atoms, As Well As the
Corresponding FNO-CCSD(T) Correlation Energies

species atoms basis set no. of AOs no. of AFs % NOa % NAFb ECCSD(T) [Eh]

ED28 47 def2-QZVP 1978 4469 66 50 −4.1527
PR28 51 def2-QZVP 2124 4745 65 49 −4.2185
enamine 57 def2-TZVP 998 2478 86 52 −4.6411
Corannulene dimer 60 def2-TZVPPD 1820 4460 66 42 −6.6704
GC-dDMP-B 63 6-311++G(d,p) 1042 5320 80 23 −6.6211
TSCC

RS 75 def2-TZVP 1381 3419 86 53 −6.7300
aPercentage of active virtual NOs. For the ED28 and the PR28 molecules 10−5, for the other species 5 × 10−5 NO threshold was set. bPercentage of
retained NAFs with the threshold set to 5 × 10−2.

Figure 7. Ligand exchange reaction of a Ru-complex (reaction 28 of the
MOR41 test set81).

Figure 8. C−C bond formation step of the Michael addition reaction
via the transition state labeled TSCC

RS in ref 82.

Figure 9. Concave−convex, eclipsed conformer of the corannulene
dimer taken from ref 83.
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sets performed previously with the LNO-CCSD(T)method56,82

is unfeasible, but the FNO-CCSD(T) approach facilitated the
use of the def2-TZVP basis set. The resulting calculation for the
75 atoms of TSCC

RS is still demanding but benefited from the
theoretical speedup of 2 provided by the FNO and NAF
approaches. Furthermore, approximately −7 kcal/mol is found
for the (T) contribution to the barrier height (see Figure 10 and

Table S10 of the Supporting Information), which, considering
the presence of the co-catalyst in the previous study and the
different level of basis set convergence, indicates that the local
approximations provided a realistic result.
The third example focuses more closely on complicated

noncovalent interactions, namely, the interaction energy of the
corannulene dimer is evaluated. The relatively long-range and
large number of the π−π interactions involved in complexes held
together by such delocalized π-systems pose a significant
challenge on all local correlation methods.54,56,57,95 The
difficulty for local CC methods is that only a small portion of
distant π−π interactions can be treated at an approximate, for
example, MP2 level. Consequently, accurate local CCSD(T)
computations require tight thresholds and could become highly
demanding. Recently, we have performed LNO-CCSD(T)
computations aiming at highly converged interaction energies
for extended supramolecular complexes with significant π−π
interactions.95 The LNO-CCSD(T) interaction energies were

compared to fixed-node diffusion Monte Carlo (FN-DMC)
results for the L7 set96 and an additional supramolecular
complex.95 FN-DMC is one of the handful wavefunction-based
methods which was repeatedly found to provide highly reliable
interaction energies in agreement with CCSD(T) and can be
employed for large complexes above 100 atoms.97−99 Interest-
ingly, LNO-CCSD(T) and FN-DMC were consistent within
their error estimates only for five of the eight complexes studied
in ref 95, while notable differences remained especially for
systems interacting through extended and curved π-electron
systems.95 Thus, it would be helpful moving toward an
explanation for this disagreement to obtain alternative and
reliable interaction energies for such systems, which are free
from the approximations employed in LNO-CCSD(T) and FN-
DMC.
Here, we employ the presented FNO-CCSD(T) method to

provide such reference data without relying on local
approximations. The corannulene dimer is one of the largest
complexes (60 atoms) that contains extended and curved π-
systems and could be targeted by FNO-CCSD(T) using a
reasonably large AO basis set equipped with diffuse functions.
The size of the def2-TZVPPD basis set resulting in 1820 AOs
and 4460 AFs still makes FNO-CCSD(T) highly challenging,
and it only becomes treatable on 160 CPU cores after reducing
the operation count by a factor of 5.3 using the FNO and NAF
techniques. While the interaction energies are not converged
with the def2-TZVPPD basis set, the basis set superposition
error can be decreased using counterpoise (CP) corrections100

(see Figure 10 and Table S10 of the Supporting Information).
The CP corrected FNO-CCSD(T) result of −14.3 kcal/mol is
consistent with the pioneering QCISD(T)/aug-cc-pVDZ
computation of Janowski et al.,83 who reported −15.5 kcal/
mol after the inclusion of an MP2/aug-cc-pVTZ level basis set
correction.
Finally, let us consider the wall time requirements and

corresponding peak performance utilizations for the largest
presented examples collected in Table 8. The enamine molecule
and the corannulene dimer were computed with four MPI tasks
and two outermost OpenMP threads. The remaining
computations of Table 8 are performed using four MPI tasks,
four outer OpenMP threads, and threaded BLAS routines in the
innermost OpenMP layer. This setup was found to be the most
efficient for the (T) part of CCSD(T) in our previous
measurements. We refer to that work for further technical
details.12 The measured efficiency in terms of peak performance
utilization is again consistently high. The best performance is
measured for the enamine system exhibiting 55 and 71%
efficiency for the CCSD and (T) parts, respectively. The factors

Figure 10. Reaction and NCIEs of extended molecules using the FNO
andNAF thresholds specified in Table 7. Notation: “Ru reac.” for ED28
+ dmpe → PR28 + COD,81 “organocat. TS” for NS + enamine →
TSCC

RS ,82 and “NCIE (no CP)” and “NCIE (CP)” for the NCIE of the
corannulene dimer without and with CP correction, respectively. The
plotted data are collected in Table S10 of the Supporting Information.

Table 8. Wall Times and Corresponding Peak Performance Utilizations Measured for Large Systems of 47−75 Atoms with the
FNO-NAF Thresholds Specified in Table 7

wall time % performance

species atoms no. of AOs no no. of cores CCSD [min]a (T) [day] CCSD (T)

ED28b 47 1978 57 112 60 3.4 48 54
PR28b 51 2124 60 112 76 5.1 49 50
enaminec 57 998 69 32 74 4.7 55 71
corannulene dimerd 60 1820 90 160 80 13.5 28 33
GC-dDMP-Bb 63 1042 103 112 31 2.3 39 54
TSCC

RS b 75 1381 97 112 87 9.9 46 50

aTime of one iteration. bPerformed with four 28-core Intel Xeon Platinum 8180M CPUs clocked at 1.7 GHz. cPerformed with four 8-core Intel
Xeon E5-2609 v4 CPUs clocked at 1.7 GHz. dPerformed with eight 20-core Intel Xeon Gold 6138 CPUs clocked at 1.3 GHz.
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contributing to this close to optimal efficiency are the relatively
small number of innermost OpenMP threads, the sufficiently
high, 120 GB/node memory allocation, and the more fortunate
arithmetic performance per data transfer rate ratio of the
employed processors. Some deterioration of performance is
observed for the larger systems using many core processors.
These CPUs perform 4−7 times more operations per second
and thus pose more challenges from the data transfer point of
view. Additionally, the number of occupied and virtual MOs,
and hence, the memory requirement of these molecules are
considerably larger here than for the enamine system or in the
measurements of ref 12. Consequently, more ERI assembly steps
have to be repeated in our integral-direct CCSD and (T)
algorithms. However, the expressions employed for the optimal
performance measure guarantee that each ERI assembly step is
counted precisely once in order to avoid any bias toward
algorithms relying on disk I/O or distributed memory. Let us
note that for PR28, the data size of the symmetry-packed four-
center ERI tensor would be 18.5 TB in the complete basis of
2124 orbitals and 3.3 TB in the compressed NO space. Such
large four-center ERI arrays would lead to serious complications
in alternative algorithms relying on disk I/O, semi-integral-
direct contractions, and so forth and point to DF factorization as
a particularly effective way to circumvent such data bottlenecks.
Let us also highlight the relatively affordable computational

cost of these calculations. The entire FNO-CCSD iteration was
completed in a day for all six examples of Table 8. However, the
convergence pattern of Figure 10 clearly indicates that the (T)
correction is required for chemical accuracy. The full FNO-
CCSD(T) computation required only 4.7 days for the enamine
system of 57 atoms using four four-year-old, 8-core CPUs.
Similar resources should be accessible in almost all computer
clusters. The remaining examples required only 4−8 many-core
processors and less than 1-2 weeks of wall time. For PR28, the
corannulene dimer, and TSCC

RS , the 6, 14.4, and 9.9 days even
include a restart step as these computations took longer than the
5−7-day wall time limit enforced in the utilized computer
clusters. We find that better compute quota efficiencies and
preferable times to solution can be obtained using a relatively
small number of nodes for multiple reasons: (i) smaller
performance loss because of imperfect parallel scaling with a
large number of nodes, (ii) shorter queuing times, and (iii)
smaller and more crowded computer clusters can also be
utilized, where it would be practically impossible to request
several hundred or thousand cores.

5. SUMMARY AND OUTLOOK

The accurate, efficient, and systematically improvable FNO and
NAF approximations are implemented and benchmarked within
both the closed- and open-shell single-reference DF-CCSD(T)
formulations. Both DF-CCSD(T) algorithms are hand-
optimized, OpenMP-parallel, fully or partially integral direct,
as well as operation count- and memory-economic by exploiting
the full permutational symmetry of contractions and symmetry-
packed storage formats. Additionally, both the closed- and open-
shell DF-CCSD(T) codes benefit from frequent checkpointing,
the N( )4 -scaling cost reduction resulting from the FNO
scheme and the reduced-cost four-center ERI assembly
performed in the compressed FNO and NAF bases. On top of
that, the hybrid MPI/OpenMP parallel closed-shell DF-
CCSD(T) implementation requires negligible disk I/O and
network bandwidth and exhibits excellent parallel scaling and

peak performance utilization (50−70%) up to a few hundred
cores.12 Because the relative cost of the non-PPL terms increase
when the virtual space is compressed in the FNO basis, our t1-
transformed CCSD algorithm with optimized non-PPL terms is
especially well suited for the FNO-CCSD(T) approach.
Analogously, the time required for the integral-direct ERI
assembly may grow up to 50−70% of a CCSD iteration
performed in the compressed FNO and original auxiliary bases,
which is accelerated by up to 50−80% using the NAF
approximation.
Extensive benchmarks are performed for challenging

reactions, isomerizations, as well as atomization and ionization
processes involving both closed- and open-shell species. Various
energy correction as well as linear and nonlinear extrapolation
schemes are explored, which decrease both the FNO and the
NAF errors and allow for the use of significantly looser
thresholds in return for larger performance gains. Rigorous FNO
and NAF threshold combinations are determined yielding at
most 1−2 kJ/mol errors even for the most challenging
atomization energies obtained with triple- and quadruple-ζ
basis sets. This accuracy is maintained upon both basis set
extrapolation and significant increase in system size. Maximum
errors remained below 1 kJ/mol when tested against the largest
accessible conventional CCSD(T) references in the 31−43
atom region. Even these highly conservative thresholds yield up
to 8−38-fold speedup and up to 3−14-fold reduction inmemory
requirements. This cost reduction opens the possibility to
explore a considerably larger portion of chemical space up to
about 50−75 atoms (2124 AOs) while retaining the reliability of
CCSD(T).
Using widely accessible computational resources, that is, at

most 112−160 cores of a few CPUs, we presented some of the
largest CCSD(T) computations ever performed without relying
on local approximations. The same computational performance
is now available, for example, in a single, dual-socket node with
128 cores of two recent AMD CPUs. The demonstrative
benchmark FNO-CCSD(T) results obtained for organocatalytic
and organometallic reactions, as well as noncovalent interactions
have immediate use in the accuracy assessment of local
CCSD(T) schemes right within or much closer to their
intended scope of application. The increasing interest in the
utilization of the more and more affordable local CCSD(T)
methods also uncovered systems of an unexpectedly compli-
cated electronic structure54,56−58,95 for which benchmarking
local approximations remains highly challenging. The presented
FNO-CCSD(T) method is thus expected to assist the
characterization of such local approximations, which can be
practically inactive for small systems but may become significant
with increasing system size.
Furthermore, the more reliable sampling of real-life chemical

questions motivated recent compilations of CCSD(T) bench-
mark data,57,81,101−104 evaluated with either local approxima-
tions or composite methods with lower level basis set
corrections, in the size range just became reachable also by
our FNO-CCSD(T) scheme. However, the average deviation of
the best performing DFAs from these references is becoming
more andmore comparable to the error estimates corresponding
to local and/or basis set incompleteness errors of the benchmark
data. Thus, the presented FNO-CCSD(T) code could also be
useful to narrow the error estimates of such CCSD(T)
references. Moreover, current data sets employed for the
parametrization or assessment of DFAs105,106 and for the
training step in machine learning approaches107−115 often
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contain thousands or more CC results. The construction of such
CCSD(T) references could also benefit from the presented
FNO-CCSD(T) code optimized for the effective use of compute
resource quotas in commodity computer clusters or in cloud
environments. Finally, the presented developments represent
the first steps toward an effective and parallel FNO-based
reduced-cost, and eventually an LNO-based, reduced-scaling
CCSD(T) gradient implementation.
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Mihály Ka ́llay − Department of Physical Chemistry and
Materials Science, Budapest University of Technology and
Economics, H-1521 Budapest, Hungary; orcid.org/0000-
0003-1080-6625; Email: kallay@mail.bme.hu

Pet́er R. Nagy − Department of Physical Chemistry and
Materials Science, Budapest University of Technology and
Economics, H-1521 Budapest, Hungary; orcid.org/0000-
0001-6692-0879; Email: nagyrpeter@mail.bme.hu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c01077

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors are grateful for the financial support from the
National Research, Development, and Innovation Office
(NKFIH, grant no. KKP126451). The research reported in
this paper was also supported by the BME Biotechnology
TKP2020 IE grant of NKFIH Hungary (BME IE-BIO
TKP2020). The work of PRN is supported by the ÚNKP-19-
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(65) Mester, D.; Nagy, P. R.; Kaĺlay, M. Reduced-cost second-order
algebraic-diagrammatic construction method for excitation energies
and transition moments. J. Chem. Phys. 2018, 148, 094111.
(66) Ramberger, B.; Sukurma, Z.; Schaf̈er, T.; Kresse, G. RPA natural
orbitals and their application to post-Hartree−Fock electronic structure
methods. J. Chem. Phys. 2019, 151, 214106.
(67) Segarra-Martí, J.; Garavelli, M.; Aquilante, F. Multiconfigura-
tional Second-Order Perturbation Theory with FrozenNatural Orbitals
Extended to the Treatment of Photochemical Problems. J. Chem.
Theory Comput. 2015, 11, 3772.
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J.; Csoḱa, J.; Szabo,́ P. B.; Gyevi-Nagy, L.; Heǵely, B.; Ladjańszki, I.;
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hu/ (accessed Oct 1, 2020).
(81) Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski, M.
P. Comprehensive thermochemical benchmark set of realistic closed-
shell metal organic reactions. J. Chem. Theory Comput. 2018, 14, 2596−
2608.
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Leskela,̈ M.; Repo, T. Intramolecular Frustrated Lewis Pair with the
Smallest Boryl Site: Reversible H2 Addition and Kinetic Analysis.
Angew. Chem., Int. Ed. 2015, 54, 1749.
(94) Szabo,́ F.; Daru, J.; Simko,́ D.; Nagy, T. Z.; Stirling, A.; Novaḱ, Z.
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