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A commentary on

Maternal immune activation evoked by polyinosinic: polycytidylic acid does not evoke

microglial cell activation in the embryo

by Smolders, S., Smolders, S. M., Swinnen, N., Gärtner, A., Rigo, J. M., Legendre, P., et al. (2015).
Front. Cell. Neurosci. 9:301. doi: 10.3389/fncel.2015.00301

Immune-related abnormalities, which probably result from maternal infections during pregnancy,
can be found in patients with schizophrenia and other mental disorders. In the endeavor to
simulate this environmental schizophrenia risk in animal models, maternal immune activation
(MIA) by infectious agents has been introduced (Zuckerman et al., 2003; Meyer et al., 2005).
In a majority of publications on MIA, either lipopolysaccharide (LPS), a cell wall component of
Gram-negative bacteria, or the viral mimetic polyriboinosinic-polyribocytidilic acid (poly I:C), are
administered to pregnant mouse or rat dams. These maternal immune challenges are considered as
suitable schizophrenia paradigms, since they induce characteristic (and often similar) anatomical,
cellular, neurochemical, and behavioral alterations in the offspring, which are of relevance for
schizophrenia (Meyer et al., 2009 and many others). MIA with either LPS or poly I:C generates
a broad immune-inflammatory response in the developing CNS of the offspring (for recent reviews
see Dean et al., 2015; Giovanoli et al., 2015a; Smolders et al., 2015). However, the action of both
agents might differ with regard to one remarkable aspect: while LPS activates microglia in vivo
and in vitro (Roumier et al., 2008; Cunningham, 2013; Dean et al., 2015; Zager et al., 2015 and
others), poly I:C possibly does not (no activation: Olson and Miller, 2004; Piontkewitz et al., 2012;
Giovanoli et al., 2015a,b; Smolders et al., 2015; activation: Patro et al., 2010; Juckel et al., 2011;
Missault et al., 2014; Van den Eynde et al., 2014; Zhu et al., 2014). In an elegant set of in vivo
and in vitro experiments Smolders et al. (2015) examined the effect of LPS and poly I:C under
identical conditions. In particular, they investigated whether embryonic microglia can be directly
activated by incubating mouse brain slices from embryonic day 15.5 with either saline, poly I:C,
IL-6, or LPS. They found that LPS, contrary to poly I:C or IL-6, activates microglia to “a detrimental
activation state.” When discussing possible pathophysiologic consequences of poly I:C’s failure to
activate microglia, Smolders et al. (2015) come to three conclusions: (i) It is unlikely that embryonic
microglia dysfunction is the main mechanism that induces developmental abnormalities, (ii)
poly I:C might evoke developmental deficits by directly acting on neuronal development, and
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(iii) it cannot be excluded that poly I:C effectuates an embryonic
microglia priming, which results in an exaggerated response of
microglia. Apart from “priming of microglia by poly I:C” being
an exciting idea, there is yet little experimental evidence in favor
of the existence of such a mechanism (perhaps via changes in the
microglial kynurenine pathway? Giovanoli et al., 2015b). Hence,
we would like to concentrate on the first two assumptions. Let’s
begin with the second one: is it conceivable (and plausible) that
poly I:C induces developmental deficits by directly acting on
neuronal development? In our opinion the answer is yes. Poly I:C
is a strong agonist of Toll-like receptor 3 (TLR3). This receptor
is already expressed in very immature neurons (Shi et al., 2013),
and becomes up-regulated in a subpopulation of neurons after
the injection of poly I:C (Deleidi et al., 2010). Moreover, poly I:C
was found to depress embryonic neuronal stem cell division and
population of the superficial layers of the neocortex by neurons,
which was not the case with TLR3 deficient animals (De Miranda
et al., 2010). And lastly, it has been shown that poly I:C treatment
of pregnant rat dams leads to an impaired postnatal neurogenesis,
but not disturbed microgliogenesis (Piontkewitz et al., 2012), as
well as to an impaired adult neurogenesis (Zhang and van Praag,
2015), in the hippocampus of the offspring. Thus, poly I:C might
well exert direct influence on neuronal development as proposed.
However, this interaction can hardly explain the poly I:C induced
cerebral immune-inflammatory response in the offspring. And
this brings us back to the initial statement of Smolders and
co-workers, namely, that microglia cannot be a main player
in poly I:C induced developmental deficits. Assuming that this
supposition is correct (some aforementioned in vitro and in vivo
studies argue against this conjecture) one has to ask which brain
tissue component then is to blame for the observed alterations,
especially for the immune response? A “hot candidate” for this
is astroglia. Astrocytes are abundantly populated with TLR3
(Farina et al., 2005, 2007; Park et al., 2006; Ibi et al., 2013;
Ibi and Yamada, 2015 and others), become strongly activated

after poly I:C and, most importantly in this context, are able
to secret the whole battery of pro-inflammatory and anti-
inflammatory cytokines, which are typically found after MIA
with poly I:C (as reviewed by Ibi and Yamada, 2015). Moreover,
when cultured neurons were incubated with the conditioned
medium of poly I:C treated astrocytes, neurite development was
found to be disturbed. This effect is mediated by an interferon-
induced transmembrane protein 3, which is synthesized by,
and released into the medium from, astrocytes after poly I:C
treatment (Ibi et al., 2013). Analysis of conditioned media of
astrocytes after poly I:C treatment subsequently revealed the
presence of a further protein, matrix metalloproteinase 3, which
also contributes to the observed impairment of neurite outgrowth
and spine formation of cultured neurons. Of note, this protein
is expressed in, and released from, astrocytes but not microglia
(Yamada et al., 2014). Moreover, strong astroglial activation
may be detected in postnatal hippocampi of the offspring after
mid-gestational poly I:C MIA using GFAP immunolabeling
(Ratnayake et al., 2012). Interestingly, Ibi and Yamada (2015)
claim that poly I:C activates TLR3 in astrocytes of the brain
parenchyma or BBB, thus pointing to a possible role of activated
astroglia in impaired vascularization. Indeed, TRL3 activation

has a pronounced anti-angiogenic effect (Grelier et al., 2013), but
it is yet not fully clear, if astroglia is implicated in this process. In
any case, impaired vascularization was found by reduced RECA-1
immunohistochemistry in postnatal rat hippocampi after MIA
by poly I:C treatment (Piontkewitz et al., 2012). In sum, there
are good reasons to consider astroglia as a major player in brain
pathology of the offspring (including immune-inflammatory
response) after maternal exposure to poly I:C.
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