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Cell migration is a critical process that underpins a number of

physiological and pathological contexts such as the correct

functioning of the immune system and the spread of metastatic

cancer cells. Central to this process are the Rho family of

GTPases, which act as core regulators of cell migration.Rho

GTPases are molecular switches that associate with lipid

membranes and act to choreograph molecular events that

underpin cell migration. Specifically, these GTPases play

critical roles in coordinating force generation through driving

the formation of cellular protrusions as well as cell–cell and

cell–matrix adhesions.Here we provide an update on the

many roles of Rho-family GTPases in coordinating

protrusion and adhesion formation in the context of cell

migration, as well as describing how their activity is

controlled to by a variety of complex signalling networks.
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Rho-family GTPases are molecular switches; most which

cycle from an ‘on’ GTP bound state to an ‘off’ GDP

bound state, driven by GEFs (guanine nucleotide

exchange factors) and GAPs (GTPase-activating pro-

teins) respectively. Association with lipid membranes

through a lipid (farnesyl or geranylgeranyl) tail ensures

Rho family GTPases signal at membrane-cytosol inter-

faces and exquisite control the ratio of cytosolic to mem-

brane bound GTPase is achieved by the Rho-GDI (Rho

GDP-dissociation inhibitor) family of proteins [1]. An

atypical subgroup of Rho-family GTPases, known as

the Rnd family are constitutively GTP bound, and

instead are thought to be regulated by control of their

association with lipid membranes, via 14-3-3 proteins

which can bind to Rnd GTPase lipid tails [2]. Through
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the extensive regulation of Rho GTPase activation and

localisation the cell can control the activation of Rho-

family GTPases in a precise spatio-temporal manner [1].

In fact Rho-family GTPases have long been appreciated

as signalling molecules that allow the cell to relay infor-

mation to a variety of cellular machineries including the

NADPH oxidase complex and vesicle trafficking compo-

nents [3,4]. The role of Rho GTPases in controlling the

actin cytoskeleton was highlighted by Alan Hall’s seminal

work linking RhoA, Rac1 and Cdc42 to the formation of

stress fibres, lamellipodia and filopodia, respectively [5–

7]. Furthermore, the discovery that RhoA drives the

formation of stress fibres highlighted the importance of

Rho GTPase signalling during the formation of cell–

matrix adhesions [6]. This review will focus on Rho

GTPase signalling in the context of cell migration, exam-

ining how these molecular switches signal to cellular

protrusions and cell–matrix adhesions. Here we summa-

rise what is known about Rho-family GTPases in the

context of leading edge protrusion formation, highlight-

ing recent studies that have helped to uncover the com-

plexity of these fascinating molecular switches. Specifi-

cally, this review will highlight four major aspects of Rho

GTPase biology: the effectors of Rho GTPases, the

regulators of Rho GTPases, the role of Rho GTPases

in determining cellular directionality and the importance

of Rho GTPases in the context of cell–matrix adhesions.

All four aspects play major roles in understanding how

Rho GTPases signal during migration and all four are far

from being fully understood.

Rho-family GTPase effectors
Following the discovery that Rac1 and Cdc42 stimulate the

formation of lamellipodia and filopodia respectively,

numerous factors were identified that enable these

GTPases to build a protrusive leading edge. Of key impor-

tance are the proteins that enabled Rac1 and Cdc42 to drive

actin nucleation. These included the Arp2/3 activators of

the WAVE and WASP family for both Rac1 and Cdc42

respectively [8,9].Thediscovery of theseproteins ledtothe

concept, based on 2D cell culture studies that Rac1 and

Cdc42 signalling to the Arp2/3 complex is essential for the

establishment of the leading edge. However this concept

was extended and challenged by the direct observation of

RhoA signalling at the leading edge of mouse fibroblasts

and human cancer cells migrating in 2D cell culture [10–

13]. Furthermore knockout studies of Arp2/3 complex

components in fibroblasts migrating in 2D demonstrated

that Arp2/3 is not a universal requirement for movement on

such surfaces, although defects in lamellipodia formation
www.sciencedirect.com
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and directional migration in both haptotaxis and chemo-

taxis have been observed [14–16]. The universal require-

ment for Arp2/3 in migration was also challenged by the

discovery of amoeboid migration which utilises RhoA

signalling at the leading edge of the cell to disrupt cortical

actin, allowing the cell to control the number and size of

plasma membrane-based blebs that drive the cell’s move-

ment through gaps in 3D extracellular matrix [17–19].

Therefore, it is not surprising that studies continue to

identify proteins that act downstream of Rho-GTPases

to facilitate protrusion formation and couple such formation

to the motility of the rest of the cell. An example of such

work includes the identification of FAM65A as a RhoA

effector. By binding to Golgi associated FAM65A, RhoA is
Figure 1
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thought to re-orientate the Golgi network towards the

leading edge, facilitating efficient migration of single cells

in 2D [20]. FMNL2 has recently been identified as a formin

that localises to the leading edge of cells in 2D and

promotes filopodia formation downstream of Cdc42 [21].

Furthermore RhoA activation at the leading edge of cells in

3D matrix promotes filopodia formation and invasive

migration through ROCK-mediated activation of the for-

min FHOD3 [22,23] (Figure 1).

Given the complexity of the leading edge of migrating

cells and the refinement of methodologies being devel-

oped to study it, it seems likely that the list of proteins

known to act down stream of Rho GTPases will continue
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to grow. This should ultimately provide a more in-depth

understanding of migration in both physiological and

pathological contexts.

Cellular directionality
To obtain a comprehensive understanding of cell migra-

tion, it is essential to understand how cues from the cell’s

external environment are relayed to the actin cytoskeleton,

so the cell can migrate towards the cue; a process herein

referred to as cellular directionality. Understanding cellular

directionality is particularly important for the cell migration

field as motile cells must be able to both prioritise external

cues and rapidly change direction in response to an ever-

changing external environment. Whilst the types of cue

that can trigger cell migration (e.g. chemokines, matrix-

derived etc.) have been well described, the search for an

internal ‘compass’ has proven somewhat difficult [24,25].

Whilst for years this role was thought to be provided by PI3
Figure 2
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kinase, thediscovery that cells canmigrate in the absence of

this kinase re-opened this question [26–28]. Increasingly

however, the Rho-family GTPases have been implicated in

this role. For example Rac1 signalling can relay directional

information between Drosophila border cells migrating as a

cluster in vivo, via E-cadherin mediated mechano-sensing

[29]. Similarly, P-cadherin mediated mechano-transduc-

tion can drive cell polarisation during collective mouse

myoblast migration in a 2D culture system, by signalling

to Cdc42 [30] (Figure 2a).
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shallow gradient of Rac activity more distal to the leading

edge might provide the ‘engine’ [32��]. This neutrophil

study was performed in 2D culture, and thus it remains to

resolved if Cdc42 performs this role during in vivo migra-

tion, whereby the neutrophil must integrate and prioritise

numerous migratory cues.

It is interesting to note that Rac1 and Cdc42 have both been

shown to control cellular directionality: Rac1 in the collec-

tive migration of Drosophila border cells [29] and in fibro-

blasts [33] and Cdc42 in both collective cell migration and

in neutrophils [32��,30]. Cdc42 would seem to be the more

obvious candidate as a universal compass, should such an

entity exist, given its defined role in establishing cell

polarity [34,35]. However, given the significant differences

between the cell types used in these studies, and the

difficulty of finding a universal compass that controls the

directionality of a migrating cell, it is likely that different

members of the Rho family of GTPases can serve as a

compass in a context-dependent manner.

Signalling to Rho-family GTPases
Since the discovery of small GTPases, many questions

have persisted as to the nature of the GEFs and GAPs that

control the on/off cycle of these switches [1]. Rho-family

GTPases are no exception, and despite numerous reg-

ulators having been identified, it is still not clear why

there are so many or how much functional redundancy

exists. Answering these questions is essential as GEFs

and GAPs provide an interface through which the cell is

able to communicate to Rho-family GTPases [1].

Recently, work from Marei et al. has addressed this

question in a mammalian culture system, confirming

the relevance of previous studies in yeast. In the NIH3T3

mouse embryonic fibroblast cell line, the Rac GEF P-

Rex1 promoted cell migration in 2D and a more contrac-

tile phenotype in 3D, whilst TIAM1 signalled to block

migration. The key to these differential outcomes

seemed to be dependent on P-Rex1 enhancing the inter-

action of Rac1 with FLI2 [36,37,38�]. This work suggests

that GEFs may serve to function as more than just ‘switch

flippers’ and act to direct Rho GTPase signalling via

specific effector pathways (Figure 1).

In addition to understanding the GEF-GAP cycle regu-

lating Rho-family GTPases, studies have continued to

address the role of the Rho-GDIs, which binds to the

geranylgeranyl tail to sequester Rho-family GTPases

from interacting with lipid membranes, preventing their

activation. Whilst it would be tempting to speculate that

Rho-GDIs act to maintain a pool of unused Rho-family

GTPases, a recent study has shown that Rho-GDI serves

a specific role in controlling the level of Rho-GTPase

activation by coordinating GTPase activity and re-activa-

tion on a �10 s timescale [39]. Furthermore, a role for the

lipid composition of the plasma membrane in regulating

this association has been proposed. By inhibiting fatty
www.sciencedirect.com 
acid synthetase (FAS) in migrating inflammatory macro-

phages, Wei et al. were able to demonstrate a role for fatty

acids in stabilising the presence of Rho-family GTPases

at the plasma membrane, in the context of diabetes [40�]
(Figure 1).

Despite an in-depth understanding of the proteins that

directly interact with Rho GTPases to switch them on and

off, numerous questions persist as to which signalling

pathways act upstream of these regulators, and where

GEFs, GAPs and GDIs feature in terms of the complex

signalling networks that are known to promote cell migra-

tion. Recent studies have sought to address this by both

extending the list of proteins that are known to signal

upstream of Rho-family GTPases, as well as utilising a

variety of systems-based techniques based on mathemat-

ical modelling to predict how Rho-family GTPases will

signal in response to perturbations of the signalling net-

works they interact with.

Rho-GTPases have long been known to signal down-

stream of a variety of receptors such as receptor tyrosine

kinases (RTKs), G-protein-coupled receptors (GPCRs)

and integrins to name a few. Recently, a study has

extended this list, identifying a novel role for non-canon-

ical Notch signalling in driving Rac1 activity via the GEF

TRIO, which in turn reinforces the formation of adherens

junctions [41��] in endothelial cells both in vitro and in
vivo. It will therefore be interesting to observe if this

pathway plays a role in collective cell migration, which is

co-ordinated via cadherin-based adhesions (Figure 2a).

In terms of placing Rho-family GTPases within the

context of a signalling network, Boolean modelling of

Rac/RhoA signalling in invasive cancer cells has estab-

lished a link between MAP kinase signalling downstream

of RTKs, and the activation of RhoA, which we had

previously shown to drive invasion into fibronectin-rich

extracellular matrix [22,23]. Model simulations predicted

MAPK signalling controls a negative feedback loop via

the Sos1-Eps8-Abi1 complex that supresses Rac1 activity,

enabling the activation of RhoA in cells migrating both in

2D plastic and 3D cell-derived matrix. Experimental

inhibition of MAP kinase signalling enabled the re-acti-

vation of Rac1 at the leading edge of the cell, supressing

filopodia formation and invasion into extracellular matrix

and on cell-derived matrix. Critically, knockdown of Eps8

(a key component of the RacGEF complex in this system)

rendered cells insensitive to MAPK inhibition, re-

enabling cells to activate RhoA at the leading edge of

the cell, driving invasive migration [42�]. Such feedback

loops may provide plasticity to the migrating cell,

enabling it to re-programme its leading edge in response

to a changes in the surrounding environment [43].

Similar approaches using more sophisticated kinetic

modelling identified a role for PAK signalling in
Current Opinion in Cell Biology 2019, 56:64–70
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mediating a bi-stable switch [44]. Exposing MDA-MB-

231 breast carcinoma cells in 2D culture to increasing

amounts of PAK inhibitor had different effects on Rac

and RhoA signalling depending on whether cells had

been pre-incubated with the same inhibitor, demonstrat-

ing the predicted hysteresis. Interestingly this bi-stability

is conserved in actin dynamics, and suggests that cyto-

skeletal signalling pathways encode a memory of activa-

tion status [44].

In summary, it is becoming increasingly clear that as the

list of Rho GTPase regulators increases, systems-based

studies are needed to understand how these regulators

function as a network. Furthermore, mathematical

modelling enables the development of unique hypothe-

ses that cannot be generated through qualitative analysis,

and produces specific, testable predictions. Therefore, it

is apparent that there is much to be learnt about Rho-

family GTPases through quantitative mathematical

modelling.

Rho GTPases in cell–matrix interactions
The importance of Rho-family GTPases in cell matrix

interactions has been well appreciated ever since the

initial identification of RhoA as a regulator of stress fibres,

which showed that focal adhesions are unable to form in

the absence of RhoA signalling [6]. Since then, a number

of studies have shown extensive reciprocal signalling

between matrix receptors and Rho-family GTPases, how-

ever for the purpose of this review, we shall focus on a

handful of recent studies that have extended our under-

standing of direct signalling between focal adhesions and

Rho GTPases.

Focal adhesions have long been known to control the

activity of Rho-family GTPases via adaptor proteins that

can signal to GEFs and GAPS, such as paxillin, which can

signal to both activate Rac1 and suppress RhoA, and FAK

which can signal to supress RhoA activity [45,46]. b-Pix is

a Rac GEF recruited to adhesion complexes through

interaction with Git1/2 recruitment to paxillin [47,48].

Interestingly Git1/2-b -Pix can also be recruited to adhe-

sion complexes by RhoJ, which mediates adhesion turn-

over by sustaining Rac1 activity and preventing RhoA

activation [49]. These types of interactions can govern the

transition of nascent adhesion complex to focal com-

plexes, but restrain the maturation to focal adhesion

(which requires RhoA–driven contractility [6,50]). Inter-

estingly, RhoU is stabilised by interaction with PAK4 in a

Cdc42 and kinase-independent manner to regulate adhe-

sion turnover [51]. This suggests that complex feedback

networks exist between Rho GTPases and adhesion

complexes that might determine the intricate and subtle

morphological adaptations of adhering and migrating cells

(Figure 2b). All these studies were performed principally

in 2D cell culture and thus it remains to be understood
Current Opinion in Cell Biology 2019, 56:64–70 
how RhoJ and RhoU mediate crosstalk with focal com-

plexes in 3D matrix environments.

Whilst it has long been appreciated that Rho-family

GTPases are able to signal directly to focal adhesions,

it is also becoming increasingly clear that they can achieve

this indirectly, through their influence on the extracellu-

lar matrix to which the integrins bind. Cdc42 and RhoA

have long been known to promote the trafficking of

metalloproteinases to the tips of invadopodia to promote

cancer cell metastasis by driving an interaction between

IQGAP with the exocyst complex [52]. More recently a

study has established a clear link between Cdc42 and

fibronectin deposition allowing for the formation of focal

adhesions within lamellipodia and permitting migration

over the resulting matrix in a Rac1-dependent manner

[53�]. Given that filopodia drive cancer cell invasion into

fibronectin containing matrix [23,54], it will be fascinating

to discover if filopodia can also drive fibronectin deposi-

tion in vivo.

Whilst cell–matrix interactions are relatively well under-

stood in 2D, it is vital that these studies are translated to

3D in vivo systems given the stark biochemical and

mechanical differences between such systems. Under-

standing how Rho-family GTPases coordinate cell–

matrix interactions in vivo is particularly challenging

given the technical difficulties that are associated with

studying cell–matrix receptors, such as integrins, in 3D.

However, studying how Rho-GTPases coordinate cell

matrix interactions in vivo is essential to understanding

cell migration, in contexts such as wound healing and

cancer.

Conclusion
The complexity and intricacy of Rho-family GTPase

signalling continues to increase as methodologies for

studying them becomes more advanced. It is becoming

clear that the plasticity and variety of structures that can

be found at the leading edge is huge and more work is

required to understand how Rho-GTPases signal. This

will involve the identification of more Rho GTPase

binding partners and an increased systems level under-

standing of their function that incorporates features of the

extracellular environment. Furthermore, the diversity of

contexts in which this family of proteins have been

studied is large, and the results vary accordingly,

highlighting the need to understand how Rho family

GTPases and their associated proteins evolved to meet

the varying requirements of different organisms.
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