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Abstract

Carbon dioxide (CO2) is the major carbonaceous component of many planetary atmospheres, 

including the Earth throughout its history. Carbon fixation chemistry— that reduces CO2 to 

organics—utilizing hydrogen as stoichiometric reductant usually requires high pressures and 

temperatures, and yields of products of potential use to nascent biology are low. Here we 

demonstrate efficient ultraviolet photoredox chemistry between CO2 and sulfite that generates 

organics and sulfate. The chemistry is initiated by electron photodetachment from sulfite giving 

sulfite radicals and hydrated electrons, which reduce CO2 to its radical anion. A network of 

reactions—generating citrate, malate, succinate and tartrate by irradiation of glycolate in the 

presence of sulfite—was revealed. The simplicity of this carboxysulfitic chemistry and the 

widespread occurrence and abundance of its feedstocks suggest that it could have readily taken 

place on the surfaces of rocky planets. The availability of the carboxylate products on early Earth 

could have driven the development of central carbon metabolism before the advent of biological 

CO2 fixation.

Many CO2 reduction reactions have been discussed in the context of prebiotic chemistry, 

but all are problematic in that they require very special conditions and/or materials that are 

simply rare on planetary surfaces. For example, reduction by hydrogenation of bicarbonate 

(HCO3 −) over a Ni-Fe alloy under hydrothermal conditions1 requires high temperatures 

and pressures, and predominantly generates the C1 product methane, a poor feedstock 

for elaboration into (proto)biomolecules. By separating H2 and CO2 with a thin Fe(Ni)S 

precipitate barrier across which there is a large pH difference, milder conditions enable 

reduction, but the product formate (HCO2 −) is only produced in trace amounts2. Reduction 
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of CO2 using metallic Fe powder in water generates acetate, methanol, formate and pyruvate 

– the latter only transiently – but the widespread occurrence of Fe powder on rocky 

planets such as early Earth or Mars is unlikely3. Finally, UV photoreduction of CO2 on 

colloidal ZnS semiconductor particles using hydrogen sulfide/hydrosulfide (H2S/HS−) as a 

hole scavenger gives formate, acetate and propionate in low yield4, but these conditions are 

not likely to be common in a planetary context.

We previously demonstrated that hydrogen cyanide (HCN) can be reductively homologated 

using hydrated electrons (and/or hydrogen atoms derived therefrom by protonation) 

generated by UV irradiation of sulfidic anions in a process we termed cyanosulfidic 

chemistry5–6. For this chemistry, we originally used H2S/HS− as stoichiometric reductant, 

but switched to using bisulfite7 (HSO3 −, pKa ~7.2)/SO3 2– because sulfur dioxide (SO2) 

and H2S are outgassed in a ~10:1 or greater ratio on Earth8–9, and there is substantial 

evidence from the geological records of both Earth and Mars via the anomalous mass 

fractionation of sulfur isotopes that these sulfur species were important constituents of the 

early sulfur cycle10–11. The Henry’s law constant for SO2 is greater than that of H2S and 

the first pKa of hydrated SO2 (~1.9) is far lower than that of H2S (~7.1)12, so dissolution 

and hydration of SO2 in surficial water followed by dissociation would therefore have been 

greater than dissolution and dissociation of H2S on early Earth and Mars. Based on reports 

that hydrated electrons generated by UV illuminating diamond surfaces reduce CO2 to 

carbon monoxide (CO) in acidic aqueous solution13, and the aforementioned semiconductor 

UV photoreduction of CO2, we now wondered if HSO3 −/SO3 2– could serve as the source 

of hydrated electrons for CO2 reduction by UV photodetachment14 (Supplementary Table 

1). Given that alkaline lakes can simultaneously absorb atmospheric CO2 and SO2 to give 

HCO3 − and SO3 2– and a growing body of evidence that suggests that such lakes could have 

concentrated other prebiotically important species on early Earth and maybe Mars15–16, we 

started to explore reduction chemistry at mildly alkaline pH.

Results

Photoredox CO2 fixation reaction

We subjected an aqueous solution of the sodium salts of HCO3 − 1 (50 mM) and SO3 2– 

(100 mM) at pH = 9 to UV irradiation from Hg-lamps with principal emission at 254 nm 

in a standard laboratory UV photoreactor and analyzed the resultant mixture by 1H-NMR 

spectroscopy, integrating signals relative to those of a subsequently added standard to 

quantitate products. After 4 hours irradiation, formate 2 (18 mM), hydroxymethanesulfonate 

3 (200 μM), methanol 4 (200 μM), glycolate 5 (200 μM), acetate 6 (50 μM), tartronate 

7 (600 μM), and malonate 8 (300 μM) had been produced alongside both rac- and meso

tartrate 9a (30 μM) and 9b (30 μM) (structures of products shown in Fig. 1, Supplementary 

Fig. 1). Sulfate was detected as a photoredox co-product14 by precipitation of barium 

sulfate upon addition of barium chloride under conditions where barium sulfite is soluble17. 

The bicarbonate-sulfite irradiation experiment was repeated using 13C-labelled HCO3 − 1 
to confirm that all the products were generated from the photoreduction of CO2, and all 

product assignments were confirmed by spiking with authentic standards (Supplementary 

Fig. 1 and 2). Surprisingly, we were able to detect elemental hydrogen (H2) by 1H-NMR 
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spectroscopy (δ = 4.5 ppm) if it was generated in situ by performing the irradiation 

experiment in a quartz NMR tube. This peak decreased/disappeared simply by shaking 

the NMR tube presumably because this accelerated degassing. The signal assignment for 

H2 was confirmed by running an NMR spectrum of the products of mixing zinc with 

hydrochloric acid solution in an NMR tube (Supplementary Fig. 3). Taken together, these 

results show that HCO3 − 1 is reductively converted to C2, C3 and (traces of) C4 compounds 

as well as being reduced to other C1 compounds in a process that also generates H2 and 

SO4 2–. If the initial concentration of HCO3 − 1 was reduced to 5 mM and the concentration 

of SO3 2– reduced to 10 mM, formate 2 (30 μM), glycolate 5 (20 μM), acetate 6 (10 μM), 

tartronate 7 (120 μM), and malonate 8 (30 μM) were observed by 1H-NMR spectroscopy 

after 4 hours irradiation. The combined yield of organics in these experiments exceeded 

10% demonstrating the remarkably high efficiency of this chemistry compared to other 

potentially prebiotic CO2 fixation processes (Supplementary Fig. 4, Extended Data Fig. 1). 

The results were similar in experiments starting from carbon dioxide instead of sodium 

bicarbonate (Supplementary Fig. 5). In addition to the protiated products observed by 1H

NMR spectroscopy, oxalate 10 was observed by 13C-NMR spectroscopy in yields as high as 

11% (Supplementary Fig. 6). At higher concentrations of reactants, the yield of C1 products, 

especially formate 2, went up relative to the yield of C>1 products and after prolonged 

irradiation, a new C3 product, β-hydroxypropionate 11 was identified (Supplementary Fig. 

7).

Mechanistic study of the photoredox CO2 fixation reaction network

We next investigated the photoreaction of the various products and some putative 

intermediates in the presence of SO3 2– with a view to gaining information concerning 

the mechanism of the fixation chemistry. The results – summarized in Extended Data Fig. 

2 (Supplementary Figs. 8 – 19) – can be rationalized by a reaction network based on 

photoredox radical chemistry (Fig. 1). Photodetachment of an electron from SO3 2– gives 

a hydrated electron and a sulfite radical (.SO3 −)14. At pH 9, both loss of hydroxide from 

HCO3 − 1 and loss of water from its conjugate acid, H2CO3, furnish CO2. The latter 

process is efficiently catalyzed by nucleophiles18–20, especially sulfite21, so it is unlikely 

that the otherwise slow kinetics of equilibration limit the photoredox chemistry. Although 

the equilibrium concentration of CO2 is very low in a solution containing HCO3 − 1 at pH = 

9 relative to the concentration of 1 (Supplementary Fig. 20a)22, the rate constant for reaction 

of CO2 with hydrated electrons to give the carboxyl radical 12 is extremely high23 and the 

rate greatly exceeds the rate for protonation of hydrated electrons by 1 giving hydrogen 

atoms24. The carboxyl radical 12 can either be reduced by hydrogen atom transfer (HAT) 

from HSO3 −, which has a ~1% abundance relative to SO3 2− at pH = 9, to give formate 

2, or undergo dimerization to give oxalate 10, both directly and indirectly25. Focussing on 

the chemistry of formate 2 first, one electron reduction, though relatively slow26, gives the 

radical anion 13 and thence, through acid-base and hydration equilibria, the radicals 14 and 

15 (although the latter is unfavoured relative to 13 and 14). The radicals 13 and 14 have 

two main fates; reduction by HAT from HSO3 −, or recombination with the carboxyl radical 

12. Coupled with acid-base and hydration equilibria, the first process (shown only for 13), 

generates formaldehyde 16 and its hydrate 17 and the second (shown only for 14) generates 

glyoxylate 18 via its hydrate 19. Formaldehyde 16, in equilibrium with the bisulfite adduct 
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3, can be reduced to the radical 20 which gives methanol 4 by HAT and glycolate 5 by 

recombination with the carboxyl radical 12 27. Another major reaction of formate 2 is 

oxidation back to carboxyl radicals 12 by reaction with sulfite radicals. This is inferred from 

the observation that irradiation of formate 2 and SO3 2– gives significant amounts of what 

appear to be products deriving from oxalate 10 in addition to C1 products (Extended Data 

Fig. 2).

The other initial product of the carboxyl radical 12 – its dimer oxalate 10 – can be reduced 

by addition of a hydrated electron to give the radical anion 21 28. This reduction is much 

faster than the corresponding reduction of formate 2 (Ultrafast pump-probe experiments and 

discussion are in Method). The radical anion 21 can undergo HAT leading to glyoxylate 

hydrate 19, or recombination with another carboxyl radical 12 to give mesoxalate hydrate 

22, which equilibrates with mesoxalate 23 29. Reduction of mesoxalate 23 by addition 

of a hydrated electron, or electron transfer from a carboxyl radical 12, followed by HAT 

gives tartronate 7 and deoxygenation of the latter followed by HAT gives malonate 8. In 

the same multistep way that formate 2 can be reduced to methanol 4, reduction of one 

of the carboxylate groups of malonate 8 leads to β-hydroxypropionate 11. Reduction of 

glyoxylate 18 (in equilibrium with the hydrate 19 and a bisulfite adduct)30 and protonation 

of the initially formed radical anion31 leads to the key hydroxy-carboxymethyl radical 24 
(pKa~8.8)32 which can recombine with the carboxyl radical 12 to give tartronate 7, dimerize 

to give the tartrates 9, or undergo HAT to give glycolate 5. Deoxygenation of glycolate 5 
gives the carboxymethyl radical 25, which by recombination with the carboxyl radical 12 
can give malonate 8 33 and by HAT, acetate 6.

Finally, we identified a number of photochemical steps other than the photodetachment of 

electrons from SO3 2−, which initiates the reaction network. Norrish type I reactions of 

glyoxylate 18 and mesoxalate 23 generate radicals 12, 15 and 26 (similar photocleavage of 

malonsemialdehyde 27, en route to β-hydroxypropionate 11, would generate radicals 15 and 

25) and photodetachment of an electron from oxalate 10 34–35 gives radical 28 which is 

thought to decarboxylate to the carboxyl radical 12. These additional photochemical steps 

set up futile cycles in the network, but also forge links from the C>1 parts of the network to 

the C1 part (Supplementary Figs. 21 – 26).

Based on the foregoing analysis, we thought that it might be possible to increase the 

amount of the C>1 products by adding sulfite portionwise – this would ensure that at any 

one time, the concentration of HSO3 − would be low, so reaction flux through oxalate 10 
would be favoured, but overall, there would be more reduction capacity. In accordance with 

expectation, at the end of this experiment, the combined yield of C>1 products (>25%) 

greatly exceeded C1 products (<1%) and the combined yield of malonate 8 (16.2%) and 

acetate 6 (1.0%) was greater than twice that of tartronate 7 (6.6%) and glycolate 5 (0.8%). 

Unexpectedly, a new product, sulfoacetate 29 (0.8%) was formed in low yield, presumably 

through recombination of carboxymethyl radicals 25 with sulfite radicals. (Supplementary 

Fig. 27, Extended Data Fig. 1, Entry 6). The general features of the time course of the CO2 

reduction network were also revealed by this experiment. After 1 hour, formate 2 was the 

major product accompanied by traces of glycolate 5 and tartronate 7. After 2 hours, the 
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amount of formate 2 had decreased and glycolate 5 and tartronate 7 were now the major 

products along with smaller amounts of acetate 6 and malonate 8. After further irradiation, 

the levels of formate 2, glycolate 5 and tartronate 7 stayed at about the same level and 

malonate 8 became the major product with minor amounts of acetate 6 and methanol 4. 

This time course behaviour can be understood from the reaction network (Fig. 1). At the 

outset of the experiment, the only carbonaceous species for the hydrated electrons to reduce 

is CO2. Carboxyl radicals 12 thereby produced apparently undergo HAT from HSO3 − faster 

than they dimerise, and so formate 2 increases. However, the conversion of carboxyl radicals 

12 to 2 is reversible, and so after some time a sufficient amount of oxalate 10 is produced 

for it to be reduced by the hydrated electrons as well. The reduction of oxalate 10 is much 

faster than the reduction of formate 2 (investigated by ultrafast pump-probe spectroscopy 

and further discussed in Methods), so 2 is consumed at the expense of making reduction 

products of 10. The appearance of the radical anion 21 opens up a new path for consumption 

of carboxyl radicals 12, including recombination to give mesoxalate hydrate 22 that is 

rapidly converted to tartronate 7 and a new path for the consumption of HSO3 −, namely 

HAT to 21 giving glyoxylate 18 and thence, through rapid further reduction, glycolate 5. The 

opening of these new reaction paths reduces the level of formate 2 to a steady state where 

its consumption is balanced by continuous production from CO2 via carboxyl radicals 12. 

Eventually, the deoxygenation of tartronate 7 coupled to the slow reduction of malonate 8 
means that the latter becomes the predominant product. At higher initial concentrations of 

sulfite, the early formate 2 pulse lasts longer and produces higher early amounts of 2, but 

eventually the paths to C>1 products start to operate and levels of formate 2 drop. Even if 

formate 2 is reduced, the reversibility of the downstream steps to C1 products and other 

paths from the C1 part of the network to the C>1 part means that products more complex 

than 2 eventually accumulate.

It has been reported that CO2 can be reduced to CO with hydrated electrons produced by 

UV irradiation of diamond in the presence of bisulfite as hole scavenger at pH = 3.213. The 

carboxyl radical 12 is formed as in our chemistry, but absent the chromophoric sulfite acting 

to absorb UV, it is photolyzed36 to CO and O.−, the conjugate base of the hydroxyl radical, 

which is then reduced by bisulfite. Hydrogen was not observed as a product because the 

reaction was carried out under a sufficiently high concentration of CO2 to out-compete H+ in 

reaction with electrons.

Glycolate photoredox reaction

As we investigated the photoreactions of the products and putative intermediates of the CO2 

reduction network with SO3 2–, the photoredox chemistry of one product – glycolate 5 – 

stood out. Acetate 6 (16.2 mM), malonate 8 (0.1 mM), sulfoacetate 29 (7.8 mM), citrate 

30 (0.2 mM), rac-tartrate 9a (1.5 mM), meso-tartrate 9b (1.0 mM), malate 31 (2.9 mM), 

succinate 32 (1.1 mM) and hydroxycitrate 33 (0.19 mM) along with C1 products were 

detected by 1H-NMR spectroscopy after 6 hours irradiation of glycolate 5 (50 mM) and 

SO3 2– (100 mM) (Supplementary Fig. 12, Extended Data Fig. 2, Entry 4). Particularly 

noteworthy is the fact that citrate 30, malate 31 and succinate 32 are key constituents of 

the Krebs cycle – a major cycle of central carbon metabolism, the consequences of which 

are discussed below. Remarkably, when the concentration of glycolate 5 was reduced to 

Liu et al. Page 5

Nat Chem. Author manuscript; available in PMC 2021 November 03.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



5 mM and the concentration of SO3 2– reduced to 10 mM, after 2 hours irradiation, C1 

products were no longer detected but the higher products were still formed in a comparable 

overall yield albeit with a different relative abundance distribution (Supplementary Fig. 13, 

Extended Data Fig. 2, Entry 5). The chemistry that generates acetate 6, malonate 8 and the 

tartrates 9 is the same as some of that of the CO2 fixation reaction network, but additional 

reactions now contribute to the detectable products (Fig. 2). Abstraction of a hydrogen atom 

from glycolate 5 by a sulfite radical generates the hydroxy-carboxymethyl radical 24 whilst 

redox compensatory reduction of 5 generates the carboxymethyl radical 25. Dimerization 

of 24 produces the tartrates 9 whereas dimerization of 25 produces succinate 32 as well 

as acetate 6 and glycolate 5 37. Recombination of radicals 24 and 25 provides one route 

to malate 31, a second would be from reduction of 9. Similar reduction of malate 31 
would give a second path to succinate 32. Oxidation of the tartrates 9 and malate 31 to the 

corresponding hydroxyalkyl radicals 34 and 35 followed by recombination of these radicals 

with radicals 24 or 25 would give dihydroxycitrate 36, hydroxycitrate 33 and citrate 30. 

Reduction of 36 would constitute another reaction channel to hydroxycitrate 33 and further 

reduction of 33, another channel to citrate 30. In contrast to the reaction network starting 

from CO2 where all products are reduced relative to the starting material, the network 

starting from glycolate 5 is more subtle and contains both carbon oxidations and reductions. 

Thus malate 31 and citrate 30 are at the same oxidation level as glycolate 5, succinate 32 and 

acetate 6 are more reduced and the tartrates 9 and hydroxycitrate 33 are, on average, more 

oxidized.

Photoredox reactions under lower photon flux

We also evaluated the bicarbonate reduction chemistry using a less intense broadband UV 

source, StarLab38 - an in-house constructed photoreactor designed to deliver UV radiation 

with a wavelength distribution representative of that from the Sun incident on the surface 

of early Earth, at a ~100 fold higher intensity than the Sun in a quiescent state and ~10 

fold lower intensity than that during maximum flaring. After irradiation for 7 days in this 

apparatus, an aqueous solution of the sodium salts of HCO3 − 1 (5 mM) and SO3 2– (50 

mM) at pH = 9 gave a mixture of protiated products similar to that obtained upon higher 

intensity irradiation in the standard laboratory photoreactor (at 254 nm for shorter time 

intervals) plus ethanol 37, confirming the utility of using 254 nm UV light to study this 

chemistry (Supplementary Fig. 28, Extended Data Fig. 1, Entry 7). Oxalate 10 was also 

detected in a similar experiment using 13C-labelled bicarbonate (Supplementary Fig. 29). 

Ethanol 37 could plausibly be obtained via dimerization of the hydroxymethyl radical 20 
giving ethylene glycol 38, dehydration of 38 through radical 39 and the enoloxy radical 40 
39 to acetaldehyde 41 and reduction (Fig. 1). Alternatively, acetate 6 could be reduced to 

acetaldehyde 41 and thence ethanol 37.

We then investigated the carboxysulfitic photoredox chemistry of glycolate 5 in the StarLab 

photoreactor. After 8 hours irradiation of glycolate 5 (50 mM) and SO3 2– (100 mM) with 

this less intense light source, acetate 6 (1.7 mM), sulfoacetate 29 (0.2 mM), rac-tartrate 

9a (0.4 mM), meso-tartrate 9b (0.4 mM), malate 31 (0.2 mM), and succinate 32 (trace) 

along with C1 products were detected by 1H-NMR spectroscopy (Supplementary Fig. 14, 

Extended Data Fig. 2, Entry 6). Longer irradiation of more dilute samples of glycolate 5 (5 
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mM) and SO3 2– (50 mM) in the StarLab photoreactor resulted in higher yields of the same 

species and additionally produced malonate 8 and hydroxypropionate 11 (Supplementary 

Fig. 30, Extended Data Fig. 2, Entry 7).

Discussion

Planetary relevance

An important aspect of this chemistry is that the conditions and materials necessary to foster 

carboxysulfitic carbon fixation (short wave UV light, CO2 and SO2 derived from volcanism, 

and bodies of standing and flowing water on the crust) are mild, widespread, and expected to 

be common on rocky planets. Notably, there is geological evidence from the rock records of 

Earth and Mars that these conditions were met early in their history. Oxygen isotope ratios 

from Hadean zircons40–41 and sedimentological observations from the earliest sedimentary 

record42 indicate abundant surface liquid water. Silicate weathering reactions occurred that 

sourced the alkalinity necessary to enable the dissociated hydrates, bicarbonate and sulfite, 

to partition from the atmosphere and accumulate in bodies of water in contact with the 

atmosphere43. Moreover, the anomalous fractionation of multiple sulfur isotopes in the early 

geological record10 provides a direct measure of SO2 photochemistry that establishes a 

valuable atmospheric correlate of the aqueous carbon fixation processes described herein. 

Finally, each of these observations for the early Earth that illustrates the plausibility of 

this chemistry occurring now has its complement in the Mars geological record11, 44–47. 

Thus, the ingredients and basic conditions for carboxysulfitic chemistry to take place would 

have been present on both Earth and Mars. Depending on conditions, carboxylates such as 

formate 2, oxalate 10 or acetate 6 and malonate 8 are likely to have been the major initial 

products. Decarboxylation of malonate 8 to acetate 6 occurs on a short geological timescale 

in solution (~10 years at neutral pH and at 25°C)48 whereas oxalate 10 (in the absence of 

ferric ions and light)49, like acetate 6 is long-term stable and so it seems likely that these 

latter two products would have become the most abundant C>1 organics on early Earth had 

life not emerged – they might still be the most abundant organics on Mars if life did not 

emerge there.

The linkage between carboxysufitic chemistry and cyanosulfidic chemistry

The case for conditions conducive to cyanosulfidic chemistry being present on both young 

planets has also been made50. We note that for the full range of cyanosulfidic chemistry 

products to result, a scenario involving the mixing of bodies of water or flows (e.g. stream 

water) having subtly different reaction histories would probably be necessary. In locations 

where the basic conditions for cyanosulfidic chemistry were met, but the mixing of streams 

was absent or different, a limited set of products would have been generated and the first 

product of the restricted reaction network, glycolonitrile 42, would probably have been the 

most widespread. In addition, glycolonitrile 42 could have resulted from reaction of HCN 

with formaldehyde 16 rained in after production in the upper atmosphere by photoreduction 

of CO2 51. Hydrolysis of the nitrile group of glycolonitrile 42, however produced, generates 

glycolate 5, which could be converted by subsequent carboxysulfitic chemistry to the range 

of carboxylate products previously described. (Fig. 3) As the hydrolysis of glycolonitrile 42 
generates ammonia in addition to glycolate 5, we also carried out the irradiation of 5 and 
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sulfite in the presence of ammonia. Ammonia did not affect the outcome of the photoredox 

chemistry – the same set of products was formed with or without ammonia (Supplementary 

Fig. 31).

Biochemical relevance

Use of the products of cyanosulfidic chemistry as building blocks by nascent biology 

would eventually lead to their environmental depletion and biology would then be under 

evolutionary pressure to synthesize these building blocks from anything else that happened 

to be available and usable. Biology could either spread to encounter these materials in their 

place of synthesis, or fluvial advection could move them to the location of biology. It is 

fascinating that the majority of the carboxylate products deriving from the carboxysulfitic 

chemistry of glycolate 5 are key nodes of central carbon metabolism in extant biology 

and it seems likely that their synthesis by carboxysulfitic chemistry set the stage for the 

development of this metabolic network. At first glance, tartrate 9 seems to be somewhat an 

outlier, but its dehydration would lead through an enol to oxaloacetate53 and its oxidation, 

to dihydroxyfumarate which spontaneously decarboxylates to give glycolaldehyde54, a 

precursor of higher sugars.

With time, supply of most of the products of the carboxysulfitic chemistry of glycolate 

5 would also dwindle and biology would have to evolve to make do with simpler, more 

abundant carbonaceous materials in the environment. The major long term stable products 

of the carboxysulfitic chemistry of CO2 – formate 2, acetate 6 and oxalate 10 – could 

then provision central carbon metabolism through development of a pyruvate-formate lyase 

activity and the glyoxylate shunt of the Krebs cycle via reduction of oxalate 10 to glyoxylate 

18. Finally, even oxalate 10 and acetate 6 would become depleted and biology would be 

under evolutionary pressure to use the only remaining abundant carbon source, namely CO2.

Methods

General Methods

All reagents and deuterated solvents used for reactions and spiking experiments 

were purchased from Sigma-Aldrich and were used without further purification. All 

photochemical reactions were carried out in Norell Suprasil quartz NMR tubes purchased 

from Sigma-Aldrich using Hg lamps with principal emission at 254 nm in a Rayonet 
photochemical chamber reactor RPR-200, acquired from The Southern New England 

Ultraviolet Company. StarLab is an in-house constructed photoreactor that delivers 

broadband UV-Vis (from 220 nm to ~750 nm by using water as an optical filter) 

irradiation to a sample from a 75W xenon lamp manufactured by Horiba38. A Mettler 
Toledo SevenEasy pH Meter S20 was used to monitor the pH, and degassed H2O or 

D2O was achieved by four rounds of freeze-pump-thaw cycling. 1H-, and 13C-nuclear 

magnetic resonance (NMR) spectra were acquired using a Bruker Ultrashield 400 Plus or 

Bruker Ascend 400 operating at 400.1, and 100.6 MHz, respectively. Samples consisting 

of H2O/D2O mixtures were analyzed using HOD suppression to collect 1H-NMR data. 

Chemical shifts (δ) are shown in ppm. Coupling constants (J) are given in Hertz and the 

notations s, d, t represent the multiplicities singlet, doublet, and triplet. The conversion 
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yields were determined by relative integrations of the signals using a known amount of 

acetamide as internal reference in the 1H-NMR spectrum.

General method of photoreaction of carboxylates with sulfite

Carboxylates and sodium sulfite (final concentrations were mentioned in Extended Data Fig. 

1 and Extended Data Fig. 2) were dissolved in degassed H2O/D2O (9:1, 0.5 mL). After 

the pH was adjusted to the reported value with NaOH/HCl, the mixture was transferred 

to a quartz NMR tube which was sealed and irradiated for the reported time (Extended 

Data Fig. 1 and Extended Data Fig. 2). The resultant solution was analysed by 1H- and/or 
13C-NMR spectroscopy. The yield was calculated by spiking with 4,5-dicyanoimidazole 

(final concentration of 0.5 mM, 1 mM or 5 mM) and relative integration.

Preparing hydrogen gas in an NMR tube

Metallic zinc (~6 mg) was added to 0.5 mL HCl (0.1 M) aqueous solution. This solution was 

transferred to an NMR tube after being vortexed for 5 seconds, and was then analysed by 
1H-NMR spectroscopy.

Sulfate identification17 

Sodium bicarbonate (21 mg, 0.25 mmol) and sodium sulfite (63 mg, 0.5 mmol) were 

dissolved in degassed water (10 mL) and the pH of the resultant solution was adjusted to 9 

by adding NaOH/HCl solution. The mixture was then sealed in a quartz tube and irradiated 

with 254 nm light in the Rayonet photoreactor for 4 hours. 3 mL of the resulting solution 

was diluted to 20 mL with water and acidified to pH = 1 by the addition of concentrated 

HCl. The acidified solution was heated to nearly boiling for at least 30 min to remove all 

carbon dioxide and sulfur dioxide. Barium chloride solution was then added to the solution 

to give a precipitate which persisted upon boiling for another 30 min. The precipitate did not 

dissolve in dilute HCl solution.

Ultrafast pump-probe experiments

The general principles of pump-probe spectroscopy are described in the following 

references55–57. The fundamental of the excitation pulses (800 nm) was generated by a 

Ti:Sa based laser-amplifier system (Solstice Ace by Spectra-Physics, Newport Co.) with a 

repetition rate of 1 kHz and a pulse duration of ~90 fs. The excitation pulses (251 nm) were 

generated in a nonlinear amplifier system (Topas Prime + NIRUVis, Light Conversion, Ltd.) 

and stretched by a 25 cm fused silica block (Corning) to ~ 1.7 ps to suppress two-photon 

ionization of the solvent. The excitation energy at the sample position was ~1 μJ and the 

spot diameter of ~250 μm (fwhm). For our microsecond ultrafast pump-probe spectroscopy 

(Supplementary Table 2) the broadband probe light (unpolarized) was generated, delayed, 

and detected in an EOS Fire system (Ultrafast Systems, LLC), with a nominal spectral range 

of 350 – 950 nm. For our picosecond ultrafast pump-probe spectroscopy (Supplementary 

Fig. 32) the broadband probe light was generated, delayed, and detected in a HELIOS 

Fire system (Ultrafast Systems, LLC), with a nominal spectral range of 400 – 750 nm. 

These spectral ranges are ideal for monitoring the broad absorption feature of the hydrated 
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electron, which is centered near 700 nm. The experiments were carried out at a temperature 

of 23°C.

The transient pump-probe data were cropped to the spectral range 450 nm – 913 nm and 20 

adjacent channels were averaged (Surface Xplorer, Ultrafast Systems, LLC). A global fitting 

analysis to determine transient lifetimes was performed58–60.

Ultrafast pump-probe spectroscopic investigation of reduction chemistry

The rate constant reported in the literature for reaction of hydrated electrons with formate 

2 (k = 2.4 x 104 M-1s-1)26 is considerably lower than that for reduction of oxalate (average 

of three values given in reference61 is 3.1 x 107 M-1s-1). However, in our experiments, 

oxalate 10 is also prone to photoionization34–35 and so it was not clear if reaction of 

hydrated electrons with oxalate in our experiments is, or is not, faster than reaction of 

hydrated electrons with formate 2. The rate constant for reaction of hydrated electrons with 

glycolate 5 (k = 8.2 x 106 M-1s-1)32 is high, although the authors of this paper caution that 

this “unexpectedly high value may be due to trace impurity in the sample”. Furthermore, 

although the rate constant for reaction of solvated electrons with CO2 is known23, we do 

not know the concentration of CO2 in our experiments, or whether the catalysis of its 

interconversion with carbonic acid and bicarbonate by sulfite affects this rate. Accordingly, 

we used ultrafast pump-probe spectroscopy both to confirm the photoionization of oxalate 

10 and compare it to that of sulfite (Supplementary Fig. 32A), and to measure hydrated 

electron decay kinetics in mixtures representative of the mixtures used in our continuous 

irradiation experiments (Supplementary Table 3). These pump-probe experiments confirmed 

the photoionization of oxalate 10 and further revealed that bicarbonate, formate 2 and 

glycolate 5 react at similar rates with hydrated electrons in our experiments, and that oxalate 

10 reacts considerably faster (Supplementary Fig. 32 and Supplementary Tables 2 and 3).

Extended Data
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Extended Data Fig. 1. Product concentrations and percentage yields after UV irradiation of 
solutions of NaHCO3 and Na2SO3.

Extended Data Fig. 2. Product concentrations and percentage yields after irradiation of 
individual bicarbonate reduction products (50 mM) and Na2SO3 (100 mM).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Carboxysulfitic photoredox reaction network starting from bicarbonate (HCO3 −) 1.
Starting in the top left, the reaction network starts with the addition of hydrated electrons 

(produced by photodetachment from sulfite) to CO2 (blue) to give the carboxyl radical 12 
after which point the network splits. Sequential reduction of the carboxyl radical 12 leads 

to the observed C1 products (green) whilst dimerization of 12 to oxalate 10 initiates a path 

to C>1 products (orange). Various reactions enable crossing between the C1 manifold and 

the C>1 manifold (the two manifolds are separated by a dashed line). The key oxidation of 

formate 2 back to the carboxyl radical 12 and the slow reduction of 2 that together divert 

flux from C1 to C>1 products are highlighted (fuchsia arrows). Photochemical reactions of 

oxalate 10, glyoxylate 18 and mesoxalate 23 (purple arrows) also contribute to the network.
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Fig. 2. Carboxysulfitic photoredox reaction network starting from glycolate 5.
Glycolate 5 (blue) can be both oxidized by sulfite radicals and reduced by hydrated electrons 

to give the radicals 24 and 25 which then react further to give the observed products 

(orange). Recombination of two C2 radicals (24 and/or 25) gives C4 products (tartrate 9, 

malate 31 and succinate 32). Tartrate 9 and malate 31 can be oxidized by sulfite radicals 

giving C4 radicals 34 and 35 and recombination of C2 and C4 radicals gives C6 compounds 

(including the products hydroxycitrate 33 and citrate 30). Reduction of dihydroxycitrate 36 
and tartrate 9 provides additional reaction pathways to the C6 and other C4 products.
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Fig. 3. Connections between environmental chemistry and the development of metabolism.
Progression from heterotrophy fed by photochemical products of inorganic carbon reduction 

to autotrophy as the available products of environmental chemistry become less complex. 

The preformed building blocks of RNA, peptides and lipids produced by cyanosulfidic 

chemistry provision the origin and early evolution of life5,52, but gradually become depleted 

(fading of blue colour in timeline arrow) triggering the development of metabolism starting 

from simpler but more abundant products derived from glycolate 5 by cyanosulfidic 

chemistry (dark orange colour in timeline arrow). In turn, these materials become scarce 

(fading of orange colour in timeline arrow) and biology adapts to using carboxysulfitic 

products of CO2 and eventually, CO2 itself.
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