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ABSTRACT
Introduction: Advances in the biology of non-small-cell lung cancer, especially adenocarcinoma, reveal
multiple molecular subtypes driving oncogenesis. Accordingly, individualized targeted therapeutics are
based on mutational diagnostics.
Areas covered: Advances in strategies and techniques for individualized treatment, particularly of
adenocarcinoma, are described through literature review. Approved therapies are established for
some molecular subsets, with new driver mutations emerging that represent increasing proportions
of patients. Actionable mutations are de novo oncogenic drivers or acquired resistance mediators, and
mutational profiling is important for directing therapy. Patients should be monitored for emerging
actionable resistance mutations. Liquid biopsy and associated multiplex diagnostics will be important
means to monitor patients during treatment.
Expert commentary: Outcomes with targeted agents may be improved by integrating mutation
screens during treatment to optimize subsequent therapy. In order for this to be translated into
impactful patient benefit, appropriate platforms and strategies need to be optimized and then imple-
mented universally.

ARTICLE HISTORY
Received 15 February 2016
Accepted 19 April 2016
Published online 26 May 2016

KEYWORDS
NSCLC; oncogenic drivers;
mutation; resistance;
liquid biopsy; re-biopsy;
diagnostics

1. Introduction

Lung cancer is the most frequently diagnosed cancer and a
leading cause of cancer death worldwide [1]. Non-small-cell
lung cancer (NSCLC) is the most commonly diagnosed form
of the disease (>85% of cases) and includes a heteroge-
neous group of histologies, the most common being ade-
nocarcinoma, then squamous cell carcinoma, and less so
large-cell carcinoma [2]. These histologies possess different
clinical characteristics, and there are potential differences in
response to cytotoxic chemotherapies. Approximately
40–50% of patients with NSCLC will be diagnosed with
advanced or metastatic disease and are not candidates for
curative therapy. Systemic chemotherapy, once the treat-
ment of choice for all patients, is no longer universally
used following the advent of targeted therapy. For example,
randomized Phase III trials showed a significant benefit
(response rate and progression-free survival [PFS]) in
patients with epidermal growth factor receptor (EGFR)-
mutant disease treated with tyrosine kinase inhibitors
(TKIs) versus those treated with standard chemotherapy [3].
Further advances in the underlying biology of NSCLC have
revealed multiple distinct molecular subtypes, increasingly
supporting a model in which NSCLCs depend on oncogenic
‘driver mutations’ for the malignant phenotype [4]. Along
with mutations in EGFR, gene fusions involving rearrange-
ments of the anaplastic lymphoma kinase (ALK) gene are
prominent genetic markers. Personalized therapy aims at

matching these genotyped lung adenocarcinomas with
effective targeted therapies such as specific TKIs and is
currently utilized; EGFR TKIs are US FDA approved for the
first-line treatment of EGFR-mutant NSCLC, and ALK-rear-
ranged NSCLC may be treated first-line with the multi-tar-
geted ALK/MET/ROS1 (ROS proto-oncogene 1, receptor
tyrosine kinase [RTK]) TKI crizotinib [5,6] and second-line
with ceritinib [7].

Molecular testing for EGFR and ALK is now considered
standard of care [2,4], with other driver mutations in onco-
genes such as ROS1, BRAF (v-Raf murine sarcoma viral onco-
gene homolog B), RET (rearranged during transfection),
MEK1 (mitogen-activated protein kinase kinase 1), NTRK
(neurotrophic tyrosine kinase receptor), MET, and KRAS
(Kirsten Rat Sarcoma viral oncogene homolog), also increas-
ingly being incorporated into the diagnostic workup of
adenocarcinoma patients to determine eligibility for enroll-
ment in diverse clinical studies on appropriate targeted
agents. Reflecting these developments, current guidelines
for advanced NSCLC treatment from the American Society
for Clinical Oncology (ASCO) [8], College of American
Pathologists (CAP)/International Association for the Study
of Lung Cancer (IASLC)/Association for Molecular Pathology [3],
and the US National Comprehensive Cancer Network [2] support
testing on tumor tissue to determine any genetic alterations and
choose an appropriate therapy. Molecular testing for EGFRmuta-
tions and ALK rearrangement are recommended in the treatment
guidelines, and further molecular testing may be appropriate
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depending on tissue availability and clinical criteria. As the num-
ber of molecular subgroups of NSCLC continues to grow and the
methods for their detection improve, there is a need to review
recent developments. This review gathers together recent data
on driver mutations, discusses their characterization in the clin-
ical diagnostic setting, and their impact on potential first- and
second-linemonotherapy and combination therapy decisions for
patients with NSCLC.

This article will summarize some of the mutations that are
‘actionable’ in NSCLC. Certainly, there is a large momentum for
immunotherapy in NSCLC; however, the reader is referred
elsewhere for further understanding of this.

2. Initial testing for mutations and
expression patterns

In addition to EGFR and ALK, important oncogenic driver
mutations/rearrangements that may be considered for diag-
nostic screening include KRAS, MET, PIK3CA (phosphatidyli-
nositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha),
HER2 (human epidermal growth factor receptor 2), BRAF,
NTRK, ROS1, RET, and MEK. Most driver oncogenes tend to
occur in ≤25% of individual tumors (see Figure 1 for a chart
showing some of the more frequent actionable mutations)
and singly in tumor samples; for example, clinical data show
that overlapping EGFR and KRAS mutations occur in <1% of
patients with lung cancer [2] and ALK rearrangements are
usually mutually exclusive with mutations in EGFR or
KRAS [9].

2.1. ERBB family RTKs

Sensitizing EGFR mutations are found in around 10% of
Caucasian patients and up to 50% of Asian patients with
NSCLC [2,10]. The most frequent EGFR mutations result in
substitution at amino acid 858 in exon 21 (Leu858Arg
[L858R]) and in-frame deletions at exon 19, which alter the
configuration of the kinase to preserve an activated state.
Patients whose tumors have exon 19 deletions or exon 18
(G719X, G719A, G719S, G719C, G719D), exon 20 (S768I), or
exon 21 (L858R, L861Q, L861R) mutations are sensitive to
EGFR–TKI therapy [11–13]. Erlotinib is approved by the US
FDA (2013) for the first-line treatment for patients with meta-
static NSCLC harboring EGFR exon 19 deletions or exon 21
(L858R) substitution mutations based on a response rate of
65% compared with 16% for platinum-based chemotherapy
and a median PFS of 10.4 versus 5.2 months [14]. Erlotinib is
also approved for maintenance treatment of locally advanced
or metastatic NSCLC after platinum-based chemotherapy.
Afatinib and gefitinib are now also fully US FDA-approved
(2013 and 2015, respectively) for the first-line treatment of
patients with the same types of EGFR-mutant NSCLC [15,16].

De novo mutations in HER2 typically occur in 3‒5% of
NSCLC (predominantly exon 20 insertions) and are usually
mutually exclusive with EGFR and KRAS mutations [17,18].
Clinical trials have not yet demonstrated a clear benefit, but
HER2-targeted therapies such as afatinib have demonstrated
signs of clinical activity in heavily pretreated patients with
HER2-mutated adenocarcinoma [19], including activity in
patients with HER2-mutated lung cancers with exon 20
YVMA insertions, the most common variant [20].

Figure 1. Frequency of mutations/genomic alterations in NSCLC (adenocarcinoma) in Caucasian populations, and known mutation profiles in ALK and EGFR
TKI-resistant disease. ALK: anaplastic lymphoma kinase; BRAF: v-Raf murine sarcoma viral oncogene homolog B; EGFR: epidermal growth factor receptor;
EML4: echinoderm microtubule-associated protein-like 4; EMT: epithelial-mesenchymal transition; HER2: human epidermal growth factor receptor 2;
KRAS: Kirsten Rat Sarcoma viral oncogene homolog; MEK: mitogen-activated protein kinase kinase; NTRK: neurotrophic tyrosine kinase receptor; PIK3CA:
phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha; RET: rearranged during transfection; ROS1: ROS proto-oncogene 1, receptor tyrosine
kinase; SCLC: small-cell lung carcinoma; TKI: tyrosine kinase inhibitor.
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2.2. ALK

ALK gene rearrangements are present in approximately 2–7%
of patients with NSCLC, typically fusions with other genes
(most commonly, EML4 [echinoderm microtubule-associated
protein-like 4]) [3,21,22]. Patients diagnosed with lung
tumors harboring ALK fusions can be effectively treated
with ALK inhibitors, such as crizotinib [3,21,22]. Phase I and
II studies of crizotinib in ALK-rearranged NSCLC demon-
strated impressive activity and clinical benefit, leading to
FDA approval in 2011 [23,24]. In addition, a subsequent
Phase III trial showed that crizotinib was superior to standard
first-line pemetrexed-plus-platinum chemotherapy in patients
with previously untreated advanced ALK+ NSCLC [6]. However,
despite high response rates (65–74%), most patients develop
resistance to crizotinib within 2 years, and second-generation
agents are now FDA approved (ceritinib, alectinib) or in
advanced development as FDA Breakthrough Designated
Therapy (brigatinib) [24–26]. It should be noted that as ALK+
patients are surviving longer, relapses within the central ner-
vous system (CNS) are increasingly being diagnosed. The pene-
tration of the blood–brain barrier by these therapeutic agents
will therefore be important in controlling CNS metas-
tases [27,28]. It is also interesting to note that there are unique
patterns of metastases in ALK+ tumors, especially in women
with metastases to the adnexa [29].

2.3. ROS1

Chromosomal rearrangements of the gene encoding the ALK-
related tyrosine kinase ROS1 have been identified in 1–2% of
NSCLC cases that generate several distinct gene fusion part-
ners, including SLC34A2 (solute carrier family 34 [type II
sodium/phosphate cotransporter], member 2), TPM3 (tropo-
myosin 3), and others [30–32]. ROS1 rearrangements are rela-
tively more prevalent in patients with adenocarcinoma and
advanced stage disease [33]. For patients with tumors with
ROS1 rearrangements, crizotinib is effective and is therefore a
potential first-line therapy [8,32].

2.4. RET

Translocations of the RTK RET occur in approximately 1% of
NSCLC patients, with relatively high frequencies in young, light/
never smokers with adenocarcinoma and poorly differentiated
tumors [34–36]. A number of fusion variants are now known,
the most common of which is KIF5B-RET [34,37,38]. A Phase II
trial of the RET inhibitor cabozantinib in patients with RET-
positive NSCLC has shown preliminary efficacy [39]. Multiple
clinical trials in NSCLC with KIF5B-RET rearrangements using
existing RET inhibitors (including cabozantinib, lenvatinib, van-
detanib, sunitinib, ponatinib, and AUY922) are underway [36].

2.5. KRAS

KRAS mutations are detected in approximately 25% of lung
adenocarcinomas and 4% of lung squamous cell carcinomas,
most often in codons 12 or 13 [40]. KRAS mutations are most
common in non-Asians and smokers [41,42] and are associated

with intrinsic EGFR TKI resistance. KRAS mutation testing may
thus identify patients who may not benefit from further mole-
cular diagnostic testing. No direct targeted therapy is available
for KRAS-mutant NSCLC, and therefore, investigations have
focused on targeting downstream signaling proteins of the
RAS/RAF/MEK/ERK (extracellular signal-regulated kinase) path-
way, such as BRAF and MEK. The incidence of synthetic leth-
ality associated with KRAS mutation means that these
pathways need to be explored further.

2.6. BRAF

BRAF is a serine–threonine kinase belonging to the RAF kinase
family lying downstream of KRAS and directly interacts with
the MEK–ERK signaling cascade. BRAF mutations are found in
up to 4% of lung adenocarcinomas [43], half of them harbor-
ing the V600E mutation; other mutations occur within exons
11 and 15 [44–46]. Treatment of BRAF V600E-mutated NSCLC
with BRAF inhibitor monotherapy, exemplified by dabrafenib,
has demonstrated encouraging antitumor activity in early clin-
ical trials [43,47]. Dabrafenib was granted FDA Breakthrough
Therapy Designation (2014) for chemotherapy-pretreated
BRAF V600E mutation-positive NSCLC [48].

2.7. MEK

MEK1 encodes a serine–threonine kinase and is mutated in
about 1% of NSCLC, largely adenocarcinoma [49]. Several MEK
inhibitors are in clinical development for NSCLC, including
selumetinib (AZD6244) and trametinib (GSK1120212), with a
focus on combination regimens that may prevent or combat
resistance due to secondary MEK mutation and/or KRAS/BRAF
amplification in BRAF- or KRAS-mutant NSCLC [50,51].

2.8. NTRK

NTRK1 fusions occur in around 3% of lung adenocarcinomas [52].
Amplifications of NTRK1 and NTRK2 (among other genes) encode
Src kinases that can complement loss of EGFR activity across
multiple EGFR-dependent models, via EGFR-independent activa-
tion of the MEK–ERK and phosphoinositide 3-kinase (PI3K)-AKT
pathways, suggesting a range of kinases capable of overcoming
dependence on EGFR [53]. Significant antitumor activity has
been reported for the kinase inhibitor entrectinib (RXDX-101) in
a patient with NSCLC harboring an SQSTM1 (sequestosome 1)-
NTRK1 gene rearrangement, validating NTRK gene rearrange-
ments as a potential clinical target in NSCLC [54].

2.9. MET

MET is an RTK that binds to hepatocyte growth factor.
Activation of MET promotes signaling pathway activation,
including the RAS-RAF-mitogen-activated protein kinase
(MAPK) and PI3K-AKT-mTOR (mammalian target of rapamycin)
pathways. MET amplifications are found in 3–5% of newly
diagnosed NSCLC, predominantly in adenocarcinoma [55–58].
Exon 14 skipping MET mutations have also been identified as
oncogenic drivers, as initially discovered by the author’s
laboratory in lung cancer [59,60], occurring in around 3%
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of lung adenocarcinomas and in 1–2% of other NSCLC
subsets [61,62], and respond to MET inhibitors such as crizoti-
nib, cabozantinib, and capmatinib (INC280) [61–63]. MET
amplification and overexpression may confer resistance to
EGFR inhibitors in EGFR-mutant lung adenocarcinoma [64,65].

3. Mutation patterns in relapsed patients

Acquired resistance to targeted TKIs can occur by several
mechanisms during treatment, and mutations that enable
escape of dependence on the initial oncogenic driver present
important second-line diagnostic targets [66]. Identification of
resistance mutations or pathway activation upon progression
is increasingly important as new and specific treatment
options emerge.

3.1. EGFR

Most patients treated with EGFR TKIs will progress after
about 1 year of therapy due to acquired resistance that is
generally mediated through persistence of MAPK signaling
and largely due to mutations in exons 19 and 20 (most
commonly, the T790M mutation; Figure 1) [66–68].
Secondary mutations in EGFR may be targeted by treatment
with second- and third-generation TKIs [68]. The FDA has
recently granted accelerated approval to the EGFR TKI
osimertinib (AZD9291) for patients with advanced T790M
mutation-positive NSCLC based on response rates of
57–61% in two single-arm studies [13,69]. Other agents in
clinical development include rociletinib (CO-1686) that is
active against both the T790M mutation as well as the base-
line activating EGFR mutations [70], and in a first-in-human
study of the EGFR-mutant-specific TKI EGF816, an overall
response rate (ORR) of 55% and disease control rate of 86%
were reported [71]. Other potentially targetable EGFR TKI
resistance mechanisms related to MAPK signaling that future
re-biopsy diagnostics will need to detect to inform on sal-
vage treatment strategies include amplification of HER2 or
MEK1 and activating mutations in RAS or BRAF [72–74].
Bypass activation of other pathways also plays important
roles in resistance, and includes amplification of
MET [64,66], and acquired mutation of PIK3CA [74]. The
MET gene is amplified in up to 21% of NSCLC cases with
EGFR inhibitor resistance [65]. Acquired resistance to next-
generation EGFR TKIs may emerge through increased ERK
activation (via MEK1 amplification or mutation), and down-
stream inhibitors of this pathway such as those already
described may be effective in this setting when these aberra-
tions are detected on progression [72]. RET rearrangement
has also been implicated in EGFR-mutant NSCLC that has
progressed on EGFR TKI therapy, and this genetic aberration
should be added to the growing list of potential markers in
genetic resistance screens [75]. There is also evidence that
with TKI resistance, there can be change of histology (to
small-cell lung cancer or squamous cell carcinoma) [76,77].

3.2. ALK

Although crizotinib provides impressive initial responses, resis-
tance develops within 1–2 years [24]. Several bypass mechan-
isms have been implicated, including ALK amplification, MET
activation, KIT amplification, and mutations in MAPK pathway
signaling components (Figure 1) [78–81]. However, the major
mechanism of resistance is through any one of a multitude of
known secondary ALK mutations that either induce changes at
the ATP-binding pocket and cause steric hindrance to binding
of crizotinib, or destabilize the wild-type auto-inhibitory con-
formation of ALK to which crizotinib binds [80,82–86]. The
most commonly occurring mutations associated with crizoti-
nib resistance are L1196M (the ‘gatekeeper’ mutation) and
G1269A (see Figure 1 for a more comprehensive list) [86,87].
Mutational screens involving Ba/F3 cells expressing native
EML4–ALK have identified more resistance loci [88], and addi-
tional types of mutation may emerge as more patients are
treated with ALK inhibitors. New-generation ALK inhibitors
such as ceritinib can overcome ALK mutation-derived resis-
tance to crizotinib [78,89]. In a Phase I study of ceritinib in
ALK+ NSCLC, marked antitumor activity was seen in both
crizotinib-relapsed and crizotinib-naïve patients (i.e. regardless
of the presence of resistance mutations in ALK) [7], and based
on these data, ceritinib received FDA approval in 2014; con-
firmatory Phase II data have now been reported, including an
ORR of 36% and PFS of 7.2 months in crizotinib-pretreated
patients [90,91]. In a retrospective study of a cohort of ALK+
patients treated with crizotinib and ceritinib, data showed that
ceritinib had significant antitumor activity in ALK+ NSCLC,
even when crizotinib immediately preceded treatment with
ceritinib; the median combined PFS for sequential treatment
with crizotinib and ceritinib was 17.4 months [92]. Other ALK
inhibitors are in advanced clinical development with activity in
crizotinib-resistant NSCLC patients; alectinib and brigatinib
provide ORRs of 45–71% in patients who have progressed on
crizotinib treatment [93–96]. However, new-generation ALK
inhibitors may, in turn, induce secondary resistance mutations,
for which new drugs will have to be designed [78,79,97,98].
Despite initial durable responses to ceritinib in crizotinib-resis-
tant patients, tumors eventually develop resistance to ceriti-
nib. Biopsies from crizotinib-resistant tumors that progressed
on ceritinib showed eradication of ceritinib-sensitive muta-
tions (S1206Y, G1269A) and the emergence of the cross-resis-
tant G1202R mutation, which is also associated with clinical
resistance to alectinib and crizotinib [78,87,99]. In a study of 11
patients with acquired resistance, 5 patient biopsies had either
G1202 or F1174 mutations and the remaining 6 biopsies had
wild-type EML4–ALK with no mutation [78]. The profile of ALK
resistance mutations shifts depending on the ALK inhibitor,
and accurate screening to match the mutational profile of
tumors with the appropriate ALK inhibitor is likely to be
important to maximize benefit for patients who relapse on
ALK inhibitor therapy by directing subsequent sequential or
combination therapy [100]. Rare and complex mutational pro-
files have also been encountered in ALK inhibitor drug-resis-
tant ALK+ NSCLC, including KRAS Q22K mutation and STK11
frameshift mutations; this highlights the importance of
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comprehensive molecular testing in progressing patients [101].
The heterogeneity of ALK inhibitor resistance mechanisms
means that effectivemonitoring of genetic changes during treat-
ment will be important in treating or preventing the emergence
of resistance.

3.3. ROS1

Crizotinib is a recommended treatment for ROS1-rearranged
NSCLC [102]; however, secondary mutations in ROS1 causing
resistance to crizotinib have also been reported [103,104].
Other ALK/ROS1 inhibitors may prove effective as second-
line options, although cell-based resistance profiling studies
demonstrate that ROS1-selective inhibitors retain efficacy
against the mutant, whereas the dual ROS1/ALK inhibitors
are ineffective [105]. Lorlatinib (PF-06463922), a new dual
ROS1/ALK inhibitor, blocks such crizotinib-resistant mutations
in preclinical studies [106].

3.4. BRAF

Acquired resistance to BRAF inhibitors can occur through MAPK
pathway reactivation due to a number of genetic aberrations,
including BRAF V600E amplification, alternate splicing of BRAF,
NRAS mutation, KRAS mutation, and MEK1 mutation [107–109].
Co-inhibition of BRAF and MEK may overcome resistance, and
the combination of dabrafenib and trametinib has provided a
response rate of 68% in BRAF-mutant NSCLC, providing the basis
for FDA Breakthrough Therapy Designation (2015) for this com-
bination regimen in this indication [110]. Dual MEK–ERK inhibi-
tors exhibit additive/synergistic effects and can delay the
emergence of, and potentially overcome, acquired MEK inhibitor
resistance [51]. PIK3CA mutations have also been implicated in
resistance to BRAF inhibitors, and diagnostic detection of this
mutation during therapy may thus direct decisions on subse-
quent PI3K inhibitor combination therapy [111].

3.5. MET

Preclinical models suggest that resistance to MET inhibitors may
be mediated by KRAS amplification and overexpression that is
potentially targetable with MAPK pathway inhibitors [112].
Secondary MET mutations may also be targetable in the event
of effective appropriate diagnostic signals [113].

4. Optimal reanalysis of tumor genetic profiles

In a recent study of molecular and histologic changes in NSCLC
tumors (N = 50) posttreatment, in the second tissue sampling,
54% of cases had additional genomic changes, including newly
acquired alterations (81%) or losses (18%) [114]. As demon-
strated by the breadth and heterogeneity of potential resis-
tance mechanisms to diverse targeted therapies, re-biopsy of
growing tumors following disease progression has become
increasingly important for prognosis and to direct a change in
therapy [66]. However, detecting mutations in resistant tumors
can be challenging due to limited tissue availability; obtaining

tissue from an outside institution in a timely fashion and delays
in confirmation of tissue adequacy have been reported as
important issues for oncologists [68]. Biopsies may be required
during treatment, and both ethical and bureaucratic obstacles
need to be removed so that molecular testing procedures can
be carried out, where required, on very sick patients.
Communication between disciplines, and particularly between
pathologists and treating oncologists, is paramount to ensure
that appropriate tests are carried out on precious and limited
biopsy material [115,116]. Molecular testing should be priori-
tized and immunostaining limited where feasible, yet sampling
procedures need to be minimally invasive while still providing
sufficient material for both morphologic and mutational analy-
sis [68,115]. Cell blocks prepared from malignant effusions can
be a useful alternative to core biopsy [68]. Histologic/cytologic
assessments may be required to locate tissue for macrodissec-
tion and ensure adequate tumor content above the sensitivity
level of testing methods (sensitive testing methods are dis-
cussed below) [117]. Aspirates may be preferable to core biop-
sies for obtaining tumor material from bone metastases, due to
the relative ease in obtaining DNA of adequate quality for
analysis; alternative tissue sampling for genetic profiling may
be desirable in many cases [68].

Liquid biopsies are assuming increasing importance as a
noninvasive means of performing dynamic genetic surveil-
lance in patients receiving targeted therapy treatment where
acquired resistance may be expected and may overcome pro-
blems associated with tumor heterogeneity, as has been
reported for ALK+ NSCLC small biopsy and excision
samples [118]. During treatment and at the time of progres-
sion, circulating tumor (ct)DNA, circulating tumor cells (CTCs),
and microRNAs (miRNAs) can be used to monitor treatment
response noninvasively, and track and reveal molecular
mechanisms of resistance [119]. This disease-related genetic
information can be obtained through the analysis of ctDNA in
the blood of NSCLC patients [120,121]. Real-world data from a
large multicenter clinical study also suggest ctDNA samples
are suitable for upfront EGFR mutation analysis when tumor
samples are unavailable [122]. Nonetheless, robust and sensi-
tive analysis methods are recommended to minimize false
negative results. CTCs themselves may also be analyzed
through liquid biopsy for individualizing and monitoring treat-
ments and resistance [123]. Changes in miRNAs from liquid
biopsies are predictive of response and may also help monitor
resistance to treatment and detect progression early [124,125].
A number of methods are available for liquid biopsy analysis
(there is currently no formal consensus on preferred techni-
ques), and turnaround times need to be optimized so that
treatment decisions can be made quickly when resistance to
ongoing targeted therapy needs to be addressed urgently.
Liquid biopsy allows detection of emerging mutations during
treatment but cannot always be relied upon alone to identify
all potential resistance mechanisms; for example, overexpres-
sion of potential bypass pathway driver proteins would not be
identified and re-biopsy at progression would still be required
in such cases where resistance mutations have not been
detected in relapsed patients. Although having potential
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utility in the dynamic monitoring for resistance mutations in
previously diagnosed patients, liquid biopsy techniques are
some way from routine clinical application as a primary diag-
nostic tool. Future developments will need to address the
sensitivity of the method for application in asymptomatic or
as yet undiagnosed patients.

5. Optimal diagnostics for routine mutation
screening

A wide variety of commercially available molecular assays
may be used to detect mutations in lung adenocarcinomas.
An ideal assay is sensitive and specific enough to compre-
hensively cover all clinically relevant targets using limited
samples, while being cost-effective and efficient. The
method of choice depends on the type of mutation to be
detected, the scale of throughput expected, and the type of
sample available.

5.1. Direct Sanger sequencing

DNA mutational analysis via direct (traditional Sanger) sequen-
cing is considered the gold standard for characterizing muta-
tions and is generally performed on polymerase chain reaction
(PCR) products using sequencing primers spanning the DNA
region of interest [117]. Direct sequencing is the standard to
detect EGFR mutations for determining whether patients are
eligible for first-line EGFR–TKI therapy [3,126,127]. This can be
targeted to specific mutations or aimed at screening or scan-
ning larger regions [128]; direct sequencing of DNA corre-
sponding to exons 18–21 of the EGFR gene is a reasonable
initial approach [3]. Targeted assays are available from various
manufacturers, for example the non-digital Cobas EGFR
Mutation Test (Roche Molecular Systems) and the
Therascreen EGFR Kit (Qiagen) [117,129].

Additional clinically relevant mutations implicated in resis-
tance can be added to these assays, for example a new version
of the Cobas test adds the T790M mutation to those detected
in the original test and has been recently approved as a
companion diagnostic test for osimertinib [130]. Digital PCR
of plasma cell-free DNA has been successful for noninvasive
detection of drug resistance mechanisms in EGFR-mutant
NSCLC and detects the T790M mutation with 82% sensitivity
and 86% specificity; the method was less successful in detect-
ing MET gene copy number gain in plasma DNA [131].
Multiplex droplet digital PCR has been used to detect low-
frequency mutations, such as KRAS point mutations, with a
detection limit that compares favorably with next-generation
sequencing (NGS; also known as massively parallel sequencing
[MPS]) and Sanger sequencing [132]. Direct sequencing is
limited by its low sensitivity, and it is estimated that a muta-
tion should be present in ~20% of the sampled DNA to be
reliably detected [128]. High-resolution melt analysis may be
an alternative to direct sequencing that has provided 100%
sensitivity and specificity in detecting EGFR mutations in sur-
gically resected NSCLC [133].

5.2. Multiplex screening technologies

Screening technologies such as NGS and pyrosequencing have
the potential to detect all EGFR mutations and allow detection
of these and other mutations in tumor samples at levels as low
as 5% [117]. Targeted NGS/exome sequencing enriches the
target of interest and allows higher coverage, read depth, or
simultaneous detection of mutations across different genes,
using material from small biopsies and cytological samples.
The CellSearch System coupled with NGS has proved successful
in EGFR mutation analysis of CTCs in the Phase II erlotinib
(TRIGGER) study [134]. More sensitive methods (supported by
joint CAP/IASLC/ASCO guidelines) [3] are able to detect a range
of ‘actionable’ mutations occurring with a frequency of ≥1%.
These include the Sequenom MassARRAY system and SNaPshot
Multiplex System (Life Technologies/Applied Biosystems), and
these methods are supported by clinical guidelines [3,117,135].
In patients with NSCLC who experienced a treatment failure in
response to EGFR–TKIs and had new biopsies, T790M, and other
mutations outside EGFR have been successfully detected using
NGS technology, by DNA sequencing on an Ion Torrent
Personal Genome Machine (PGM) system (the Ion AmpliSeq
Cancer Hotspot Panel version 2) [136]. Acquired T790M resis-
tance mutations were detected in 60% of patients; other non-
EGFR mutations identified included TP53 P72R mutations (87%),
KDR Q472H (33%), and KIT M541L (13%). PCR-based NGS was
thus able to detect EGFR T790M mutations in cases not readily
diagnosed by other conventional methods. In addition, the
detection of coexisting oncogenic mutations that may play a
role in acquired EGFR–TKI resistance may help direct alternative
treatment strategies in relapsed patients [136]. The Ion Torrent
PGM system was clinically validated in a retrospective study of
39 NSCLC samples (and 51 colorectal cancer samples), interro-
gating 1850 hotspots in 22 genes [137]. Sensitivity and accuracy
for detecting variants at an allelic frequency (AF) >4% was 100%
for commercial reference standards, and the concordance
between NGS and the reference test (EGFR mutation was used
for the NSCLC samples) was >95%. The AmpliSeq panel was
thus specific and sensitive for mutation analysis of gene panels
and may be suitable for incorporation into clinical daily prac-
tice [137].

MPS methodologies are now being developed for the detec-
tion of gene rearrangements (e.g. ALK, ROS1, RET), as well as
gene mutations in single-tube assays [138,139]. A novel multi-
plexed transcript-based assay, the Nanostring nCounter, detects
overexpression of the 3′ end of transcripts versus the 5′ end,
common in fusion genes [117]. Whole-transcriptome sequen-
cing has been used to detect RET fusion oncogenes [38].
Microdissected tumor samples and cytology samples (including
fine needle aspirates, pleural effusion) can be used to detect rare
mutations if sensitive testing methods are used [128]. However,
small tissue samples often preclude microdissection and may be
prone to false negative results; equally, with high-sensitivity
assays, clinical laboratories must be extremely careful to guard
against false positive results [68]. NGS and parallel-sequencing
technologies enable efficient, simultaneous detection of driver
and drug-targeted mutations in NSCLC. GS Junior-based
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sequencing has been used to screen samples for multiple muta-
tions across several driver genes [140], and similarly, MiSeq™, GS
Junior, and PGM Ion Torrent™ have been validated across sev-
eral centers [141]. NGS applied to formalin-fixed paraffin-
embedded tissue has become established as a routine diagnos-
tic tool in some centers [142].

5.3. In situ hybridization techniques

For ALK, ROS1, and RET fusions, fluorescence in situ hybridization
(FISH) is widely used in clinical laboratories and requires only a
single paraffin section [117]. It is the current gold standard for the
detection of ALK rearrangements regardless of the fusion part-
ner, although it cannot identify the fusion, and is not feasible for
large-scale screening of low-frequency rearrangements [117].
ALK gene rearrangements can be detected using the dual
probe break-apart FISH assay, approved by the FDA as a prere-
quisite before treatment with crizotinib [3,143]. FISH has also
been used to evaluate gene amplification in tissue microarray
sections, including MET [57]. Immunohistochemistry (IHC) or
reverse transcription (RT)-PCR can also be used for detection of
specific fusion transcripts [22,143]. IHC offers an alternative and
universally available option for pathology laboratories unable to
carry out FISH. Fusion specific RT-PCR kits are commercially
available. Combined with Sanger sequencing or NGS of PCR
products, RT-PCR allows specific identification of the fusion part-
ners; however, novel translocations may be missed, and RNA in
clinical samples may be of poor quality [117].

6. Therapeutic approaches to combat resistance
based on multiple mutation screening

With dozens of known targets and many agents approved or in
development, there are a large number of possible combinations
and sequences that can potentially be investigated or deployed in
to treat or prevent drug-resistant patients in the clinic, often with
support from preclinical models [144]. Several Phase III studies of
combined targeted agents are underway. Patient-derived models
of acquired resistance have provided valuable data that help
identify effective drug combinations and could help direct combi-
nation therapy strategies in individual patients that are not pre-
dicted by genetic analysis alone [145]. Combinations of targeted
therapies based on resistance mechanisms are currently being
evaluated in a variety of lung cancer settings in Phase I and II
studies (clinicaltrials.gov; January 2016). For example, cyclin-
dependent kinases CDK4 and CDK6 are components of cell cycle

control that switch on potential resistance-mediating RAS/RAF/
MEK/ERK and PI3K/AKT/mTOR bypass signaling pathways in ALK+
NSCLC. The combination of ceritinib and the CDK4/6 inhibitor
ribociclib (LEE011) is being evaluated in patients with ALK+
NSCLC who have progressed on an ALK inhibitor (including cer-
itinib) or who are ALK inhibitor-naïve. A study of the MEK inhibitor
selumetinib (AZD6244) and gefitinib in patients with EGFR-
mutated NSCLC and EGFR TKI resistance is ongoing
(NCT02025114). The MET inhibitor capmatinib (INC280) is being
evaluated in combination with gefitinib (NCT01610336) and erlo-
tinib (NCT02468661) in patients with EGFR-mutated, MET-ampli-
fied NSCLC who have acquired resistance to an EGFR TKI, andwith
the EGFR-mutant-specific irreversible EGFR inhibitor EGF816 in
EGFR-mutant NSCLC (NCT02335944). The combination of gefitinib
and the PI3K inhibitor buparlisib (BKM120) is being evaluated in
patients with NSCLC who have EGFR TKI resistance and molecular
alterations in the PI3K pathway, such as PIK3CA mutation
(NCT01570296). A study in patients with EGFR-mutated NSCLC
who have EGFR TKI resistance will evaluate the TORC1/2 inhibitor
INK128 in combination with the third-generation irreversible EGFR
TKI AZD9291 (NCT02503722). Combination therapy is also being
evaluated with the HER2-targeted therapy dacomitinib
(NCT01918761). The increasing number of targetable mutations
poses challenges for clinical study design to allow accurate effi-
cacy assessment, particularly with respect to combination thera-
pies of multiple targeted drugs (with or without conventional
chemotherapy) and drug sequences [142]. The resulting high
complexity, requiring unconventional study designs and analyzing
small patient pools, may potentially limit approval [142].

For patients who have progressed without a defined muta-
tion or one with no known targeted therapy, and/or the
presence of other markers (e.g. programmed death-ligand-1),
the advent of immunotherapy provides an alternative option
to conventional chemotherapy. However, targeted therapies
may increase sensitivity to immunotherapy and the combina-
tion of a targeted agent with immunotherapy may combat or
prevent the emergence of resistance; this has been reviewed
elsewhere [146,147]. Immunotherapy is outside the scope of
this review, but a large number of clinical studies are now
ongoing to evaluate how to optimize its merger with targeted
therapy in lung cancer patients (Table 1) [148].

7. Expert commentary

Significant advances in molecular pathology in recent years have
improved our understanding of NSCLC, with actionable oncogenic

Table 1. Ongoing clinical trials evaluating immunotherapy combined with targeted therapy in patients with NSCLC [148].

Combination Phase Trial ID Partner target Patient population

Ceritinib + nivolumab 1 NCT02393625 ALK ALK+ NSCLC
EGF816 + nivolumab
Capmatinib (INC280) + nivolumab

2 NCT02323126 EGFR
c-MET

EGFR T790M-mutant NSCLC
c-MET+ NSCLC

Erlotinib + nivolumab 1 NCT01454102 EGFR EGFR-mutant NSCLC
ACY-241 + nivolumab 1 NCT02635061 HDAC6 NSCLC
Erlotinib + ipilimumab
Crizotinib + ipilimumab

1 NCT01998126 EGFR
ALK

EGFR-mutant NSCLC
ALK+ NSCLC

Crizotinib + pembrolizumab 1 NCT02511184 ALK ALK+ NSCLC
Necitumumab + pembrolizumab 1 NCT02451930 EGFR EGFR-mutant NSCLC

ALK+ NSCLC
Afatinib + pembrolizumab 1 NCT02364609 EGFR EGFR-mutant NSCLC

ALK: anaplastic lymphoma kinase; EGFR: epidermal growth factor receptor; HDAC: histone deacetylase; NSCLC: non-small-cell lung cancer.
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mutations inmultiple signaling pathways identified, leading to the
rational use of targeted agents tailored to tumor characteristics.
Based on this approach, agents targeted to specific EGFR or
ALK mutations have become widely used. Although reflex mole-
cular testing for driver mutations is now commonplace, for those
patients who have not been comprehensively screened or
suboptimal diagnostics applied, no known driver mutation will
be documented and routine treatment will be standard cytotoxic
chemotherapy. Outcomes with targeted agents in patients with
known actionable mutations have been impressive, but acquired
resistance is our nextmajor challenge – both in terms of treatment
and effective monitoring. Outcomes with targeted agents will
likely be improved by integrating increasing numbers of mutation
screens at the point of treatment failure or even during treatment
through repeated liquid biopsies, to allow subsequent therapy to
be optimized. A recommended potential treatment and testing
algorithm that combines existing and potential new diagnostic
strategies is represented in Figure 2. Multiple clinical trials are
ongoing or planned to investigate sequencing and combinations
based on tailored therapy and resistance mechanisms, and results
will hopefully lead to further survival improvements for patients
with advanced NSCLC. In order for the results of these studies to
be translated into impactful patient benefit in the real world,
appropriate biopsy and diagnostic platforms and strategies will
need to be implemented universally. By introducing treatment
paradigms which shift the diagnostic emphasis toward both
upfront pretreatment testing and timely monitoring for potential
actionable resistance mutations, the continued use of inappropri-
ate treatments may be minimized. At the same time, the clinical
effectiveness of diverse targeted treatments as potent persona-
lized treatment options for the patients who will derive the most
benefit may be maximized.

8. Five-year view

The spectrum of currently available approved targeted thera-
pies is still limited, and therefore, the justification for compre-
hensive evaluation of mutation status of vast numbers of
oncogenes not just in clinical trials, but in routine clinical
practice is still controversial. However, as the pace of research
into new lung cancer driver and/or resistance mutations
rapidly accelerates, this is unlikely to be the case in the near
future. The key challenge will be in the implementation of
highly complex techniques such as NGS in a uniform and
preferentially centralized way that is accessible to all patients.
This uniformity will need to include the software used for
evaluation of results and recommended guidelines on cutoffs
and minimum read numbers required per mutation tested, as
well as the basic platforms used. NGS techniques as routine
diagnostic tools in the real world are currently limited by
specialist sample preparation requirements and costs asso-
ciated with both these techniques and the widespread appli-
cation of commercial platforms in routine community clinical
practice. The optimization of the above factors will need to be
carried out without compromising turnaround times.
Nonetheless, the potential benefit to a large proportion of
patients is exemplified by Figure 1, which shows that up to
30% of patients with adenocarcinoma are likely to have
tumors bearing a known actionable genetic mutation, and
even higher ratios in some resistance settings, with others
more than likely to be discovered over the next 5 years. A
further key future challenge will be in moving these diagnostic
and treatment algorithms forward in the management time-
line of patients with NSCLC, so that patients with earlier stage
disease may also benefit from targeted personalized therapies.

Figure 2. Flow chart recommending where mutational analysis can fit (white boxes) into current NSCLC treatment algorithms to direct therapy first line or in
resistant disease; current recommended treatment flow is in shaded boxes and is based on current ASCO and NCCN Guidelines [8]. CT: chemotherapy;
IT: immunotherapy; NGS: next-generation sequencing; PS: performance status; SD: stable disease; TKI: tyrosine kinase inhibitor.
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This may lead to improved cure rates in NSCLC, in addition to
already improved survival for patients with advanced disease.
Ultimately, with all of the technological developments, we will
have a strong impact on the cure for lung cancer.

Key issues

● In addition to EGFR and ALK, important oncogenic driver
mutations/rearrangements that may be considered for
diagnostic screening include KRAS, MET, PIK3CA, HER2,
BRAF, NTRK, ROS1, RET, and MEK

● Acquired resistance to targeted agents occur by several
mechanisms during treatment, and mutations that enable
escape of dependence on the initial oncogenic driver pre-
sent important second-line diagnostic targets

● Identification of resistance mutations or pathway activation
upon progression is increasingly important as new and
specific treatment options emerge

● In post treatment second tissue samples over half of NSCLC
cases have additional genomic changes, including newly
acquired alterations or losses; re-biopsy is thus important
for prognosis, and to direct a change in therapy, but can be
challenging due to limited tissue availability and quality

● Liquid biopsies are important as a non invasive means of
performing dynamic genetic surveillance in patients receiv-
ing targeted therapy treatment where acquired resistance
may be expected, and may overcome problems associated
with tumor heterogeneity

● Circulating tumor DNA, circulating tumor cells, and microRNAs
can be used tomonitor treatment response non invasively, and
track and reveal molecular mechanisms of resistance

● DNA mutational analysis via direct sequencing is consid-
ered the gold standard for characterizing mutations, and
can be targeted to specific mutations including those asso-
ciated with resistance, or aimed at screening or scanning
larger regions

● Next-generation sequencing and pyrosequencing have the
potential for simultaneous detection of mutations across
different genes, including gene rearrangements, using
material from small biopsies and cytological samples

● Patient-derived models of acquired resistance have provided
valuable data that help identify effective drug combinations,
and could help direct combination therapy strategies in indivi-
dual patients that are not predicted by genetic analysis alone

● Combinations of targeted therapies based on resistance
mechanisms are currently being evaluated in a variety of
lung cancer settings
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