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Abstract

Wheat is a staple food crop of many countries. Improving resilience to biotic and abiotic

stresses remain key breeding targets. Among these, rust diseases are the most detrimental

in terms of depressing wheat production. In the present study, chemical mutagenesis was

used to induce mutations in the wheat variety NN-Gandum-1. This cultivar is moderately

resistant to leaf and yellow rust. The aim of mutagenesis was to improve resistance to the

disease as well as to study function of genes conferring resistance to the disease. In the

present investigation, a 0.8% EMS dose was found optimum for supporting 45–55% germi-

nation of NN-Gandum-1. A total of 3,634 M2 fertile plants were produced from each of the

M1 plant. Out of these, 33 (0.91%) and 20 plants (0.55%) showed absolute resistance to leaf

and yellow rust, respectively. While 126 (3.46%) and 127 plants (3.49%) exhibited high sus-

ceptibility to the leaf and yellow rust, respectively. In the M4 generation, a total of 11 M4 lines

(nine absolute resistant and two highly susceptible) and one wild type were selected for

NGS-based exome capture assay. A total of 104,779 SNPs were identified that were ran-

domly distributed throughout the wheat sub genomes (A, B and D). Induced mutations in

intronic sequences predominated. The highest total number of SNPs detected in this assay

were mapped to chr.2B (14,273 SNPs), which contains the highest number of targeted base

pairs in the assay. The average mutation density across all regions interrogated was esti-

mated to be one mutation per 20.91 Mb. The highest mutation frequency was found in

chr.2D (1/11.7 kb) and the lowest in chr.7D (1/353.4 kb). Out of the detected mutations, 101

SNPs were filtered using analysis criteria aimed to enrich for mutations that may affect gene

function. Out of these, one putative SNP detected in Lr21 were selected for further analysis.

The SNP identified in chimeric allele (Lr21) of a resistant mutant (N1-252) was located in a

NBS domain of chr.1BS at 3.4 Mb position. Through computational analysis, it was demon-

strated that this identified SNP causes a substitution of glutamic acid with alanine, resulting

in a predicted altered protein structure. This mutation, therefore, is a candidate for contribut-

ing to the resistance phenotype in the mutant line. Based on this work, we conclude that the

wheat mutant resource developed is useful as a source of novel genetic variation for
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forward-genetic screens and also as a useful tool for gaining insights into the important bio-

logical circuits of different traits of complex genomes like wheat.

Introduction

Wheat has remained as an important part of human diet providing energy and protein since

the dawn of human civilization. Generally over the course of history, wheat has been grown on

222.16 million h-1 with 752 million metric tons annual production worldwide (https://apps.fas.

usda.gov/psdonline/circulars/production.pdf). Out of the cultivated wheat species, Triticum
aestivum L. (allohexaploid, AABBDD genome), grown on more than 90% area, originated

~10,000 years ago by the hybridization of tetraploid wheat with Aegilops tauschii (diploid, DD

genome) [1]. Its genome size (~17.6 GB) is relatively larger than that of many cultivated

important food crops [2].

Large efforts are made to improve and/or sustain wheat production by developing varieties

with more advanced genetics. However, there are still many factors which create concerns for

the sustainability of wheat production (Tester and Langridge, 2010). Among these, rust diseases

are one of the most vital challenges for many parts of the world, including Pakistan. Among the

rust diseases, leaf rust and stripe rust are the most prevalent diseases in Pakistan. Stem rust,

though not currently present, can be considered a potential threat to wheat in Pakistan[3]. All

these rust diseases can substantially reduce the worldwide wheat production, and losses range

from 10–70% for yellow rust, 30% for leaf rust and 50% for stem rust. Over the last few years,

infection by leaf and/or stripe rust has been reported every year with varying degree of damage.

This situation is alarming for the policy makers as it is raising issues surrounding food security.

Several efforts are made to counter the rust diseases, however, breeding to combat rust dis-

eases is made difficult by the narrow genetic base of wheat cultivars, changing virulence profile

of the pathogen, and the lack of sufficient genetic and genomic knowledge of the resistance

reaction [4–7]. Multiple strategies including screening of wheat germplasm in disease nurser-

ies, introgression of resistant genes from its wild species [8] and generation of mutant resistant

material, have been adopted to overcome the issue. Creation of novel genetic variations in

wheat genomes through inducing mutation(s) by chemicals or radiation is one alternative. In

conventional mutation based strategies can be inefficient owing to variations in mutagenesis

that are not easily estimated phenotypically.

With the advent of genomic tools, mutations in a genome can be identified using conven-

tional fingerprinting approaches and next generation sequencing (NGS) assays. The ploidy

level together with large (around 17 GB) and complex nature of wheat genome makes the pro-

cess of re-sequencing difficult [9]. Most genes are present in multiple functional copies. This

hinders the ability to unambiguously assign identified mutations to one of the homologs [10].

As with other polyploid species, the wheat genome can tolerate a high number of accumulated

mutations without any significant impact on survival of wheat plant [11–12]. Interestingly, the

frequency of mutations induced by EMS in the hexaploid wheat genome is almost 10 times

higher than that of diploid barley genome [13].

Whole genome sequencing assays are being used extensively to characterize the genotypic

diversity in mutants; however, re-sequencing cost of wheat genome is still high owing to its

large genome size and the requirement of higher coverage for calling single nucleotide varia-

tion [14]. To addresses this, a subset of the genome can be enriched and sequenced. For exam-

ple, one can predict that many useful mutations will be present in genes. The whole

complement of exons can be sequenced using an exome capture approach [15]. This results in

Identification of SNPs in mutant wheat

PLOS ONE | https://doi.org/10.1371/journal.pone.0201918 August 13, 2018 2 / 22

Funding: This work was supported by the

International Atomic Energy Agency and Higher

Education Commission of Pakistan. The funder had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://apps.fas.usda.gov/psdonline/circulars/production.pdf
https://apps.fas.usda.gov/psdonline/circulars/production.pdf
https://doi.org/10.1371/journal.pone.0201918


a dramatic reduction in the number of bases sequenced (more than 100-fold for wheat), lead-

ing to lower assay costs. Most SNP discovery initiatives in wheat explored the coding (exons)

regions for identifying SNPs [16]. Further, mapping and mutation calling are made easier as

repetitive regions of the genome can be avoided.

Exome capture assays have been extensively used to detect variants involved in conferring

important traits in a number of crop species. For example, genetic diversity and variations in

wheat and barley genomes are explored[17]. Similarly, exome capture is used to tag variations

in genes conferring biomass production in corn [18]. In another study, mutations responsible

for woody traits in Eucalyptus exome are identified [19]. Further studies documented the effi-

cacy of this technology to associate variations with phenotypic diversity in black cottonwood

[20], wheat [21, 22], barley [17] and switchgrass [23]. This procedure is also used to detect

deletion mutations induced through radiations in soybean [24]. Thus, the function of the

genes can be identified by exploring exomes in mutant populations developed by exposing the

seed with chemicals or radiations [25, 26].

Before initiating re-sequencing or exome capture assays, it is important to phenotypically

characterize mutants for the trait of interest. In this regard, mutant populations are desirable

as the mutations are typically superimposed on to a uniform genetic background. Thus, any

nucleotide variation observed between lines is predicted to be caused by treatment with muta-

gen and not the result of natural nucleotide variation. The most commonly used chemical

mutagen used in plants is Ethyl methane sulfonate (EMS)). This mutagen works preferentially

on guanine resulting in G to A and C to T transitions. The density of induced mutations is esti-

mated between 2–10 mutations/Mb in a diploid genome [27]. Known frequencies of mutation

induced by a mutagen may help in predicting size of the population required for targeting spe-

cific genes [28]. Development of a novel genetic resource using mutagenesis is extremely useful

in discovering new genes as well as for establishing their function. For example, the role of

mutant alleles of different genes including GPC-1 [29], SBEII [30] and VRN [31] have been

described using wheat mutated populations.

In the present study, a mutagenized wheat population is developed using EMS. Disease

resistant as well as susceptible mutants are identified. These stable mutants are exposed to

exome capture assay for identifying alleles conferring resistance to rust diseases. Through in

silico evaluation of identified putative mutations, we recovered one SNP (out of 104,779 SNPs)

in the R gene family (Lr21 gene) that may have functional impact on resistance to rust diseases.

The generated information would be useful in developing disease resistant wheat cultivars.

Materials and methods

Plant material

The hexaploid ‘NN-Gandum-1’ (Triticum aestivum L) is a spring wheat variety that was bred by

making a cross (Chirya-3/Opata//2x parula/3/ Rohtas-90) at the PGMB Labs, NIBGE, Faisalabad

Pakistan. ‘NN-Gandum-1’ (NN-1) has been evaluated for studying its adaptability throughout the

Punjab province in Pakistan. Because of its high yield potential and limited tolerance to rust dis-

eases (moderately resistant) especially leaf rust, this variety was selected for exposing to a mutagen.

In this regard, seed were exposed to chemical mutagen ethyl methane sulphonate (EMS).

Mutagenesis and mutant population development

To optimize the dose of EMS, 24 batches of 50 seed each were treated with different EMS con-

centrations (ranging from 0.4–0.9%); each concentration was also tested for two different time

exposure and temperatures i.e. 1 and 2 hours and 33˚C and 35˚C, respectively. After treatment,

seed were washed under running water for 3 hours to remove any residual EMS. Before the
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treatment, seed were sterilized with 5% and 70% sodium hypochlorite and ethanol, respec-

tively, each with three washings. On the basis of germination percentage (45–55%), 0.8% EMS

for 2 hour at 35˚C was chosen to mutagenize a batch of 7,500 wheat seed.

After an overnight drying, M1 seed were manually sown in experimental field in NIBGE

(Faisalabad, Pakistan) with a cultivation distance of 30 cm between each row. Seed were sown in

the form of beds, each bed contains 100 rows and each row contains eight plants. In total 3,634

M1 (out of 7,500 seed) plants were germinated. At physiological maturity, the main spike of

each M1 plant was bagged to ensure self-pollination. At maturity, the M2 seed from each main

spike was harvested to sow M2 generation. Standard agronomic practices were applied from

sowing till harvesting in each generation. Eight M2 plants (of each M1 plant) in each row were

sown in bed and were thinned to leave a single M2 plant per row. At key development stages,

from germination to maturity, based on a visual characterization of plant, a systemic phenotyp-

ing scoring of the mutant population was carried out. Response to rust diseases (yellow and

brown rust) was recorded by adopting a universally used rating scale [32, 33]. The coefficient of

infection (CI) was calculated by multiplying the disease response value with the disease infection

intensity. Average coefficient (ACI) was also calculated out by summing CI values of each geno-

type divided by the total number of locations. Leaf tissues were collected from each labeled plant

per row for DNA isolation (CTAB method) for conducting SSR analysis (DNA uniformity anal-

ysis). Plant showing natural variations were rejected. Plants were advanced to M3 by adopting

the same procedure as done for the M2. The main selfed spike was sown to develop the M4 pop-

ulation. Data for morphological traits as well as response to rust diseases were recorded. Out of

these, 11 mutant lines showing strong resistance (nine mutant lines) and high susceptibility

(two mutant lines) were selected for the exome capture assay (Fig 1).

SSR uniformity analysis

In total, 20 SSRs were selected based on their high PIC values—calculated by surveying a set of

wheat genotypes (96) with 650 SSR (unpublished results), and were surveyed on M2 plants.

Out of these, WMS-46, WMS-249 and WMS-311 amplified polymorphic alleles.

Fig 1. Development and screening of the wheat mutant population. Brown color dots represent the genotype ‘Morocco’, Black color dot represent ‘NN-Gandum-1’

(wild type), Green dots represent mutant plants, Red represents the selected mutant plants.

https://doi.org/10.1371/journal.pone.0201918.g001
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Preparation of wheat exome capture libraries

Exome capture design. Experiments for capturing exons were conducted by adopting the

following protocols and procedures.

Isolation of genomic DNA and initial preparation for exome capture. Total genomic

DNA was extracted from young seedlings of M4 plants of 12 samples (11 mutants and one wild

type (non-mutagenized plant of the parental genotype) by adopting a large-scale extraction

protocol [34] with few modifications. Initially, the nuclei were purified followed by treatment

with proteinase K and purification with phenol-chloroform. The extracted genomic DNA con-

centration was normalized to a final concentration of 200 ng/μL by adding a 0.1 X TE buffer

(0.1 mM EDTA, 10mM Tris-HCl, pH 8) [34]. In total 130 μl final volume of each sample was

made.

The genomic DNA from each sample was fragmented to an average size of 250–450 bp

using a Covaris E220 ultra sonicator (Duty cycle = 20%, intensity = 175 W, cycles per

burst = 200 and time = 90 sec). The ends of the resultant fragments were repaired by adding

2.5 μL end repair enzyme followed by the ligation of A-tails and adaptors using KAPA’s kit

and Bioo Adapters (Sciclone G3 robot). Genomic libraries were constructed for undertaking

exome capture experiment using high-throughput library preparation kits manufactured by

KAPA Biosystems, Inc. (Wilmington, MA, USA, catalog number KK2612). This procedure

was described by Krasileva and co-workers [12].

Capture setup. In total, 1.2 μg of genomic DNA libraries were prepared by adding 150 ng

of each of the eight samples. In this tube, 12 μL Plant ‘Developer’ reagent from Nimblegen (cat-

alog number 6684335001) was added. In this solution, 0.5 μL barcode HE blocking oligoes

(Bioo, catalog number 520999) and 2.4 μL HE universal blocking oligo (Bioo) were also added.

After pooling all these components, the capture was dried in a vacuum centrifuge with heat for

one hour. To facilitate this process, a hole was made in the lid of reaction tube. After drying,

the hole was sealed [12].

DNA preparation for hybridization. After capture preparation, each capture was dis-

solved in 7.5 μL hybridization solution-5 and 3 μL hybridization solution-6 (Nimblegen

hybridization kit (5634253001, Roche)). This was vortexed vigorously for 10 seconds and cen-

trifuged shortly to collect the solution. The solution was transferred to a pre-labeled 0.2 μL

PCR tubes. These tubes were heated at 95μC for 10 minutes in a thermo cycler. Next, a total of

4.5 μL of Nimblegen EZ DNA capture (custom, Roche) was added to each tube. The solution

was mixed thoroughly by vortexing followed by pulse centrifugation to collect the solution

[12].

Hybridization. This step was performed in a thermal cycler for 70 hours at 47˚C while

the lid temperature was kept at 57˚C. Captured hybrids were washed using three washing

buffer (wash buffer I, II and III) and one bead wash buffer [12].

PCR amplification and final clean-up

Captures were amplified by PCR using primer pairs, F: AATGATACGGCGACCACCGATCTA
CAC and R: CAAGCAGAAGACGGCATACGAGAT (custom synthesized by Sigma). Master stock

solution was prepared with 10 μM Tris (pH 8.0) at 100 μM, and the working solution was

10 μM (1:10 dilution of master stock) with 1:1 primer mix (5 μM of each primer). The PCR

cocktail for two reactions was prepared by adding 20 μL captured DNA, 25 μL 2x KAPA mix

and 5 μL primer stock (10 μM). PCR amplification was conducted in duplicates using KAPA’s

amplification kit, and programmed for one cycle for 45 sec at 98˚C followed by 10 cycles each

for 15 sec at 98˚C, 30 sec at 60˚C and 30 sec at 72˚C followed by a final extension cycle for 1

min at 72˚C. The library was left on beads. The remaining 10 μL of the captured beads was
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kept for quality control checks at -20˚C[12, 25]. The PCR products were purified by extensive

washing (five times) using 80% ethanol (Sigma, catalog number ET0005) by adopting a pub-

lished protocol [35].

DNA quantification. The enrichment of the targeted exons was tested using qRT-PCR.

In this regard, the purified captured DNA was quantified, and primers designed for the

amplification of two wheat housekeeping marker genes (F: ATCGGATTCGACAACATGC, R:

ATATGGCCTGTCGTGAGTGA for Nuclear-encoded Rubisco and F: AAAGGCGTCAAGATG
GAGTT, R: GGAATCCACCAACCATAACC for Malate Dehydrogenase) were custom synthesized

by Sigma [12].

Illumina sequencing. The final captures were submitted to Beijing Genome Institute

(BGI) for sequencing with Illumina Hisequation 2000 (Illumina).

Alignment of exome sequencing reads against wheat draft genome. Bioinformatics

analysis of sequence of each fragment was undertaken from start to stop codon. Illumina gen-

erated-sequences were processed using Fastq software for testing the quality of reads. The gen-

erated reads were assembled and aligned against wheat reference genome using ‘bwa aln’ and

‘bwa sampe’ programs [36]. Then samtools and bamtools were used to generate sequence

alignment map (SAM) and binary version of SAM files called as BAM file [37] (Fig 2).

Calling SNPs. Mutation and polymorphism survey (MAPS) (http://comailab.

genomecenter.ucdavis.edu/index.php/MAPS) and ‘mpileup’ pipeline (http://comailab.

genomecenter.ucdavis.edu/index.php/Mpileup) were deployed to select bases in the reference

covered by at least one read at quality > 20 in a minimum number of samples. To differentiate

the real SNPs from false mutations and or sequencing errors, an additional MAPS parameter

was used. The threshold was setup independently for homozygous and heterozygous [12].

Mutation rate (frequency) was estimated by dividing the number of SNPs with the size of the

exon of the corresponding chromosome [25]. Mutations were identified in all 11 mutant sam-

ples (N1-32, N1-61, N1-127, N1-236, N1-252, N1-506, N1-700, N1-701, N1-827, N1-910 and

N1-1621) after aligning with the wheat draft genome (TGACv1) (http://plants.ensembl.org/

Triticum_aestivum/Info/Index).

Effect of SNPs on gene. Mutations affecting gene function were identified by running a

Variant Effect Predictor (VEP) from Ensembl tools release 78 in offline mode [38]. This soft-

ware estimates the impact of SNPs including deletions, insertions, or structural variants on

various genes, transcripts, and protein sequence, as well as on regulatory regions. The effects

predicted by VEP were extracted and counted for determining the number of genes inter-

rupted by stop/splice or missense mutations. Mutations affecting each gene were also counted.

In some cases mutations were predicted to affect more than one gene. In these cases both

effects were considered. If the same mutation found in more than one mutant line, it was

counted multiple times. At the time the presented work was done, the wheat genome annota-

tion was in its initial stages of development, thus some mutations identified by VEP as ‘inter-

genic’ could actually be in genes which were not yet completely annotated [39].

SNP analysis and validation. For the analysis and validation of DNA sequence polymor-

phisms and SNPs, DnaSP software was used. DnaSP is a multi-propose program that allows

conducting exhaustive DNA polymorphism analysis using a graphical user-friendly interface.

Results

Population development and phenotyping

‘NN-Gandum-1 (NN-1)’ has been released for cultivation because of its high yield potential in

Punjab, Pakistan. However, this cultivar showed limited tolerance to rust diseases (expressed

as moderately resistant), especially leaf rust. For this reason we selected it for mutagenesis with
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the goal of improving disease resistance. Seed were collected from the seed center of PGMB,

NIBGE Faisalabad for exposing to the chemical mutagen ethyl methane sulphonate (EMS).

EMS mutagenesis of NN-1 was optimized to determine LD50. After conducting a series of

experiments using various concentrations of EMS as well as exposure time length, 0.8% (V/V)

for 2 h at 35˚C was found optimum. Following this, a total of 7,500 seeds were exposed to the

mutagen, and were sown under the natural field conditions. In total 3,634 M1 seedlings were

successfully emerged. The main spike of each plant was self-pollinated and harvested sepa-

rately. In the following year, a single row of each M1 plant was sown to develop an M2 popula-

tion. Plant #1 of each row was tagged for data collection and DNA extraction. Plants were

scored for their response to rust diseases shown in Table 1. In total, 33 plants (0.91%) and 20

plants (0.55%) showed absolute resistance to leaf and yellow rust, respectively. While 126

plants (3.46%) and 127 plants (3.49%) exhibited high susceptibility to the leaf and yellow rust,

respectively(S1 Fig).

Uniformity analysis

Before advancing the M2 plants, microsatellite (SSR) markers were surveyed to identify the

true mutants generated through EMS versus natural variants. Natural variants, such as those

arising from cross pollination between diverse cultivars are expected to show a high polymor-

phism rate when using SSRs. In total, 8.9% (natural variants) of the total M2 plants were

rejected (unpublished data). The confirmed NN-1 derived mutants were advanced to M4 by

self-pollination (Fig 1). Phenotypic data for each generation was recorded. A total of 18 M3

plants were selected (based on their response to rust diseases), and their M4 seed was harvested

separately.

Exome capture

A previously developed exome capture array design was used [12]. Genomic DNA from the 18

M4 seedlings was harvested, but seven mutants were excluded because of poor DNA quality. In

total, 11 mutants were processed for exome capture assay. A single capture experiment was

performed including mutants as well as the wild type (NN-1). Captures were multiplexed from

12 wheat lines and sequenced together on an Illumina lane. The resultant sequenced reads

were processed together through the MAPS pipeline, with each sample serving as a control for

others. Thus the mutation identified were present only in one of the samples [25]. The impact

of these mutations on the corresponding genes was studied using VEP.

Mutation detection and identification

In total, 53, 40, 39 and 41 SNPs were identified in mutant sample # N1-32, N1-61, N1-127 and

N1-827, respectively. These 173 mutations were identified either in 3 and 5 prime UTR or up

and down stream regions of gene, thus amino acids remained unaltered. These mutants were

not considered for further analysis. Highest number of mutations were observed in coding

regions of mutants, N1-236 (38,060 SNPs), N1-701 (3,019 SNPs) and N1-700 (25,713 SNPs). A

modest number of mutations were recorded in mutant N1-252, N1-506, N1-910 and N1-1621

(Table 2). Mutations were identified, in 1,116 genes of all selected samples. Out of these, genes

associated with resistance to rust were studied (S1 Table).

The maximum number of SNPs (heterozygous as well as homozygous) were found in

chr.2B (14273 SNPs) while the lowest number of SNPs were detected in chr.4D (1227 SNPs)

Fig 2. Schematic diagram showing various steps deployed for the identification of mutations.

https://doi.org/10.1371/journal.pone.0201918.g002
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(Fig 3). The highest and lowest number of homozygous mutations were observed in chr.2B

(5617 SNPs) and chr.4D (434 SNPs), respectively (Fig 4). Distribution of all SNPs on different

chromosomes is shown in circos plot (Fig 5). Owing to the fact that the total number of base

pairs included in the assay varies by chromosome, we next evaluated the density of mutations.

The highest mutation densities were observed in chr.3A, 3D, 7A, 7B and 7D. While the lowest

mutation density was observed in chr.2A and chr.6D (Fig 5). The mean mutation rate was 14.4

mutations/Mb for heterozygous mutations and 6.51 mutations/Mb for homozygous muta-

tions. In total, mean mutation rate was 20.91 mutations/Mb. The highest mutation rate (fre-

quency) for the whole population was found in chr.2D (85.17 mutations/Mb) and lowest

number of induced mutation rate was observed in chr.7D (2.83 mutations/Mb) (Table 3).

In the present study, SNPs found in introns, non-coding transcript exons, upstream

regions, downstream regions and intergenic regions were 17.54%, 0.68%, 11.67%, 16.88%,

15.78%, respectively. Similarly, mutations recorded in 3‘UTR region, 5‘UTR region, splice

region, splice acceptor region and splice donor region were 3.58%, 2.16%, 1.6%, 0.07% and

0.06%, respectively. In total, 15% synonymous and 14.36% non-synonymous mutations were

identified. While, in total 396 (0.38%) mutations were observed in stop codons including 343

stop gained, 28 stop retained and 25 stop lost mutations. However, 29 mutations resulted in

‘start lost’ in 18 genes (Fig 6).

Mutations found in genomic regions showing no impact on functional diversity were not

considered for advancing the present investigations. In this context, heterozygous mutations

were also ignored and homozygous mutations were considered. Out of the total homozygous

SNPs (32,614), GC/AT transition mutations (6,723) were selected for further studies.These

mutations were further filtered to 888 SNPs by selecting missense, stop/ start codon, splice

region and frame shift variants. Out of these 888 variants, 91% were missense mutations.

While 6.8%, 2.09% and 0.11% mutations were identified in stop/start codon, splice region, and

frame shift variants, respectively. Out of these 888 mutations, 101 SNPs were found in genes

conferring agronomically important traits including Lr21 (disease resistance gene from R gene

family), heat shock protein (Hsp), photosystem I (PsaN), micronutrients (potassium transport-

ers and magnesium chelatase ChlI domain, PT and MCD), Armadillo-like helical complex

gene (AHCG) and mitochondrial transcription factors (MTF) were selected for further study

(Table 4).

One mutation was observed in Lr21 (rust resistant) located in chr.1BS at 3.4 Mb position

(mutant # N1-252) (Table 4, S2 Fig). The impact of this mutation on function of the mutant

gene was studied by constructing the protein structure using 3D modeling. (S3 Fig). This

Table 1. Response to rust disease showed by 3,634 M4 generation.

Sr. no. Major categories Phenotype Sub-categories Scale Parent M4 Mutant generation

# %

1 Leaf Rust Resistant R 60MRa 33 0.91

Mod. Resistant MR 2366 65.12

Mod. Susceptible MS 1109 30.52

Susceptible S 126 3.46

2 Yellow Rust Resistant R 40MRa 20 0.55

Mod. Resistant MR 2364 65.05

Mod. Susceptible MS 1123 30.9

Susceptible S 127 3.49

aModerately Resistant

https://doi.org/10.1371/journal.pone.0201918.t001
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Table 2. SNPs distribution in various genomic regions of 11mutants of NN-Gandum-1.

Sample ID N1-32 N1-61 N1-127 N1-236 N1-252 N1-506 N1-700 N1-701 N1-827 N1-910 N1-1621 # of SNPs

Total SNPs 53 40 39 38060 2233 2691 25713 30194 41 3582 2133 104,779

Homozygous SNPs 20 17 13 8418 695 906 7862 12514 14 1593 562 32, 614

Heterozygous SNPS 33 23 26 29534 1438 1784 17584 17837 21 2432 1453 72, 165

GC/AT transitions 24 19 17 10034 746 1108 6569 7872 19 972 866 28, 264

Homozygous GC/AT transitions 18 0 0 8165 563 15 42 57 0 5 494 9, 359

Splice donor variant 1.89% 0 0 0.07% 0.09% 2.94% 0.05% 0.19% 0 0.14% 0 68

Splice acceptor variant 1.89% 0 0 0.08% 0.04% 5.41% 0.08% 0.08% 0 0.06% 0.05% 74

Stop gained 0 0 0 0.28% 0.58% 2.04% 0.30% 0.04% 0 0.14% 0.56% 343

Frame shift variant 0 0 0 0 0 0 0 0.38% 0 0.31% 0 1

Stop lost 0 0 0 0.03% 0.04% 0 0.02% 0 0 0 0 25

Start lost 0 0 0 0.04% 0.04% 3.45% 0.02% 0.01% 0 0.08% 0 29

Missense variant 11.32% 20% 12.82% 14.09% 14.02% 3.00% 14.62% 0.02% 19.51% 0.06% 16.60% 15, 046

Missense variant splice region variant 0 0 0 0.16% 0.13% 6.51% 0.16% 14.02% 0 15.16% 0.09% 169

Synonymous variant 13.21% 7.5% 15.38% 14.95% 13.48% 2.58% 14.99% 0.15% 17.07% 0.17% 12.52% 15, 722

Stop retained variant 0 0 0 0.02% 0 0 0.03% 15.41% 0 14.71% 0 28

Coding sequence variant 0 0 0 0.02% 0 0 0.01% 0.04% 0 0 0 15

5 prime UTR variant 7.55% 2.5% 0 2.07% 2.96% 2.38% 2.01% 0.02% 2.44% 0.00% 3.47% 2, 268

3 prime UTR variant 1.89% 0% 2.56% 3.48% 3.94% 2.39% 3.40% 2.21% 2.44% 2.74% 3.00% 3, 761

Non coding transcript exon variant 0 0 0 0.94% 0.58% 1.54% 0.93% 3.94% 0 3.55% 0.09% 716

Intron variant 11.32% 7.5% 17.95% 17.71% 16.03% 2.37% 17.02% 0.28% 14.63% 0.31% 15.56% 18, 378

Upstream gene variant 13.21% 15% 10.26% 12.10% 15.09% 2.44% 12.27% 18.10% 0.00% 18.17% 15.28% 12, 231

Downstream gene variant 13.21% 20% 17.95% 16.48% 16.08% 2.46% 16.24% 10.50% 26.83% 9.02% 15.05% 17, 695

Intergenic variant 24.53% 27.5% 23.08% 16.10% 15.32% 2.68% 16.25% 18.23% 12.20% 16.64% 16.17% 16, 538

Splice region variant 0% 0% 0 1.41% 1.57% 2.45% 1.59% 14.78% 4.88% 16.81% 1.55% 1, 672

https://doi.org/10.1371/journal.pone.0201918.t002

Fig 3. Distribution of SNPs on various wheat chromosomes as well genomes (A, B, D).

https://doi.org/10.1371/journal.pone.0201918.g003
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mutation in Lr21 converts glutamic acid (E) to alanine (A) at a position 544 AA. SNP in Lr21

was visualized using SnaSP software indicating the variation in gene against wild type (S4 Fig).

Similarly, four mutations were observed in Hspgene. These mutations converts glycine to

aspartic acid in chr.1DS at 0.29 Mb position, alanine to threonine in chr.3DL at 99.62 Mb posi-

tion, glycine to serine in chr.4AS at 48.97 Mb position and alanine to valine in chr.4BS at posi-

tion 14.57 Mb in mutants N1-506, N1-700, N1-701 and N1-236, respectively. Likewise, single

mutations were observed in PsaN(mutant N1-700), magnesium chelatase ChlI domain

(mutant N1-1621) and Armadillo-like helical complex gene (mutant N1-701). These muta-

tions convert alanine to threonine, serine to asparagine and three histidine to one proline in

chr.2BS, chr.5AL, and chr.3AL at position 5.2 Mb, 10.7 Mb and 179.46 Mb, respectively. Also,

a total of three mutations were recorded in mitochondrial transcription factors in chr.2DL,

chr.3DS and chr.6BL (mutant N1-700, N1-701 and N1-1621, respectively) (http://plants.

ensembl.org/index.html) (Table 4). These mutations convert glutamic acid to lysine, glycine to

aspartic acid and alanine to threonine at 131.65 Mb, 18.43 Mb and 4.32 Mb position,

respectively.

Discussion

In this study, the use of molecular and computational methods is described to identify induced

mutations throughout the genome of hexaploid wheat var ‘NN-Gandum-1’. Before conducting

exome capture, a mutant population was developed by exposing seed of NN-Gandum-1 to

EMS (0.8% v/v) for 2 hours at 35˚C. In previous studies, different doses of EMS were used for

mutagenizing wheat seed, i.e. 0.6% to 1.0%. Fluctuations in dose concentration are largely

dependent upon the exposure time and genetic makeup of the seed [40]. In the present study,

a modest population size (3,634 M1) was assessed to obtain mutations in most genes of the

wheat genome. In previous reports, varying population sizes (from 1,536 to 6,066) were used

for identifying mutations in hexaploid wheat genome [41–44]. Population sizes can be

Fig 4. Occurrence of homozygous and heterozygous SNPs in genomes and chromosomes. The green column is representing heterozygous SNPs while red column is

depicting homozygous SNPs.

https://doi.org/10.1371/journal.pone.0201918.g004
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increased to increase the chances of retrieving multiple deleterious alleles in all genes. How-

ever, handling a large size population is extremely difficult. Such massive size of the population

can be achieved by planting M1 seed in batches in different wheat growing seasons.

We measured a range of traits (plant height, growth habit, days to heading, spikes length

and response to rust diseases (brown and yellow rust) in a mutagenized population of NN-1

grown in the field for three generations (M2–M4). Only a small fraction of M2 plants were

found resistant to rust diseases (0.91% for leaf rust and 0.55% for yellow rust). Most plants of

the two mutant populations expressed phenotypes identical to their parent genotypes and only

small number of plants (0.5%) expressed abnormal phenotypes [45]. In a different mutant

population, the cumulative frequency of visual mutations was recorded as 20–37% for various

traits in Cadenza [42]. Such fluctuations in frequency of mutant phenotypes with varying fre-

quency for each trait were also found in our study. Comprehensive studies were conducted on

cereals including barley and rice. In barley, 30–33% of the population developed through EMS

and sodium azide expressed visibly different phenotypes than the wild type [46, 47]. Rice

mutant population developed by exposing to N-methyl-N-nitrosourea (MNU) exhibited a

very high percentage (50%) of visible mutant phenotypes. Out of these, many plants showed

multiple abnormalities [48]. In sunflower, approximately 5% of the mutant population

depicted altered morphologies than that of the wild-type [49]. Many commonalities in fre-

quency of visible phenotypes of mutagenized populations of barley, rice and sunflower were

Fig 5. Circos plot: Distribution of SNPs according to mutation density. Light shade of the color represents low mutation

density; Dark shade represents high mutation density.

https://doi.org/10.1371/journal.pone.0201918.g005
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reported [42, 50]. This data highlights the complexity of using visual phenotypes to estimate

the efficiency mutagenesis. Contributing factors to phenotypic variation likely include the

ploidy of the species, genotype used, mutagen dose and the environment in which screening

for the traits is undertaken [51]. For example, effectiveness of EMS was more pronounced on

sesame (Sesamum indicum L.) than that of γ rays [52]. In chickpea, the effectiveness and effi-

ciency of EMS were seven and two times higher than that of γ rays [53]. In another study,

effectiveness of hydrazine hydrates (HZ) towards inducing mutations in quantitative traits was

higher than by the γ rays but less than the EMS [54]. However, in another study, similar effec-

tiveness by exposing with of both the mutagens were found on Stevia rebaudiana [55].

Mutation frequency and density are largely dependent upon three factors including fre-

quency of primary changes in genomic DNA, probability of repair and recognition (https://

genetics.knoji.com/three-factors-affecting-mutation-rate/) by the host machinery. However,

owing to the randomness of chemical mutagenesis and the fact that most mutations will be

functionally silent, it is expected that the number of mutations accumulating in different

regions of the genome will fluctuate. Indeed, it was demonstrated that mutation density ranged

from 1–20 mutations per Mb among different individuals even if the same mutagen with the

same concentration is applied [25]. In the present study, the mean mutation density was 20.91

mutations/Mb. These fluctuations in mutations density occurred largely due to differential

permeability of EMS in seeds, mutagenesis, and the capacity of the cell to repair the genomic

DNA. In multiple studies, fluctuations in average mutation density (19.6 mutations/Mb, 20.1

mutations/Mb, 23 mutations/ Mb and 33 mutations/ Mb) were found for wheat [12, 25, 40].

Table 3. Mutation frequency per Mb.

Chromosome Size of sequenced exon in each chromosome (Mb) SNPs (No of mutations per Mb) Mutation rate/kb

1A 248 2080 8.39 1 mutation /119.2 kb

1B 295 3121 10.58 1/94.5

1D 135 1716 12.71 1/78.7

2A 255 11855 46.49 1/21.5

2B 345 14273 41.37 1/24.2

2D 150 12775 85.17 1/11.7

3A 185 6570 35.51 1/28.2

3B 124 10009 80.72 1/12.4

3D 216 6683 30.94 1/32.3

4A 317 4794 15.12 1/66.1

4B 121 1637 13.53 1/73.9

4D 148 1227 8.29 1/120.6

5A 274 1797 6.56 1/152.4

5B 162 4077 25.17 1/39.7

5D 208 2175 10.46 1/95.6

6A 204 4729 23.18 1/43.1

6B 177 3502 19.79 1/50.5

6D 182 3278 18.01 1/55.5

7A 252 3631 14.41 1/69.4

7B 238 2659 11.17 1/89.5

7D 774 2191 2.83 1/353.4

Heterozygous mutation 5010 72165 14.40

Homozygous mutation 5010 32614 6.51

Total 5010 104779 20.91

https://doi.org/10.1371/journal.pone.0201918.t003
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In present study, the highest mutation density was detected in chr.2D (one mutation per

11.7 kb). Without further data it is difficult to speculate on the nature of this observation.

Larger scale exome capture studies in EMS mutagenized populations of hexaploid wheat

where more than 6 million mutations were analyzed suggest that chr. 2D has a higher mutation

density than that some chromosomes, but not notably higher than others such as chr.5D (12).

Mutation densities fluctuate between EMS treatments and our observations may simply reflect

variations unique to our particular population. Higher densities of mutations can accumulate

in genomic regions where the potential of deleterious alleles created by EMS is lower. This is

likely to be less pronounced in polyploids. Missense changes with a predicted moderate effect

on gene function predominate for chr.2D (S2 Table). Previously, fixed deletions were detected

at the Xcs1Vrga1-2A, KpnI -2B, and -2D loci in wheat [56]. In another report, there was evi-

dence of inversion in chr. 2D in Ae. Tauschii [57].

In wheat, a total of 121 mutations including silent, missense and knockout were identified

in waxy genes by surveying 2,348 EMS-treated M2 plants [58]. In another study, high mutation

densities in hexaploid (one mutation per 38 kb) as well as tetraploid (one mutation per 51 kb)

wheat populations were found [38]. Similarly, a total of 67 SNPs in four genes (LBP,-COMT1,

HCT2, and 4CL1) were identified. In waxy genes, mutation frequency was one SNP per 17.6

to34.4 kb in polyploid wheat while one SNP per 90 kb was found in T. monococcum TILLING

population [59]. In another investigation, 246 alleles of the waxy genes were identified by

exploring 1,920 mutants of both allohexaploid and allotetraploid wheat [60]. A total of 464

high-confidence SNPs were identified across the three mutagenized lines with mutation rate of

~35 SNPs per Mb [26]. Also,>10 million mutations in protein-coding regions of 2,735 mutant

lines of tetraploid and hexaploid wheat (with an average of 30–40 mutations per kb) were

Fig 6. Type and number of mutations in 11 mutant lines.

https://doi.org/10.1371/journal.pone.0201918.g006
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found. Cumulatively, 23–24 missense and truncation alleles per gene, with at least one trunca-

tion or deleterious missense mutation in more than 90% of the captured wheat genes per pop-

ulation, were found [12]. In a segregating wheat EMS population, a clear peak region on 4-BS

chromosome associated with increased plant height was identified, however, SNP showing

impact on the mutant phenotype was not identified [61]. Such variations in mutation rate

were reported in other crops also. In rice, while surveying for mutations in more than 38,000

independent M4 lines, 0.01% to 0.10% mutations were found [62]. In another study, a total of

27 and 30 SNPs were identified in rice mutant populations developed by exposing with EMS

and a combination of sodium azide with methyl-nitrosourea, respectively [27]. Suzuki and co-

workers (2008) calculated 7.4 to 10.6 mutations per 135 kb [48] in M2 rice mutant population.

In another investigation, 18,000 induced mutations in 72 independent M2 rice plants were

identified. Out of these, potentially deleterious mutations in >2600 genes were probed [25]. In

sorghum, five mutations (one mutation per 526 kb) were identified [63]. Likewise in barley, in

total, 382 mutations were detected in 182.2 Mb. The average mutation density was one muta-

tion per 477 kb. The majority of mutations were G/C to A/T transitions, while ~8% were trans-

versions. Missense mutations (61% of the total) were largely found in coding regions while the

remaining were silent (37.5%) and nonsense mutations (1.1%) [64].

Given the variation in mutation densities reported elsewhere and the large variation in

selected mutant lines of this study, it is intriguing to consider strategies to improve mutagene-

sis. This becomes reasonable once the cost of sequencing-based approaches is reduced suffi-

ciently to consider routine application on many lines. For example, one can consider a mutant

population with a narrow distribution of mutation density where all plants harbor the maximal

amount of induced mutations. This would provide the highest efficiency of mutation recovery.

However, maximizing density may incur fitness penalties such that some alleles will not accu-

mulate. Alternatively once could consider a strategy whereby the average mutation density of

the population is suitable, but the distribution of mutation densities of individual lines is

broad. It is interesting to note that lines used in the present study were pre-selected by pheno-

type, yet show a broad distribution of mutation density. Another important consideration

with regards to mutation density is the effect of background mutations when trying to unam-

biguously assign the mutation that is causing the observed phenotype. As mutation density

increases, so to do the number of background truncation mutations and other predicted dele-

terious changes that can confound the selection of candidate genes. This is especially an issue

when induced mutations are genetically linked.

Previous studies demonstrated that effective discovery of mutations in mutant wheat lines

is possible irrespective of the fact that using hexaploid wheat genome as a reference hinders

the ability, if not largely, for discriminating the homoeologous genes [25]. The MAPS software

used in the study ensures the identification of true-to-type mutations by comparing sequence

changes for each of the sampled position in many samples, high transition rate of GC to AT

and no mutations in wild type [25]. In the present study, a limited number of samples (11

mutants and one wild) were compared to avoid any loss of rare mutations as well as managing

the computational load. Once identified, putative mutations can then be evaluated for their

effect on gene function. The VEP software was used which can analyze, annotate, and priori-

tize variants in coding and non-coding parts of the genome. This software is user friendly in

configuring and extending the analysis. It offers several other advantages including high repro-

ducibility coupled with its inherent ability to interpret variants [39]. In the present study,

104,779 SNPs were filtered to 101 SNPs using filtration criteria. Mutations with the highest

probability for causing deleterious impact were considered i.e. homozygous mutations

(excluded heterozygous). Then, homozygous GC/AT transition mutations were selected, and

out of these truncation mutations like stop codons and splice site changes, non-synonymous
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changes (missense mutation), predicted to be deleterious were considered. Only one frame

shift mutation was found in one wheat mutant line (N1-701) in chr.3AL at position 179.46 Mb

in Armadillo-like helical complex gene. This gene confers protein that is involved in different

developmental and physiological processes in simple as well as multicellular eukaryotes [65].

The chimeric allele containing one mutation (C/T) in Lr21 was identified. Upon translation

to protein sequence it was found that glutamic acid has been replaced by alanine, and found in

activated part of the protein. Previously, a total of 55 variations were reported in this gene(ID:

TRIAE_CS42_1BS_TGACv1_049811_AA0161950). Most variations were detected in NBS

domain (active region) and LRR regions of the gene (https://plants.ensembl.org).Earlier, a

number of inactive Lr21 alleles were reported in bread wheat which got activated by the inter-

molecular recombinations of two haplotypes [66]. This gene is 4318 bp long and encodes 1080

amino acid protein, contains conserved NBS domain as well as 13 imperfect LLRs and 151

amino acid stretch that is missed in NBS-LLRs proteins at N terminus [66]. In the present

study, the mutation found in chimeric allele was located in exon-2 of NBS domain.

In field experiments, strong rust resistance was observed in mutant N1-252 compared to

the wild type (S1 Fig). Hsp gene was also linked with rust resistance as the resistant-mediated

signaling pathways require wheat homologs of heat shock protein (HSP90) [66–68]. Four

mutations were observed in Hsp in chr.1DS, chr.3DL, chr.4AS and chr.4BS at position 0.29

Mb, 99.62 Mb, 48.97 Mb and 14.57 Mb in plant mutant N1-506, N1-700, N1-701 and N1-236,

respectively. Previously 331 variations were reported in Hsp gene (http://plants.ensembl.org/

index.html) (Table 4). Similarly, mutations were also identified in PsaN, micronutrients,

Armadillo-like helical complex gene andmitochondrial transcription factor in chr.2BS,

chr.5AL, chr.3AL, chr.2DL, chr.2DS, chr.3DS and chr.6BL (Table 4). In total 32, 204, 212 and

208 variations were reported previously in PsaN, micronutrients, Armadillo-like helical com-

plex gene andmitochondrial transcription factor, respectively (http://plants.ensembl.org/

index.html). Similarly, mutations in several genes including starch biosynthesis, fatty acid bio-

synthesis, flowering pathways genes, flowering time, waxy gene, Rht-B1, Opaque-1, male steril-

ity Ms2, FatA (acyl-ACP thioesterase), SAD (the stearoyl-ACP desaturase), and amylose,

resistant starch (GBSSI-7A, GBSSI-4A, GBSSI-7D, SBEIIa, SBEIIb) were reported in previous

studies [12, 41–43, 69].

Conclusions

Exome capture is found suitable in identifying mutations induced by EMS in hexaploid wheat

with relatively big genome size (~17.6 Gb). Application of new sequencing approaches coupled

with improved bioinformatics tools for processing and managing data (MAPS, VEP, etc.)

made it possible to look for genuine mutations in the subset of the genome (the exome) where

mutations have the highest change of affecting gene function. The size of plant exomes is rela-

tively similar compared to the large fluctuations in overall genome size. Thus exome capture

can be translated to other crops irrespective of the genome size, and costs should be compara-

ble. In species where a reference genome is not yet available, a transcript genome assembly can

be made at relatively low cost [70]. In the present study we show that induced mutations can

be recovered in genes implicated in agronomically important traits. The study also sheds light

on the distribution of mutation densities in lines within our population. From this work we

conclude that our novel population of mutant wheat contains a suitable density of mutations

for future use as both a forward and reverse-genetic resource. In addition, we conclude that

the methods discussed in this manuscript can be applied for dissecting genetic pathways and

developing novel phenotypes for breeding by design approaches to sustain wheat productivity

in upcoming years.
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