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Abstract
Japanese encephalitis virus (JEV) is a zoonotic pathogen transmitted by the infectious bite

of Culexmosquitoes. The virus causes the development of the disease Japanese encepha-

litis (JE) in a small proportion of those infected, predominantly affecting children in eastern

and southern Asia. Annual JE incidence estimates range from 50,000–175,000, with 25%–

30% of cases resulting in mortality. It is estimated that 3 billion people live in countries in

which JEV is endemic. The virus exists in an enzootic transmission cycle, with mosquitoes

transmitting JEV between birds as reservoir hosts and pigs as amplifying hosts. Zoonotic in-

fection occurs as a result of spillover events from the main transmission cycle. The reservoir

avian hosts include cattle egrets, pond herons, and other species of water birds belonging

to the family Ardeidae. Irrigated rice fields provide an ideal breeding ground for mosquitoes

and attract migratory birds, maintaining the transmission of JEV. Although multiple vaccines

have been developed for JEV, they are expensive and require multiple doses to maintain ef-

ficacy and immunity. As humans are a “dead-end” host for the virus, vaccination of the

human population is unlikely to result in eradication. Therefore, vector control of the princi-

pal mosquito vector, Culex tritaeniorhynchus, represents a more promising strategy for re-

ducing transmission. Current vector control strategies include intermittent irrigation of rice

fields and space spraying of insecticides during outbreaks. However, Cx. Tritaeniorhynchus
is subject to heavy exposure to pesticides in rice fields, and as a result, insecticide resis-

tance has developed. In recent years, significant advancements have been made in the po-

tential use of the bacterial endosymbiontWolbachia for mosquito biocontrol. The successful

transinfection ofWolbachia strains from Drosophila flies to Aedes (Stegomyia) mosquitoes

has resulted in the generation of “dengue-refractory”mosquito lines. The successful estab-

lishment ofWolbachia in wild Aedes aegypti populations has recently been demonstrated,

and open releases in dengue-endemic countries are ongoing. This review outlines the cur-

rent control methods for JEV in addition to highlighting the potential use ofWolbachia-
based biocontrol strategies to impact transmission. JEV and dengue virus are both mem-

bers of the Flavivirus genus, and the successful establishment of Drosophila Wolbachia
strains in Cx. Tritaeniorhynchus, as the principal vector of JEV, is predicted to significantly

impact JEV transmission.
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Methods
This review was prepared by searching the literature, including publication databases such as
PubMed and Web of Science, on current methods used for vector control of Japanese encepha-
litis virus (JEV) and by providing an up-to-date review ofWolbachia-based biocontrol strate-
gies for dengue and how these strategies could target Japanese encephalitis (JE).

Introduction
Numerous medically important arthropod-borne viruses (arboviruses) are transmitted to hu-
mans through the bites of infected mosquitoes. JEV is a neurotropic flavivirus transmitted pri-
marily by Culex tritaeniorhynchusmosquitoes. The resulting disease, JE, is now endemic in
large parts of Asia and the Pacific, with over 3 billion people at risk of infection [1,2]. It is esti-
mated that less than 1% of human JEV infections result in encephalitic disease [3]. However,
viral encephalitis caused by JEV can lead to fever, coma, seizures, paralysis, and death. JE is pre-
dominantly a disease of children in eastern and southern Asia, with annual incidence estimates
ranging from 50,000–175,000 cases and 25%–30% of encephalitis cases resulting in mortality
[3]. A further 30%–50% of JE survivors suffer serious neurological, cognitive, or psychiatric se-
quelae [4]. JEV exists in an enzootic transmission cycle among mosquitoes and domestic pigs,
with the reservoir sylvatic bird hosts being primarily water birds from the Ardeidae family, in-
cluding cattle egrets and pond herons (Fig 1A) [1]. As JEV-infected pigs act as amplifying
hosts, domestic pig rearing is an important risk factor for human transmission. Irrigated rice
fields provide an ideal breeding ground for Cx. tritaeniorhynchus and attract migratory birds,
maintaining sylvatic transmission.

The geographic transmission zone extends from the China–Russia border region in the
north to northern Australia in the south and from the Western Pacific islands in the east to the
India–Pakistan border region in the west [5]. The epidemiology of JE can be divided into two
distinct patterns based on climate. In temperate countries such as China and Japan, seasonal
outbreaks are correlated with increased temperatures and rainfall in summer months. In con-
trast, tropical and subtropical countries in Southeast Asia have sporadic JE cases throughout
the year, with reports peaking during the rainy season. The annual incidence of disease in
Japan and Korea has declined because of improved living standards and vaccination programs
[2]. However, the number of reported cases of human disease has increased in developing
countries such as Bangladesh, Pakistan, and Indonesia because of increased population growth,
intensified rice cultivation, and pig rearing. JEV also emerged in the Torres Strait Islands and
spread to the far north of Australia in the late 1990s [6], highlighting the possibility that the
virus could become established in other parts of the world. Transmission of JEV was tradition-
ally considered to be mainly limited to rural areas, where the presence of mosquito vectors in
rice fields coincides with pork production. However, several studies in urban areas have de-
tected virus within the local mosquito vector populations, and seroconversion in urban verte-
brate hosts (including humans) has been reported [7]. The human population has increased
significantly within the past 50 years in both JEV-endemic regions and in areas where epidem-
ics occur, with increasing trends in urbanization and an associated likely increase in urban agri-
culture. Therefore, the possibility that JEV transmission can occur in urban areas with the
presence of vectors and a much greater human population density, combined with the poten-
tial for an increase in urban livestock, has the potential to significantly increase the number of
cases in the future [7].
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JEV and Mosquito Vectors
JEV is within the genus Flavivirus, which contains more than 70 enveloped viruses, including
other medically important arboviruses such as dengue virus (DENV), West Nile virus (WNV),
and yellow fever virus (YFV) [8]. Although first isolated in Japan in 1935, JEV appears to have
evolved from its ancestral form to the present genotypic forms in Southeast Asia, over a rela-
tively short period [9]. Phylogenetic studies have classified JEV into five geographically and
epidemiologically distinct genotypes: GI to GV [9]. GIII had been the predominant genotype
responsible for JE epidemics until the 1990s. However, studies have shown that GI is displacing
GIII in many regions and has become the dominant genotype [10,11]. The emergence of GI
throughout Asia is likely the result of viral, environmental, and host factors [12]. The principal
vector of JEV is Cx. tritaeniorhynchus, which has a wide distribution including parts of Africa,
the Middle East, and southern Europe in addition to the JE-endemic areas of Asia. A recent
outbreak in China in 2013, resulting in 407 confirmed cases, was attributed to high JEV infec-
tion rates in Cx. tritaeniorhynchus (9.1 per 1,000 mosquitoes) using a maximum likelihood esti-
mation [13]. The presence of this species was recently documented in parts of western Greece
[14], highlighting the potential risk of JEV transmission in nonendemic areas outside of Asia.
The principal vector of JEV in Australia is Cx. annulirostris [15], and other vector species such
as Cx. Gelidus, Cx. Vishnui, Cx. Pseudovishnui, and Cx. fuscocephala have been implicated as
secondary or regional vectors in certain endemic areas [16]. Fig 2 highlights the presence of
JEV genotypes identified in JE-endemic areas, the worldwide geographical range of the princi-
pal mosquito vector Cx. Tritaeniorhynchus, and the distribution of some of the secondary vec-
tor species within the JEV transmission zone. The control of JEV has focused on vaccines and
mosquito vector control (Table 1), as there are still no specific drug treatments available for
infected patients.

JE Vaccination
The mouse brain-derived killed-inactivated JE-VAX was the only commercially available vac-
cine worldwide for several decades despite adverse effects, high production costs, and the need
for 2–3 primary doses plus boosters [1,17]. Significant allergic and neurological side effects led
to a halt in production of JE-VAX in 2006 [18,19]. A live-attenuated cell culture-derived JE
vaccine, SA14-14-2, was developed in China in 1988 and has been administered to Chinese
children since production commenced. SA14-14-2 is generated in primary hamster kidney
(PHK) cells, and concerns with the quality control of production have prevented its application
expanding in order to become an internationally available vaccine [20]. PHK-derived inacti-
vated vaccines have been further adapted to be produced in African green monkey kidney
(Vero) cells [21]. One vaccine (designated IC51) has been licensed since 2009 for use in coun-
tries including the United States, Europe, Australia, and India under various trade names, in-
cluding IXIARO [22]. However, as there are concerns with this, the only WHO-recommended
vaccine, because of side effects [23], additional vaccines are in various stages of development. A
recombinant, live-attenuated vaccine based on a chimeric yellow fever/Japanese encephalitis

Fig 1. JEV transmission cycle and potential inhibition through the introduction ofWolbachia-infectedCx. tritaeniorhynchusmosquitoes. (A) The
enzootic sylvatic cycle is maintained by reservoir bird hosts (cattle egrets and pond herons) in close association with Cx. tritaeniorhynchusmosquitoes in rice
fields. JEV is amplified in pigs, and zoonotic infection occurs as a result of spillover events, but human-to-human transmission is not known to occur at
significant levels. (B) The JEV transmission cycle could be interrupted at various points using aWolbachia-based biocontrol strategy in which JEV-refractory
mosquitoes are unable to maintain the enzootic transmission cycles or transmit the virus to humans.

doi:10.1371/journal.pntd.0003576.g001
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virus (ChimeriVax-JE) was developed recently [24] and is now commercially available in Aus-
tralia and Thailand. Although multiple vaccines have been developed for JEV, they are expen-
sive and require multiple doses to maintain efficacy and immunity [25]. In addition, all
registered vaccines are derived from GIII [11], which may be problematic given the replace-
ment of GIII with GI as the dominant genotype. In most JEV-endemic rural settings, vaccina-
tion rates are often low, and vaccines are unlikely to result in eradication given humans are
predominantly “dead-end” hosts, in that viremia is insufficient for onward transmission (Fig
1A). The potential of vaccinating pigs has also been explored, but the majority are slaughtered
at 6–8 months. This means annual vaccination of piglets would be required, and the presence
of maternal antibodies prevents the live-attenuated vaccine being effective in pigs less than 6
months of age. Therefore, there are too many limitations for this strategy to be effectively im-
plemented [26]. As a result, mosquito vector control strategies represent a method more likely
to eradicate JEV transmission than vaccination of humans or pigs, as mosquitoes are also re-
sponsible for maintaining transmission in reservoir bird hosts in the sylvatic cycle.

Current Vector Control and the Need for Novel Strategies
Vector control for JEV has predominantly been focused on environmental management of rice
fields. Alternative wetting and drying of rice fields (intermittent irrigation) has shown success in
reducing mosquito populations [27]. However, there are significant logistical difficulties with in-
termittent irrigation, including the requirement to apply this method to all rice fields over large
areas [28], which is not possible with inadequate infrastructure. The use of insecticides (pyre-
throids, organophosphates, and carbamates) has been limited for JEV vector control, although
space spraying to target adult mosquitoes has been undertaken during outbreaks of JE in densely
populated areas. However, the heavy use of pesticides in rice fields has led to significant levels of

Fig 2. JEV genotypes, the geographical range ofCx. tritaeniorhynchus and secondary vectors. (A) The five recognized genotypes of JEV (I–V) are
shown in regions where the genotype (G) has been confirmed to be responsible for JE epidemics. (B) The areas in which the principal mosquito vector, Cx.
tritaeniorhynchus, has been documented highlight the wide geographical range of this species of mosquito. (C) The distribution of some of the secondary
vector species is shown within the JEV transmission zone.

doi:10.1371/journal.pntd.0003576.g002

Table 1. Current and potential strategies for controlling Japanese encephalitis and the problems as-
sociated with each control method.

Control Strategy Difficulties for Implementation

Human vaccination Expensive, multiple doses required, low rates in rural areas

Pig vaccination Expensive, maternal antibodies reduce efficacy

Insecticide space spraying Resistance from exposure to pesticides in rice fields, logistically difficult on a
large scale

Indoor residual insecticide
spraying

Cx. tritaeniorhynchus is exophilic

Intermittent irrigation Logistically difficult in large areas with inadequate infrastructure

Genetically modified
mosquitoes

Genetic modification of Cx. tritaeniorhynchus required, cost-effectiveness
and implementation over large areas

Wolbachia-infected
mosquitoes

Wolbachia transinfection of Cx. tritaeniorhynchus required: long-term
effectiveness unknown

doi:10.1371/journal.pntd.0003576.t001
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insecticide resistance in mosquitoes [29]. Logistical difficulties in employing large-scale insecti-
cide treatment of rice fields, often in isolated rural villages, are also problematic for vector control
of JEV. Indoor residual spraying using dichlorodiphenyltrichloroethane (DDT) and other chem-
icals has been ineffective in reducing JEV transmission, as Cx. tritaeniorhynchus is largely exo-
philic, resting outdoors [30].

Although climate change could further increase the geographical range of JEV transmission,
in a similar way as predicted for DENV [31,32], the potential impact is yet to be determined. It
is predicted that climate change will lead to increases in mosquito vector density, incursion of
exotic mosquito species into novel areas, changes in agricultural practices, and migration of
host reservoir birds. In particular, rice fields in JEV-endemic areas would likely become more
arid and the subsequent increase in flooding, either through irrigation or extreme weather
events, would provide optimal breeding conditions for Cx. tritaeniorhynchus [2]. Rapid out-
breaks of JE are difficult to control, with traditional methods such as space spraying of insecti-
cides having little impact because of the unpredictability and infrequency of outbreaks.
Climate change may also influence migration patterns of birds, which may result in long-dis-
tance JEV dissemination in new areas. WNV is a closely related zoonotic flavivirus that has a
similar enzootic transmission cycle with reservoir migratory birds. The introduction of the
closely related WNV to novel areas has been strongly associated with bird migration [33,34],
and climate change is likely to influence WNV outbreaks [35,36]. As there is very little known
about the particular migration patterns of the avian reservoirs for JEV, the likely impact of cli-
mate change remains unknown [37]. In recent years, significant advances have been made in
the potential use of the bacterial endosymbiontWolbachia for mosquito biocontrol. This has
included the successful transinfection of Cx. quinquefasciatus to create a wPip strain variant su-
perinfection [38].Wolbachia transinfection of Cx. tritaeniorhynchus could provide the basis
for an environmentally friendly and cost-effective biocontrol strategy that could significantly
impact JEV transmission (Box 1), which is likely to remain applicable even if JEV-endemic re-
gions expand in the future as a result of climate change.

Wolbachia-Based Mosquito Biocontrol Strategies
Wolbachia pipientis are maternally inherited alphaproteobacteria that live intracellularly in
over 60% of all insect species [39].Wolbachia were initially identified in the ovaries of Cx.
pipiensmosquitoes, and these endosymbionts manipulate host reproduction to enhance their
own transmission. In mosquitoes,Wolbachia induces a phenotype known as cytoplasmic
incompatibility (CI), which results in the generation of unviable offspring when an uninfected
female mates with aWolbachia-infected male. In contrast,Wolbachia-infected females can
produce viable progeny when they mate with both infected and uninfected males, resulting in a
selective reproductive advantage over uninfected females. The CI phenotype allows the mater-
nally transmittedWolbachia to efficiently invade host populations without being infectious or
moving horizontally between individuals [40].

During the 1970s and 1980s, several studies examined the effect of CI and the potential for
application of the phenotype for vector control, in addition to elucidating the role ofWolbachia
in producing CI in insect populations [41,42]. The discovery in the late 1990s of the virulent
wMelPop strain in Drosophila melanogaster flies, which dramatically lowered the lifespan of its
host [43], led to the idea thatWolbachia could also be used to manipulate insect longevity to re-
duce pathogen transmission. Mosquito-borne pathogens such as JEV require a significant ex-
trinsic incubation period (EIP) in the female mosquito after uptake in an infectious blood meal
before the pathogen migrates to the salivary glands to be transmitted to a host. For JEV the EIP
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is believed to be between 7 and 14 days, but it has been found to vary from 6 to 20 days depen-
dent on temperature [16]. The wMelPop strain was proposed as having the potential to shorten
the longevity of adult female mosquitoes so that the majority of females die before the EIP has
elapsed [44,45]. More recently, several strains of avirulentWolbachia were found to protect
their native Drosophila hosts against infection by pathogenic RNA viruses [46,47]. Interesting-
ly, major mosquito arboviral vectors such as Aedes (Stegomyia) aegypti and Cx. tritaenior-
hynchus do not harbor naturalWolbachia infections. However, the successful establishment of
Wolbachia strains in Ae. aegypti has now been accomplished, and the phenotypic effects sug-
gestWolbachia could significantly reduce arboviral transmission in naïve mosquito hosts.

Wolbachia and Dengue Vector Competence in Ae. aegypti
Mosquitoes
The first successful transinfection of Ae. aegypti used the wAlbB strain ofWolbachia from
closely related Ae. albopictusmosquitoes [48]. Transinfection of Drosophila Wolbachia strains
wMelPop-CLA and wMel was accomplished by first maintaining the bacteria in mosquito cell
lines [49,50]. All three transinfectedWolbachia strains significantly reduce the vector compe-
tence of Ae. aegypti for DENV under laboratory conditions [50–52]. Both total (Fig 3A) and
disseminated DENV is significantly reduced in Drosophila Wolbachia–infected mosquitoes.
Furthermore, the presence of infectious DENV in mosquito saliva was not observed forWolba-
chia-infected mosquitoes [50]. The wMel strain was also shown to result in complete blockage
of DENV transmission in transinfected Ae. albopictus [53].

Wolbachia Invasion of Wild Mosquito Populations
The applied use ofWolbachia strains to impact arboviral transmission requires invasion of
wild mosquito populations.Wolbachia-infected females must vertically transmit the bacteria
to their progeny at a high frequency (Fig 3B), and then CI (Fig 3C) can spread the infection.
Wolbachia strains in Ae. aegypti show maternal transmission rates close to 100% and induce
CI [48,50,54]. However,Wolbachia-infected mosquitoes can only spread and invade uninfect-
ed populations if the fitness costs such as fecundity (Fig 3D) to the mosquito are less than the
fitness advantage that CI provides. Ae. aegyptimosquitoes infected with the virulent wMelPop-
CLA strain are subject to greater fitness costs than mosquitoes infected with the avirulent
wMel strain [50]. These significant fitness costs of the wMelPop-CLA strain were predicted to
inhibit invasion of wild mosquito populations [55]. The invasive potential of the two Drosophi-
la Wolbachia strains in Ae. aegypti was tested in large purpose-built semifield cages in northern
Australia [56]. The results of these semifield experiments revealed that the wMel strain is likely
to be the most successful at invading wild mosquito populations [50]. Ae. aegyptimosquitoes
infected with the wMel strain were recently introduced into the wild through open releases in
two locations near Cairns, Australia, after obtaining the necessary regulatory approval [57].
The wMel strain successfully invaded these two natural mosquito populations, reaching near-
fixation in a few months following releases. After more than 2 years in the field, the infection
has continued to demonstrate complete CI with minimal deleterious fitness effects. Although a
low frequency of uninfected mosquitoes was detected, it would appear this was due to a low
number of immigrants, and the infection appears to be stable under field conditions [58]. The
persistence of an inhibitory effect on arboviral replication within wildWolbachia-infected
mosquitoes will be key to the success of any release program. Vector competence assays with
field wMel-infected Ae. aegyptimosquitoes, collected 1 year following field release, indicated
very low levels of DENV replication and dissemination [59]. The level of viral interference was
similar in outcrossed laboratory lines and field-collected mosquitoes. However, the density of
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Wolbachia increased following blood feeding to a greater extent in field mosquitoes compared
to laboratory colonies [59]. AsWolbachia density is correlated to viral interference in both na-
tive Drosophila [60] and transinfected Ae. Aegypti [50] hosts, repeated blood feeding on human
hosts may increase the viral blocking phenotype in field mosquito populations.

JE as a Potential Target forWolbachia-Based Biocontrol Strategies
There are several lines of evidence that would suggest that JE could be targeted usingWolba-
chia-based biocontrol. Firstly, JEV is part of the same genus as DENV (Flavivirus), so there is a
reasonable expectation thatWolbachia strains would provide similar inhibitory effects in tran-
sinfected mosquitoes. In laboratory experiments,Wolbachia inhibits the replication of multiple
DENV serotypes with similar efficacy [59]. Several studies have also shown thatWolbachia has
a wide range of inhibitory effects on other mosquito-borne human pathogens when transin-
fected into naïve mosquito species (Table 2). For example, Drosophila Wolbachia strains also
significantly inhibit the replication of Chikungunya virus (CHIKV) in Ae. aegypti [61]. Patho-
gen inhibition by transinfectedWolbachia strains also occurs for filarial nematodes [62] and
malaria parasites [63,64]. The mechanism underlying viral interference is not fully known, but
the density ofWolbachia strains in particular insect tissues influences the extent of viral inter-
ference [50]. Several mechanisms have been postulated forWolbachia-mediated antiviral activ-
ity, including direct competition for space or cellular resources and effects on various immune
signaling pathways; however, further investigation is required [65]. Drosophila Wolbachia
strains grow to high densities in their native and transinfected hosts and provide strong inhibi-
tion of both insect viruses in Drosophila [46] and DENV in mosquitoes [50]. Therefore, suc-
cessful establishment of Drosophila Wolbachia strains in Cx. tritaeniorhynchus is reasonably
expected to have a significant impact on JEV transmission.

Secondly, Cx. tritaeniorhynchus does not harbor a naturalWolbachia infection [70] and is
responsible for the majority of JEV transmission. Although there are additional secondary

Fig 3. Wolbachia phenotypic effects for mosquito biocontrol. (A) Pathogen inhibition of DENV in Ae. aegypti by transinfectedDrosophila Wolbachia
strains significantly decreases the DENV infection levels in mosquitoes 14 days after an infectious blood meal. (B) Maternal transmission ofWolbachia from
female mosquitoes to progeny is close to 100% for transinfected Drosophila strains in mosquitoes. (C)Wolbachia-induced reproductive phenotype
cytoplasmic incompatibility in mosquitoes allowing rapid invasion of uninfected mosquito populations. (D) Fitness costs (e.g., fecundity) of transinfected
Drosophila Wolbachia strains to Ae. aegypti, which impact the ability of some strains to invade mosquito populations. (A) and (D) are adapted from [50].

doi:10.1371/journal.pntd.0003576.g003

Table 2. List of mosquito vector species infected with native or transinfectedWolbachia strains and their relative inhibitory effect on vector com-
petence of arboviruses.

Mosquito Species Wolbachia Strain (Native or Transinfected) Arbovirus Inhibitory Effect on Vector Competence References

Ae. aegypti wAlbB (transinfected) DENV ++ [48,52]

wMel (transinfected) DENV ++ [50,59]

CHIKV + [61]

wMelPop (transinfected) DENV +++ [50,51,54]

CHIKV +++ [61]

Ae. albopictus wAlbA and wAlbB (native) DENV + [66]

wMel (transinfected) DENV ++ [53]

CHIKV ++ [67]

Ae. polynesiensis wPolA (native) DENV - [68]

wAlbB (transinfected) DENV ++ [68]

Cx. pipiens wPip (native) WNV + [69]

doi:10.1371/journal.pntd.0003576.t002
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vectors in Asia and Cx. annulirostris is responsible for the limited JEV transmission in north-
ern Australia [15], the replacement of wild Cx. tritaeniorhynchus with JEV-refractory popula-
tions would likely have significant impacts on both virus transmission and human cases of
disease. There is also the potential for transinfection of other secondary/regional vector species
of importance ifWolbachia biocontrol in Cx. tritaeniorhynchus had brought eradication within
reach. Other species of Culexmosquitoes responsible for human disease transmission are in-
fected with native strains ofWolbachia. Indeed, the difference in vector competence of several
Culex species may be due to the presence of these residentWolbachia strains. For example, Cx.
quinquefasciatus is infected with the wPip strain ofWolbachia and is generally less susceptible
to WNV than Cx. tarsalis [71], which is not infected withWolbachia. However, residentWol-
bachia infections in mosquitoes do not impact arboviral transmission to the same extent as
transinfected Drosophila Wolbachia strains.

The epidemiology of JE would also be favorable forWolbachia-based biocontrol. The genera-
tion and release of “JEV-refractory” Cx. tritaeniorhynchus could break the transmission cycle
(Fig 1B) at various points. Firstly, the enzootic sylvatic cycle in reservoir bird hosts would be in-
hibited, preventing circulation of JEV in the local release area. In addition, the prevention of res-
ervoir host bird infections would likely reduce the potential geographical expansion of JEV
through bird migration. Secondly,Wolbachia-infected Cx. tritaeniorhynchusmosquitoes would
inhibit the enzootic amplification cycle in pigs, significantly reducing overall transmission. Final-
ly, the spillover of JEV transmission to humans would also be inhibited by the presence ofWolba-
chia-infected Cx. tritaeniorhynchus. As Cx. tritaeniorhynchus are highly zoophilic, outbreaks of
JE occur when there is a rapid increase in mosquito populations resulting in a spillover of JEV
from the enzootic animal host cycle to humans. Therefore, the potential increase in drought/
flooding of rice fields due to changing agricultural practices and climate change in JEV endemic
areas could lead to bursts of vector proliferation during flooding, resulting in greater outbreaks in
the future [2]. Vector control strategies during outbreaks that target adult mosquitoes are often
ineffective, as transmission is already occurring and space spraying does not effectively target Cx.
tritaeniorhynchus. Alternative mosquito control strategies that aim to suppress the mosquito
population, such as the sterile insect technique (SIT) [72,73] or release of insects with a dominant
lethal (RIDL) [74,75], could have a potential role in JE control. However, the likely need for re-
peated release of large numbers of sterile males for individual outbreaks of JE over a large trans-
mission area would also pose both logistical and financial difficulties. Therefore, aWolbachia-
based biocontrol strategy that aims to simply replace the existing vector population with mosqui-
toes that are unable to transmit JEV would likely prevent outbreaks occurring even when there is
a rapid increase in mosquito vector population densities.

Conclusions
Novel vector control methods for JE are needed, andWolbachia-based biocontrol may provide
sustainable, long-term control. The successful transinfection of Drosophila Wolbachia strains
into Cx. tritaeniorhynchus is likely to result in JEV-refractory mosquito lines. The success of
the first Ae. aegypti field trials in Australia indicates that aWolbachia-based method of biocon-
trol is readily deployable in the field and also shows minimal environmental impact or safety
concerns [76]. The stability of the arboviral blocking phenotype, in wild Ae. aegyptimosquitoes
[59] and in the long-term evolutionary association between nativeWolbachia strains in Dro-
sophila flies [46], suggests an inhibitory effect on JEV with transinfected Cx. tritaeniorhynchus
will be present for the medium to long term. If it is demonstrated thatWolbachia-infected JEV
vectors cannot transmit the virus, it would suggest this biocontrol strategy could significantly
reduce JE morbidity and mortality.
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Boxes
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