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Female reproduction requires the precise temporal organization of interacting, estradiol-
sensitive neural circuits that converge to optimally drive hypothalamo-pituitary–gonadal
(HPG) axis functioning. In mammals, the master circadian pacemaker in the suprachi-
asmatic nucleus (SCN) of the anterior hypothalamus coordinates reproductively relevant
neuroendocrine events necessary to maximize reproductive success. Likewise, in species
where periods of fertility are brief, circadian oversight of reproductive function ensures
that estradiol-dependent increases in sexual motivation coincide with ovulation. Across
species, including humans, disruptions to circadian timing (e.g., through rotating shift work,
night shift work, poor sleep hygiene) lead to pronounced deficits in ovulation and fecundity.
Despite the well-established roles for the circadian system in female reproductive function-
ing, the specific neural circuits and neurochemical mediators underlying these interactions
are not fully understood. Most work to date has focused on the direct and indirect commu-
nication from the SCN to the gonadotropin-releasing hormone (GnRH) system in control of
the preovulatory luteinizing hormone (LH) surge. However, the same clock genes under-
lying circadian rhythms at the cellular level in SCN cells are also common to target cell
populations of the SCN, including the GnRH neuronal network. Exploring the means by
which the master clock synergizes with subordinate clocks in GnRH cells and its upstream
modulatory systems represents an exciting opportunity to further understand the role of
endogenous timing systems in female reproduction. Herein we provide an overview of
the state of knowledge regarding interactions between the circadian timing system and
estradiol-sensitive neural circuits driving GnRH secretion and the preovulatory LH surge.
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INTRODUCTION
The neural mechanisms regulating ovulation are under circadian
control in many species, ensuring that the timing of greatest fer-
tility coincides the period of maximal sexual motivation (Nequin
et al., 1975; Sarkar et al., 1976). Superimposed upon this circadian
control is a dependence of the reproductive cycle on estradiol to
ensure proper maturation of the oocyte at the time of ovulation.
The precise timing in the initiation of ovulation by a central, 24 h
clock was first identified in a classic study by Everett and Sawyer
(1950) who described the “neurogenic activation of the hypoph-
ysis” as a necessary component of ovulation. In this seminal paper,
Everett and Sawyer reported that injections of barbiturate, within
a 2-h time window, were capable of delaying ovulation in female
rats by 24 h. Administration outside of this critical time window
failed to prevent ovulation. Because the impact of the barbiturate
injections was short-lived, whereas ovulation was delayed precisely
1 day, the authors postulated that a daily, neural signal triggers
ovulation.

In mammals, a master pacemaker located in the suprachias-
matic nucleus (SCN) of the hypothalamus orchestrates circadian
timing (Moore and Eichler, 1972; Stephan and Zucker, 1972). Cir-
cadian rhythms are endogenously generated (Lehman et al., 1987;
Ralph et al., 1990) and synchronized to the external environment

via direct neural projections from intrinsically photosensitive reti-
nal ganglion cells to the circadian clock in the SCN (Berson et al.,
2002; Hattar et al., 2002; Panda et al., 2002; Provencio et al., 2002;
Ruby et al., 2002; Morin and Allen, 2006). The SCN communicates
to neuroendocrine cells driving reproductive function through
extensive direct and indirect neural projections (Boden and Kenn-
away, 2006; de la Iglesia and Schwartz, 2006; Kriegsfeld and Silver,
2006; Christian and Moenter, 2010). More recently, it has become
evident that the gonadotropin-releasing hormone (GnRH) system
does not respond passively to SCN signaling, but contains the same
circadian clock “machinery” necessary to generate autonomous
cellular oscillations, and these subordinate clocks likely mediate
daily changes in sensitivity to SCN communication (Chappell
et al., 2003; Gillespie et al., 2003; Resuehr et al., 2007; Zhao and
Kriegsfeld, 2009; Tonsfeldt et al., 2011; Williams et al., 2011). Dis-
ruptions to SCN output signaling pathways or intrinsic activity of
the cellular clockwork lead to gross deficits in female rodent ovu-
latory function and fecundity (Nunez and Stephan, 1977; Gray
et al., 1978; Wiegand and Terasawa, 1982; Miller et al., 2004). The
following sections will summarize the present understanding of
interactions between the circadian system and estradiol responsive
circuits required for mammalian female reproductive functioning
and success.
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CIRCADIAN CONTROL OF THE PREOVULATORY LH SURGE
Throughout the ovulatory cycle, concentrations of sex steroids
and consequent stimulation of the developing ovarian follicle
are controlled by a neuroendocrine cascade beginning with the
secretion of hypothalamic GnRH into the hypophyseal portal
system. In turn, GnRH acts on the anterior pituitary to stimu-
late the synthesis and secretion of the gonadotropins, luteiniz-
ing hormone (LH) and follicle-stimulating hormone (FSH). LH
and FSH then act on the gonads to regulate steroidogenesis and
gametogenesis, respectively. The activity of the reproductive axis
is controlled through the action of negative feedback effects of
sex steroids, with this mechanism maintaining LH at low con-
centrations throughout most of the ovulatory cycle. In many
spontaneously ovulating species, the preovulatory LH is initiated
by the SCN on the day of proestrus, at a time closely preced-
ing activity onset (Legan and Karsch, 1975; Mahoney et al., 2004;
Chappell, 2005; Gibson et al., 2008). Paradoxically, high concen-
trations of estradiol are required for the SCN to trigger ovulation
(i.e., positive feedback; Legan and Karsch, 1975; de la Iglesia and
Schwartz, 2006; Kriegsfeld and Silver, 2006; Christian and Moen-
ter, 2010). The site(s) of integration for positive and negative
feedback effects of estradiol with the circadian timing system
are complex and not fully understood. Moreover, it is unclear
whether a single system participates in both negative and pos-
itive feedback, whether two independent systems differentially
dominate throughout the cycle, or a combination of these two
mechanisms of control determine the onset of the preovulatory
GnRH surge.

To explore the role of the circadian system in female repro-
ductive behavior, Syrian hamsters (Mesocricetus auratus) are fre-
quently employed as a model system due to the exquisite preci-
sion in their circadian rhythms and reproductive behavior. When
held in a light:dark (LD) cycle, for example, ovulation and the
onset of behavioral receptivity occur precisely every 96 h in this
species (Alleva et al., 1971). This rhythm in reproductive activ-
ity is endogenously generated and persists in constant conditions
with a period four times their free-running circadian period. This
fact was confirmed by investigating heat onset (i.e., propensity
to display lordosis, the gonadotropin surge and vaginal cytology)
in individual hamsters housed in constant darkness (DD) prior
to and after administration of deuterium oxide (a treatment that
result in a lengthening of the free-running period). As shifts in
heat onset mirrored the free-running rhythm in locomotor activ-
ity, it became clear that the ovulatory cycle and locomotor rhythms
are governed by a similar endogenous timing system (Fitzger-
ald and Zucker, 1976). Because estrous and activity onset were
coupled temporally, it was suggested that the LH surge and loco-
motor activity are controlled by a single, endogenous oscillator,
or a coupled, multioscillator system that regulates the rhythms
of each process independently (Fitzgerald and Zucker, 1976). The
former hypothesis postulated that the reproductive axis “tracks”
four circadian cycles and ovulation occurs after the count is
complete.

Converging lines of evidence over the next three decades estab-
lished that both of these hypotheses are partially correct. We now
know that the SCN provides a daily, stimulatory signal to the
reproductive axis each day of the estrous cycle, closely preceding

the active phase, in most spontaneously ovulating rodents (Legan
and Karsch, 1975; Kriegsfeld and Silver, 2006), indicating that
a single clock subserves both processes. However, this signal is
only effective at stimulating the GnRH system to produce the
LH surge in the presence of estradiol concentrations above a
critical threshold. Prior to the day of proestrus, the developing
ovarian follicles secrete insufficient estradiol to fulfill these cri-
teria. The nature of the daily stimulatory signal from the SCN
can be unmasked by implanting animals with estradiol capsules
that result in proestrus concentrations of this hormone; in this
case, daily LH surges occur (Legan and Karsch, 1975; Legan
et al., 1975; Christian et al., 2005). Regarding the second hypoth-
esis suggesting a multioscillator organization, although distinct
clocks do not underlie locomotor rhythms and estrus, a hierar-
chical clock structure exists in which the SCN acts as the master
pacemaker coordinating rhythmicity in subordinate oscillator sys-
tems of the reproductive axis, an arrangement discussed further
below.

CIRCADIAN NEUROCHEMICAL COMMUNICATION
Whereas the same circadian pacemaker regulates locomotor
and estrus onset, the communication modalities mediating each
process likely differ. Transplants of fetal SCN tissue into bilater-
ally SCN-lesioned hamsters restores locomotor, but not endocrine,
rhythms in the absence of neural outgrowth, suggesting that
intact neural connections are required for endocrine rhythmicity
whereas behavioral rhythms can be supported by a diffusible signal
(Silver et al., 1990, 1996; Meyer-Bernstein et al., 1999). Confirma-
tion of the importance of neural SCN communication in initiation
of the GnRH/LH surge comes from studies using hamsters with
“split” activity rhythms. When housed in constant light, some
hamsters exhibit a splitting in behavior, with two daily activity
bouts separated by 12 h, each reflecting an antiphase oscillation of
the left and right sides of the bilateral SCN (de la Iglesia et al., 2000;
Tavakoli-Nezhad and Schwartz, 2005;Yan et al., 2005). Under these
circumstances,ovariectomized (OVX) hamsters treated with estra-
diol exhibited two LH surges in a 24-h period, each phase-locked
to an individual activity bout (Swann and Turek, 1985).

The SCN sends pronounced, monosynaptic projections
throughout the brain, including hypothalamic cell phenotypes
driving reproductive function, principally ipsilaterally (DeVries
et al., 1985; Watts and Swanson, 1987; van der Beek et al., 1997;
Kriegsfeld et al., 2004). As a result, if a neural output signal from
the SCN initiates the GnRH/LH surge, then one hemispheric set
of GnRH neurons should be activated, ipsilateral to the activated
SCN, with each locomotor activity bout. Conversely, if controlled
by a diffusible signal, then the GnRH system should be activated
concurrently on both sides of the brain, twice daily, 12 h apart.
In a clever study by de la Iglesia et al. (2000) they found that
each locomotor bout and LH surge is associated with unilateral
activation of the GnRH system, ipsilateral to the activated SCN,
confirming the importance of neural SCN communication to the
GnRH system in ovulatory control. Both the GnRH system and
several neurochemical systems upstream of the GnRH network
receive SCN input and synergistically operate to precisely con-
trol the neuroendocrine events necessary to appropriately time
ovulation and sexual motivation.
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VASOACTIVE INTESTINAL POLYPEPTIDE
Neurons synthesizing vasoactive intestinal polypeptide (VIP) are
located in the retinorecipient, ventrolateral SCN “core” (Ibata
et al., 1989; Tanaka et al., 1993; Moore et al., 2002), and rep-
resent potential output signals conveying circadian information
to target effector systems. VIPergic SCN neurons project monsy-
naptically to GnRH neurons (van der Beek et al., 1997; Horvath
et al., 1998) that express the VIP receptor VPAC2 (Smith et al.,
2000). Several lines of evidence indicate an important role for
this pathway in the timing of ovulation. First, GnRH neurons
receiving VIPergic input preferentially express the neural activa-
tion marker, FOS, during the afternoon of the LH surge on the
day of proestrus (van der Beek et al., 1994). Additionally, in vivo
antisense antagonism of VIP production in the SCN abolishes
GnRH/FOS activation in OVX + E2 primed female rats, suggest-
ing the necessity of VIP output in triggering the afternoon GnRH
surge (Harney et al., 1996; Gerhold et al., 2005). Furthermore,
blocking the VPAC2 receptor attenuates GnRH neuronal cell fir-
ing during the afternoon surge in female, estradiol-treated mice
(Christian and Moenter, 2008). The expression of VIP afferents on
GnRH neurons is sexually dimorphic, with female rats exhibiting
higher VIPergic innervation (Horvath et al., 1998), suggestive of a
specific role for VIP in estrous cycle regulation. From a develop-
mental standpoint, the number of VIP-GnRH contacts increases
between prepubertal and adult female rats (Kriegsfeld et al., 2002),
and VIP-innervated GnRH neurons exhibit lower activation levels
in middle-aged female rats, suggesting that this SCN peptide may
be partially responsible for the initiation of reproductive senes-
cence in female rodents (Krajnak et al., 2001). Together, these lines
of evidence suggest that direct VIP projections from the SCN to
the GnRH system positively drive the GnRH/LH surge.

Gonadotropin-releasing hormone neurons do not express
estrogen receptor α (ERα), the estrogen receptor subtype medi-
ating the positive feedback effects of estradiol (Herbison and
Theodosis, 1992b; Dorling et al., 2003; Wintermantel et al.,
2006), pointing to additional neurochemicals and neural loci at
which stimulatory circadian and estrogenic signals converge. As
described below, the positive feedback effects of estradiol nec-
essary for surge generation occur at intermediate target nuclei
that express abundant ERα. Several lines of evidence point to the
anteroventral periventricular nucleus (AVPV) as an important site
of circadian and estrogenic convergence necessary for initiating
the GnRH/LH surge. The AVPV sends monosynaptic projections
to GnRH cells, neurons in this region express FOS coincident with
the LH surge, and lesions of the AVPV eliminate estrous cyclicity
in both intact and ovariectomized, estradiol-treated rats (Wiegand
et al., 1980; Wiegand and Terasawa, 1982; Ronnekleiv and Kelly,
1988; Gu and Simerly, 1997; Le et al., 1999). Moreover, the SCN
sends pronounced monosynaptic projections to cells in the AVPV
that express ERα (Herbison and Theodosis, 1992a,b; de la Iglesia
et al., 1995; Watson et al., 1995; Shughrue et al., 1997). A multi-
tude of neuropeptides and neurotransmitters are expressed within
this relatively small nucleus, many of which express ERα, includ-
ing glutamate, GABA, galanin, dynorphin, enkephalin, substance
P, neurotensin, and kisspeptin and collectively represent poten-
tial sites for this convergence (reviewed in Herbison, 2008), with
kisspeptin being the most well studied.

In addition to estrogen signaling in the AVPV,the SCN expresses
estrogen receptors, providing the potential for direct actions on
the master circadian pacemaker. In mice, a small proportion SCN
cells express ERα, with a larger proportion expressing ERβ (Vida
et al., 2008). In young female rats, ERβ mRNA exhibits a diurnal
rhythm in the SCN that is dependent on estradiol concentrations,
suggesting that the impact of estrogen on the SCN may be gated
through time- and estradiol-dependent receptor turnover (Wilson
et al., 2002; Shima et al., 2003). In human SCN, both ERα and ERβ

are expressed (Kruijver and Swaab, 2002). In addition to direct
actions on the SCN, estrogen may act indirectly to regulate circa-
dian functioning; ERα-expressing cells in the preoptic area project
to the SCN in female Syrian hamsters, providing an additional
means of estrogen and circadian integration (de la Iglesia et al.,
1999). The specific role of both direct and indirect estrogenic sig-
naling to SCN in the preovulatory LH surge remains unspecified
and represents an exciting opportunity for further investigation.

VASOPRESSIN
Vasopressinergic (AVPergic) cells in the dorsomedial SCN target
ERα – expressing cells in the AVPV (Hoorneman and Buijs, 1982;
DeVries et al., 1985; de la Iglesia et al., 1995; Watson et al., 1995),
and AVP injections produce surge-like LH levels in SCN-lesioned,
ovariectomized (OVX), estradiol-treated rats (Palm et al., 1999).
Likewise, cells in this brain region express the vasopressin receptor,
V1a (Ostrowski et al., 1994; Funabashi et al., 2000a). The conver-
gence of circadian output signals and estradiol feedback within the
AVPV has generated much interest in this nucleus as the integra-
tion site of these dual signals in the regulation of the GnRH surge.
Indeed, anti-estrogens targeting the AVPV inhibit the LH surge in
ovariectomized, estradiol-treated rats (Petersen and Barraclough,
1989).

Vasopressin gene transcription in the SCN is directly controlled
by the molecular clockwork at the cellular level (Grace et al., 1999;
Munoz et al., 2002) and is released in a circadian manner (Shino-
hara et al., 1994), with a peak coinciding with the onset of the LH
surge (Schwartz et al., 1983; Kalsbeek et al., 1995). AVP, but not
VIP, release is synchronous with GnRH secretion in co-cultures of
medial preoptic area (mPOA) and SCN brains slices (Funabashi
et al., 2000b), suggesting vasopressin may act as a circadian stimu-
lator of GnRH. Furthermore,AVP injections directed at the mPOA
produce surge-like LH levels in SCN-lesioned, ovariectomized,
estradiol-treated rats (Palm et al., 1999). By contrast, central AVP
receptor antagonists attenuate the LH surge in proestrus rats (Fun-
abashi et al., 1999). Finally, the inability of clock mutant mice to
generate an LH surge is associated with diminished AVP mRNA
expression in the SCN, a phenotype that can be restored via cen-
tral injections of AVP, further linking this peptide to the circadian
control of ovulation (Miller et al., 2004). Importantly, central
injections of AVP are only capable of inducing a surge-like pattern
of GnRH secretion during a narrow time window in the after-
noon (Palm et al., 2001b), suggesting additional temporal control
at SCN target loci, a concept described further below.

RFAMIDE PEPTIDES: KISSPEPTIN AND GnIH
Despite the established role of the circadian clock and estradiol in
the regulation of GnRH secretion and, ultimately, ovulation, the
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specific targets of these requisite signals are less well understood. As
described previously, the AVPV represents an important integra-
tion site for the positive feedback effects of estrogen and circadian
signaling. Conversely, the neurochemical substrates and target loci
at which circadian and estrogenic signals converge to maintain LH
at low concentrations throughout the majority of the estrous cycle
(i.e., negative feedback), and the mechanisms that suppress nega-
tive feedback at the time of the LH surge, remained unspecified.
Converging lines of evidence from a number of reports point to
two potent, reproductively relevant neuropeptides in the RFamide
(Arg-Phe-NH2) family, gonadotropin-inhibitory hormone (also
known as RFamide-related peptide-3) and kisspeptin, in mediat-
ing circadian controlled estradiol negative and positive feedback,
respectively (reviewed in Khan and Kauffman, 2011).

Kisspeptin
The discovery of kisspeptin has markedly impacted the field of
reproductive biology since its initial isolation in human placenta
and its recognition as the endogenous ligand for the orphan G-
protein coupled receptor, GPR54 (Kotani et al., 2001; Muir et al.,
2001; Ohtaki et al., 2001). Kisspeptin was initially characterized
as a tumor metastasis suppressor sequence and originally named
metastin (Lee et al., 1996). The Hershey, Pennsylvania group cred-
ited for this discovery shortened the name of the gene encoding
the metastin peptide to KiSS1, reflecting its suppressor sequence
“SS,” while “Ki” was added to pay homage to an earlier discovery in
the same town, the Hershey’s Kiss (Lee et al., 1996). KiSS1-GPR54
signaling was discovered to play a critical role in reproductive
physiology in 2003 when two groups reported that mutation of
the GPR54 receptor results in idiopathic hypophysiotropic hypog-
onadism in humans with an identical phenotype observed in mice
with a targeted deletion in this receptor (de Roux et al., 2003; Funes
et al., 2003; Seminara et al., 2003). Since these initial discoveries,
numerous contributions by researchers working at varying levels
of analysis indicate that kisspeptins are critical regulators of sexual
differentiation and maturation as well as normal, adult repro-
ductive functioning across mammalian species, including humans
(de Roux et al., 2003; Funes et al., 2003; Seminara et al., 2003;
Keen et al., 2008; Kauffman, 2009; Roseweir et al., 2009; Lehman
et al., 2010a,b; Pineda et al., 2010a,b; Luque et al., 2011; Mayer and
Boehm, 2011).

The KiSS1 gene encodes a family of neuropeptides, kisspeptins,
that act as pronounced stimulatory regulators of the GnRH system.
The initial product is a 145 amino acid propeptide, kisspeptin-145,
that is cleaved into the active 54 amino acid peptide, kisspeptin-
54. Three shorter products, kisspeptin 10, 13, and 14 result from
further cleavage of the 54 amino acid sequence; all are biolog-
ically active, bind with similar affinity to GPR54, and share an
RFamide sequence on their C termini (Kotani et al., 2001; Muir
et al., 2001). In rodents, KiSS1 mRNA expressing cells are localized
to the AVPV and arcuate (ARC) nuclei, with populations exhibit-
ing a high percentage of ERα-expressing cells (Gottsch et al., 2004;
Smith et al., 2005b; Clarkson and Herbison, 2006; Revel et al., 2006;
Greives et al., 2007). The effects of estradiol on kisspeptin activ-
ity, however, varies by nucleus, with ovariectomy decreasing KiSS1
mRNA in the AVPV and increasing KiSS1 expression in the ARC,
pointing to a role for kisspeptin in estradiol positive and negative

feedback, respectively (Smith et al., 2005a,b). Analogous findings
are seen in males, with castration increasing KISS1 expression in
the ARC and decreasing expression in the AVPV (Smith et al.,
2005a,b; Kauffman, 2010). These effects are likely regulated both
through direct actions of testosterone/dihydrotestosterone on
androgen-responsive kisspeptin neurons and through aromatiza-
tion of testosterone to estradiol, as kisspeptin neurons express both
receptors and respond predictably to both sex steroids (Smith et al.,
2005b). Exogenous kisspeptin administration potently induces
LH release as well as upregulates FOS expression in GnRH neu-
rons (Gottsch et al., 2004; Irwig et al., 2004; Matsui et al., 2004;
Navarro et al., 2005a,b). In addition to direct actions of AVPV
kisspeptin neurons on GnRH cells (Irwig et al., 2004; Han et al.,
2005; Kinoshita et al., 2005; Clarkson and Herbison, 2006; Smith
et al., 2008), there is some evidence that ARC kisspeptin cells may
regulate the release of GnRH via direct actions on GnRH terminals
(d’Anglemont de Tassigny et al., 2008). In one recent study, genetic
ablation of kisspeptin cells or cells expressing GPR54 throughout
development did not impact female pubertal development and
the animals were fertile, although loss of GPR54-expressing cells
resulted in blunted LH, reduced ovarian weights, and irregular
estrous cycling (Mayer and Boehm, 2011). In adult animals, acute
ablation of kisspeptin neurons markedly disrupted fertility and
estrous cyclicity, whereas removal of ∼93% of GPR54-expressing
GnRH cells resulted in more mild reductions in LH, fertility,
and estrous cycling (Mayer and Boehm, 2011). Together, these
findings suggest that kisspeptin signaling is required for adult
female reproductive functioning and compensatory mechanisms
can overcome the necessity for kisspeptin when this gene is inacti-
vated throughout development. Given that as few as three GnRH
neurons are sufficient to support activity of the hypothalamo-
pituitary–gonadal (HPG) axis (Silverman et al., 1985; Gibson et al.,
1988), it is unclear whether GPR54-expressing GnRH neurons can
be dispensed within LH surge control.

As mentioned previously, the observation across rodent species
that the SCN projects to the AVPV and this brain region is essen-
tial for production of the LH surge, combined with the knowledge
that AVPV kisspeptin cells respond positively to estradiol, made
these cells an attractive target of exploration in the initiation of
GnRH/LH surge. KiSS1 cells in the AVPV express FOS at the time
of the LH surge in naturally cycling, ovariectomized, estradiol-
treated rats (Smith et al., 2006; Adachi et al., 2007). This circadian
pattern of expression persists in constant darkness (Robertson
et al., 2009), suggesting endogenous circadian regulation of this
cell population rather than reliance on external temporal cues.
In mice, this daily pattern of KiSS1 expression, and KiSS1 cells
expressing c-fos, is abolished by ovariectomy, and reinstated fol-
lowing steady-state estradiol replacement (Robertson et al., 2009),
pointing to a permissive role for estradiol in the circadian control
of KiSS1 in this species.

These results point to either an endogenous, self-sustained
rhythm in kisspeptin neurons, circadian control through upstream
projections from the SCN, or a combination of both mecha-
nisms of control. We examined both of these possibilities using
Syrian hamsters. Consistent with findings in mice, FOS expres-
sion in kisspeptin immunoreactive (ir) cells expressed a daily
rhythm in ovariectomized, estradiol-treated hamster, with peak

Frontiers in Endocrinology | Genomic Endocrinology May 2012 | Volume 3 | Article 60 | 4

http://www.frontiersin.org/Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology
http://www.frontiersin.org/Genomic_Endocrinology/archive


Williams III and Kriegsfeld Circadian control of reproduction

co-expression concomitant with the timing of the LH surge. In
contrast to results observed in mice, ovariectomy results in a
blunted rhythm of kisspeptin-FOS co-expression, but not its aboli-
tion (Williams et al., 2011). These latter findings point to potential
species differences in the role estrogen plays in AVPV kisspeptin
regulation and/or post-transcriptional modification of the KiSS1
gene, resulting in differences in cells visualized with mRNA ver-
sus protein analyses. To determine whether the SCN projects to
kisspeptin cells to mediate these observed rhythms, we examined
projections from VIPergic and AVPergic SCN cells, given the role
of these neuropeptides in positively driving the LH surge. We
found that AVPergic SCN cells project directly to a majority of
kisspeptin-ir cells, whereas VIPergic SCN cells did not (Figure 1).
These results are consistent with previous findings in mice (with
synapses confirmed at the electron microscopy level), with estro-
gen increasing the percent of GnRH cells with AVPergic terminal
appositions (Vida et al., 2010).

Previous findings indicate that that administration of AVP
can only induce the preovulatory LH surge within a narrow
time window in rats (Palm et al., 2001b), suggesting a gated
mechanism of control at SCN target loci. The gating of SCN
information flow may be controlled within kisspeptin cells in
the AVPV, at the level of GnRH neurons, or a combination of
both mechanisms. To select among these possibilities, we exam-
ined whether: (1) kisspeptin cells within the AVPV respond in

a time-dependent manner to AVP stimulation, and (2) if GnRH
neurons display time-dependent sensitivity to kisspeptin signal-
ing. If time-dependent sensitivity is controlled at the level of
the AVPV, then one would expect kisspeptin cells to exhibit
daily changes in sensitivity to AVP stimulation and contain an
endogenous time-keeping mechanism. Alternatively, if the gat-
ing of control occurs within GnRH cells, then one would expect
the GnRH system to display daily sensitivity in response to both
AVP and kisspeptin administration. Our findings indicate that
the kisspeptin system responds indiscriminately to AVP admin-
istration, regardless of time of day, whereas the GnRH system
is only sensitive to kisspeptin stimulation at the time that the
surge would normally occur (Williams et al., 2011). These results
further support the notion that kisspeptin cells do not keep cir-
cadian time but, instead, their activity is driven by AVPergic
SCN cells. However, these findings point to an important role
for autonomous circadian oscillators in GnRH cells underlying
time-dependent sensitivity to upstream signaling. Alternatively, it
is possible that the master clock in the SCN communicates timing
information to GnRH cells that do not maintain the capacity for
endogenous rhythmicity. Given that SCN-derived VIPergic cells
project monosynaptically to GnRH neurons, this cell phenotype
represents an ideal candidate to communicate such timing infor-
mation. Finally, a combination of both mechanisms may underlie
such daily changes in GnRH cell sensitivity, with VIPergic SCN

FIGURE 1 | Kisspeptin-ir cells in the hamster AVPV receive

SCN-derived fiber contacts expressing AVP-ir. (A) Low-power
photomicrographs of AVP-ir in the AVPV, in which kisspeptin cell bodies
receive extensive AVP-ir fiber contacts. (B) High power photomicrograph
showing several presumptive AVP-ir terminal boutons on a kisspeptin-ir
cell body at the light level. (C) Confocal image (0.5 μm scan taken at ×400)

confirming AVP-ir contacts upon kisspeptin-ir cell body and processes. In
(B,C), Arrows are indicative of close contacts. (D–F) Kisspeptin cells in the
AVPV express the V1a receptor. (D) Low-power photomicrographs of
kisspeptin-ir cells in the AVPV, (E) V1a-ir cells in the AVPV, and (F) the
merged image showing overlap between kisspeptin-ir and V1a-ir. Modified
from Williams et al. (2011).
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communication synchronizing independent GnRH cellular oscil-
lators to coordinate the timing in their responsiveness to upstream
signaling.

At the cellular level, circadian rhythms are generated by 24-h
autoregulatory transcriptional/translational feedback loops con-
sisting of “clock” genes and their protein products (Figure 2;
Reppert and Weaver, 2002; Maywood et al., 2007; Chen et al.,
2009; Mohawk and Takahashi, 2011). In mammals, the feedback
loop begins in the cell nucleus where CLOCK and BMAL1 pro-
teins heterodimerize and drive the transcription of the Period
(Per1, Per2, and Per3) and Cryptochrome (Cry1 and Cry2) genes
by binding to the E-box (CACGTG) domain on their gene pro-
moters. Once translated, PER and CRY proteins build in the
cytoplasm of the cell over the course of the day, and inevitably
form hetero- and homodimers that feed back to the cell nucleus
to inhibit CLOCK:BMAL1 mediated transcription. The timing
of nuclear entry is balanced by regulatory kinases that phos-
phorylate the PER and CRY proteins, leading to their degra-
dation (Lowrey et al., 2000; Wang et al., 2007; Mohawk and
Takahashi, 2011). Two other promoter elements, DBP/E4BP4
binding elements (D boxes) and REV-ERBα/ROR binding ele-
ments (RREs; Ueda et al., 2005), also participate in cellular
clock function. REV-ERBα, an orphan nuclear receptor, nega-
tively regulates the activity of the CLOCK:BMAL1. The same
mechanism controlling Per and Cry gene transcription also con-
trols transcription of REV-ERBα. Similarly, the transcription fac-
tor DPB is positively regulated by the CLOCK:BMAL1 complex
(Ripperger and Schibler, 2006) and acts as an important out-
put mechanism, driving rhythmic transcription of other output
genes via a PAR basic leucine zipper (PAR bZIP; Lavery et al.,
1999).

Clock genes are expressed in the SCN, but also widely dis-
tributed throughout other brain regions and peripheral tissues.
GnRH cells express the same clock genes that drive circadian
rhythms at the cellular level in the SCN, both in vitro (Chap-
pell et al., 2003; Zhao and Kriegsfeld, 2009) and in vivo (Olcese
et al., 2003; Hickok and Tischkau, 2010; Matagne et al., 2012).
Importantly, mice bearing a mutation in the essential circadian
clock gene, Clock, display abnormal estrous cycles and abnormal
LH surge induction in response AVP administration (Miller et al.,
2004), suggesting an important role for clock genes (potentially
in GnRH cells) in normal estrous cycling and ovulation. Consis-
tent with our findings in vivo, immortalized GnRH neurons (i.e.,
GT1-7 cells) exhibit ∼24 h changes in sensitivity to kisspeptin and
VIP signaling (Zhao and Kriegsfeld, 2009). These findings sug-
gest that an endogenous timing mechanism in GnRH cells gates
daily changes in responsiveness to upstream, stimulatory neu-
rochemicals. More recently, Chappell and colleagues found that
estrogen-treated GT1-7 cells exhibit a rhythm in GPR54 expres-
sion that is abolished in the absence of estrogen (Tonsfeldt et al.,
2011). These results are intriguing given the absence of ERα in this
cell population, suggesting participation of ERβ in this rhythm of
GRP54 transcription. Whether GnRH neurons gate responsive-
ness to all upstream signals, only stimulatory input, or only those
mediators regulating the LH surge remains an exciting opportu-
nity for further inquiry. Likewise, given that all functional studies
have been conducted in vitro, these findings should be interpreted

FIGURE 2 | A simplified model of the intracellular mechanisms

responsible for mammalian circadian rhythm generation. The process
begins when CLOCK and BMAL1 proteins dimerize to drive the
transcription of the Per (Per1, Per2, and Per3) and Cry (Cry1 and Cry2)
genes. In turn, Per and Cry are translocated to the cytoplasm and translated
into their respective proteins. Throughout the day, PER and CRY proteins
rise within the cell cytoplasm. When levels of PER and CRY reach a
threshold, they form heterodimers, feed back to the cell nucleus and
negatively regulate CLOCK:BMAL1 mediated transcription of their own
genes. This feedback loop takes ∼24 h, thereby leading to an intracellular
circadian rhythm. See text for additional details.

cautiously as the immortalization process may lead to alterations
in GnRH cellular functioning different from those in vivo.

Gonadotropin-inhibitory hormone
Tsutsui et al. (2000) isolated a dodecapeptide, SIKPSAYLPLR-
Famide, from Japanese quail brain. Neurons for this neuropeptide
were concentrated in the paraventricular nucleus of the hypothala-
mus, with projections to the hypophyseal portal system, suggesting
a role in anterior pituitary regulation. Using cultured quail pitu-
itaries, Tsutsui and colleagues discovered a dose-dependent inhibi-
tion of gonadotropin release following administration of this novel
peptide. Because this peptide directly inhibited gonadotropin
release, they named it gonadotropin-inhibitory hormone, or GnIH
(Tsutsui et al., 2000). Following this initial discovery, we examined
the functional significance of GnIH in mammals, establishing this
neuropeptide as robust inhibitor of the reproductive axis in Syr-
ian hamsters, with identical expression patterns in mice and rats
(Kriegsfeld et al., 2006). Since this initial characterization, it has
become clear that GnIH acts as a pronounced negative regulator
of HPG axis activity in all species investigated, including ham-
sters, mice, rats, cattle, sheep, non-human primates, and humans
(reviewed in Bentley et al., 2010; Kriegsfeld et al., 2010; Smith and
Clarke, 2010; Tsutsui et al., 2010).
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In rats, hamsters and mice, GnIH neuronal cell bodies are
tightly localized to the dorsomedial hypothalamus (DMH) and
project directly to the POA, forming close appositions to GnRH
cells (Kriegsfeld et al., 2006; Johnson et al., 2007), suggesting
the potential for direct, neural regulation of the GnRH network.
Administration of GnIH rapidly suppresses LH release in all mam-
malian species investigated to date (reviewed in Bentley et al.,
2010; Kriegsfeld et al., 2010; Tsutsui et al., 2010). Direct appli-
cation of GnIH to GnRH cells in brains slices from male and
female mice decreased neural activity in a subset of cells (Ducret
et al., 2009), supporting a suppressive role for this peptide via
direct actions on GnRH neurons. Furthermore, electrophysiologi-
cal recordings suggest a direct postsynaptic inhibition of GnRH
cell firing may occur via GnIH-mediated hyperpolarization of
potassium (K+) channels in vGluT2-GnRH neurons (Wu et al.,
2009).

In addition to the direct action on GnRH, the actions of GnIH
on pituitary gonadotropes remain more controversial. Suggestive
evidence for this possibility comes from studies showing that the
GnIH receptor (GPR147; Yin et al., 2005) is localized to rat and
Syrian hamster pituitaries (Hinuma et al., 2000; Gibson et al.,
2008), and GnIH-ir fibers have been reported to extend into
the external layer of the median eminence (Gibson et al., 2008).
Additionally, recent studies in which peripheral, but not central,
injections of GnIH inhibits GnRH-elicited LH release, suggest-
ing actions at the pituitary level (Murakami et al., 2008). In one
study in rats, peripheral injections of the retrograde tracer, Fluo-
rogold (FG), label sparse numbers of GnIH cells, suggesting that
these cells do not contact the pituitary portal system (Rizwan
et al., 2009). Despite showing few GnIH cells labeled with FG,
intravenously administered GnIH rapidly (within 5 min) inhib-
ited GnRH-induced LH release in the same study (Rizwan et al.,
2009). These data indicate the potential for GnIH to act on pitu-
itary gonadotropes or suggest that intravenously delivered GnIH
crosses the blood-brain barrier to impact GnRH cell bodies or ter-
minals. Whether or not endogenous GnIH acts on the pituitary
in addition to GnRH cells in mammalian species requires fur-
ther investigation to clarify whether discrepant findings represent
interspecific differences or result from technical variation across
studies.

Given the pronounced inhibitory actions of GnIH in the mam-
malian brain, we examined the possibility that this peptide par-
ticipates in mediating the negative feedback effects of estradiol.
Treatment of female rats with GnIH results in marked inhibition
of GnRH neuronal activity at the time of the LH surge, provid-
ing support for this possibility (Anderson et al., 2009). In Syrian
hamsters, we found that GnIH-ir cells express ERα and respond
to acute estradiol treatment with increased FOS expression, sug-
gesting activation by gonadal steroids (Kriegsfeld et al., 2006).
Contrasting results were observed in one recent report, with treat-
ment of mice with estrogen for 4 days leading to a decrease in
GnIH mRNA expression (Molnar et al., 2011). The discrepancy in
the impact of estrogen in mice and hamster may result from the
timing at which the brains were collected for analysis – hamster
brains were collected prior to the LH surge when negative feedback
effects of estradiol are maximal, whereas when in the day mouse
brains were sampled was not reported.

We next explored whether GnIH neurons might be a locus of
integration for steroidal and circadian signals, providing a mecha-
nism to coordinate the removal of estradiol negative feedback with
SCN-mediated stimulation of the GnRH/LH surge (Figure 3).
First, we examined the pattern of GnIH cellular activity, uncover-
ing a daily pattern with trough activity at the time of the LH surge,
suggesting the removal of negative feedback at this time (Gib-
son et al., 2008). Additionally, using anterograde tract tracing, we
found that the SCN projects to a large proportion of GnIH cells,
providing a mechanism for timing removal of negative drive on the
GnRH system. Finally, by exploiting the “splitting” phenomenon
seen in hamsters housed in LL described previously, we found that
activation of the GnIH system is asymmetrical. Importantly, this
asymmetry is opposite to that seen for the GnRH system, suggest-
ing that the SCN concomitantly activates ipsilateral GnRH cells at
the same time as removing the suppressive influence of GnIH on
the same side of the brain (Figure 3; Gibson et al., 2008).

Recently, a meticulously comprehensive series of studies by
Pineda et al. investigated the role of GnIH using a selective antag-
onist (RF9) of GnIH and a related peptide in the same family,
neuropeptide FF (NPFF). Alterations in NPFF and interactions
with its receptor do not alter gonadotrophin secretion (Pineda
and Tena-Sempere, unpublished observations), suggesting that
the effects of RF9 are likely mediated through blockade of the
actions of RFRP-3 (Pineda et al., 2010b). The role of RF9 was
investigated in male and female mice and rats. Injections of RF9
to cycling females led to a rapid and sustained, dose-dependent
increase in LH both during estrus and diestrus, supporting a role
for GnIH in maintaining low LH concentration through negative
feedback. Analogous results were seen in males, with RF9 leading
to a rapid and prolonged increase in LH and FSH. Together, these
findings and those for kisspeptin, point to an important role for
these opposing RFamide neuropeptides in the integration of pos-
itive and negative effects of estradiol with circadian signaling in
the generation of the GnRH/LH surge.

It is likely that other neural loci upstream of the GnRH system
are targets of the SCN involved in the timing of the LH surge. Dual-
phenotype neurons expressing GABA/glutamate within the AVPV,
for example, have been implicated in the control of GnRH activ-
ity and are regulated by estradiol feedback (Leranth et al., 1985;
Jarry et al., 1995; Christian et al., 2009). GnRH neurons express
AMPA, NMDA, GABAA, and GABAB receptors (Gore et al., 1996;
Spergel et al., 1999; Sullivan and Moenter, 2004; Sliwowska et al.,
2006) and blockade of glutamatergic receptors prevents the LH
surge in rats (Lopez et al., 1990; Brann and Mahesh, 1991). GnRH
neurons respond to GABA and glutamate differentially across the
day in female mice, with inhibitory responses in the morning dur-
ing estrogen negative feedback and excitatory responses in the
afternoon during estrogen positive feedback (Petersen et al., 2003;
Christian and Moenter, 2007). Additionally, the number of AVPV-
originating synaptic contacts onto GnRH neurons that express
both GABA and glutamatergic vesicular transporters increases
around the time of the LH surge (Ottem et al., 2004). Furthermore,
these synaptic contacts are estradiol-sensitive, suggesting the cou-
pling of circadian and estrogenic input mediates GABA/glutamate
signaling to GnRH neurons (Ottem et al., 2004). Though no
direct connections have been reported between the SCN and
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FIGURE 3 | Suprachiasmatic nucleus fibers project to GnIH-ir cells in

the DMH. (A) Example injection site from an injection of biotinylated
dextran amine (BDA) that filled the ventrolateral aspect of the SCN; (B)

low-power photomicrograph indicating terminal fibers from the SCN project
to the DMH, principally ipsilaterally. (C,D) Examples of SCN projections in
close apposition to GnIH-ir cells in the DMH at the light level [(C),
low-power; (D), high power]. (E–H) Lateralization of GnRH and GnIH
activation in split hamsters. The pattern of SCN activation is lateralized in
animals exhibiting two daily bouts of activity. GnIH cellular activity is
lateralized and opposite to that of GnRH, indicating SCN-mediated removal
of GnIH inhibition at the time of the LH surge. (E) Actogram of
wheel-running activity in estradiol-implanted, ovariectomized (OVX)
hamsters kept in constant light conditions (LL) from Day 1 onward (days
indicated by y axis, hours by x axis). Split hamsters were killed (*) 1 h
before the onset of one of the two activity bouts. (G) Photomicrograph of
FOS activation in GnIH cells of split hamsters, showing ipsilaterally reduced
GnIH activation when SCN and GnRH activation are high. Mean ± SEM)
percentage of FOS-ir (F) GnRH and (H) GnIH cells in split hamsters.
*Significantly different from the opposite hemisphere’s activational state,
P < 0.05. Modified from Gibson et al. (2008).

GABA/glutamate neurons within the AVPV, the expression of V1a
receptors in GABA neurons within this nucleus (Kalamatianos
et al., 2004) provides a potential SCN-mediated mechanism of

control. It is possible that circadian input to this neuronal pop-
ulation comes indirectly through kisspeptin signaling; kisspeptin
upregulates GABA transmission in the AVPV during estradiol neg-
ative (but not positive) feedback, suggesting local signaling within
this nucleus (Pielecka-Fortuna and Moenter, 2010).

CIRCADIAN CONTROL OF PREGNANCY
In addition to the circadian control of ovulation, multiple lines
of evidence indicate a critical role of the SCN in the regulation of
prolactin (PRL) secretion and pregnancy maintenance. The release
of prolactin, an adenohypophysis-derived hormone with myriad
functions, most notably in lactation and pregnancy maintenance,
is controlled by a balance of inhibitory and releasing factors. The
circadian control of prolactin is abundantly clear, with a proestrus
surge of PRL release occurring in the late afternoon. Addition-
ally, ovariectomized rats treated with estradiol exhibit daily PRL
surges around the time of the LH surge (Pan and Gala, 1985). Fur-
thermore, as with the regulation of luteinizing hormone, ovariec-
tomized, and estradiol-treated rats fail to exhibit a PRL surge fol-
lowing SCN lesions, suggesting a necessary role of the SCN in the
release of PRL, either directly or indirectly (Pan and Gala, 1985).

Stimulation of the cervix during mating initiates twice daily
prolactin surges, consisting of a diurnal, and nocturnal surge that
maintains the corpora lutea and thus the secretion of progesterone,
facilitating pregnancy maintenance. Evidence for the circadian
regulation of the prolactin surge comes from studies similar to
those linking the central clock to ovulation. The PRL surge is
entrained to the light cycle and free-runs in constant conditions
(Bethea and Neill, 1979; Yogev and Terkel, 1980), and SCN lesions
prevent the mating-induced prolactin surges (Kawakami et al.,
1980) underscoring the endogenous, circadian control of this phe-
nomenon. Furthermore, pharmacological knockdown of the core
SCN clock genes disrupts the PRL surge in rats (Poletini et al.,
2007) suggesting a link between the molecular clock and the circa-
dian drive of prolactin. Given the function of PRL in corpora lutea
maintenance, disruptions in the circadian control of PRL may pre-
vent the rise in corpora lutea-derived progesterone secretion and
thus lead to an increased rate of abortion or fetal reabsorption
(Milligan and Finn, 1997; Miller et al., 2004).

The SCN regulates secretory patterns of PRL regulators, includ-
ing the primary PRL-inhibiting factor, dopamine (DA) and PRL-
stimulating factor, oxytocin (Freeman et al., 2000). SCN-derived
VIP is a likely regulatory factor in both cases, as VIPergic fibers
project to dopaminergic neurons in the ARC and paraventricu-
lar nuclei (PVN; Teclemariam-Mesbah et al., 1997; Gerhold et al.,
2001) and to oxytocin-secreting cells in the PVN (Teclemariam-
Mesbah et al., 1997); areas considered to be critical for PRL
regulation. DA cells in the ARC and cells in the PVN co-express the
core circadian clock gene, Per1, suggesting a role for autonomous
clocks operating in these cell types in mediating rhythms in PRL
secretion (Kriegsfeld et al., 2003; Sellix et al., 2006). Furthermore,
the rhythm of VIP in the paraventricular nucleus, where PRL-
stimulating oxytocin neurons reside, is phase-locked to the rhythm
of PRL, suggesting that this peptide may link the SCN to this
regulatory system (Egli et al., 2004). Both DA and OXY neurons
within the PVN express the VIP receptor, VPAC2 (Gerhold et al.,
2001; Egli et al., 2004), providing a mechanism of control between
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FIGURE 4 | Proposed model of circadian initiation of the preovulatory

LH surge in spontaneously ovulating rodents by major positive and

negative regulators of GnRH neuronal activity. Black lines depict
monosynaptic projections from the SCN to GnRH neurons and to major
positive (kisspeptin, Kp) and negative (GnIH, GABA) neurochemical
mediators of the GnRH system that contain estrogen receptors. Kisspeptin
cells in the AVPV are active at the time of the LH surge. Neurons containing
ERα in the preoptic area and elsewhere are known to project to the SCN
and to the vicinity of GnRH neurons and may play a role in mediating the
circadian signal to GnRH neurons directly and/or indirectly. Whereas
estrogen-responsive cells have not been definitively shown to project

specifically to GnRH neurons, the emergence and sexual dimorphism of
kisspeptin cells and fibers that project to GnRH cell bodies provide
compelling evidence for the direct connection between these two neural
phenotypes. Connections between the GnIH and GnRH systems indicate a
putative role for GnIH in modulating the negative feedback effects of
estrogen with SCN communication allowing for removal of negative
feedback on the reproductive axis during the time of the LH surge. A similar
role for SCN-GABA interactions is likely, although projections SCN
projections and ERα expression specific to AVPV GABAergic cells have not
been empirically examined. Kisspeptin cells in the ARC likely serve to modify
GnRH output at the level of the terminal. See text for additional details.

the master clock and PRL regulatory neurons. Additionally, VIP
antagonists directed at the SCN prevent the decrease in PVN DA,
and eliminate the afternoon PRL surge in female rats (Harney
et al., 1996). Finally, antisense oligonucleotide knockdown of clock
genes within the SCN eliminates mating-induced PRL secretion
(Poletini et al., 2007). Together, these results suggest a critical role
for the circadian system in PRL regulation through VIPergic SCN
communication to OXY and DA neurons, with possible additional
contributions by autonomous clocks in these regulatory neuronal
populations.

The circadian regulation of PRL secretion has important func-
tional implications for female reproductive success. Female mice
expressing a null mutation in the Clock gene exhibit disrupted
ovulatory cyclicity, as well as a high incidence of pregnancy inter-
ruption (Miller et al., 2004). Spontaneous abortions and fetal
reabsorption rates in these mice stem from insufficient PRL release
during the initial stages of pregnancy, thus leading to blunted
progesterone levels and insufficient support for the corpora lutea
(Miller et al., 2004). The connections between the SCN and PRL
release, and regulation of the Prl gene promoter by the core
molecular clockwork via a non-canonical E-Box (Palm et al.,

2001a; Poletini et al., 2010; Guillaumond et al., 2011), point to
a direct link between the circadian system and pregnancy main-
tenance via the regulation of prolactin. These findings support
the intriguing possibility that dysregulated PRL secretion may
underlie the increased rate of reproductive health issues follow-
ing prolonged circadian disruptions, including those observed in
chronic shift workers (reviewed in Mahoney, 2010).

CONCLUSION AND CONSIDERATIONS
Given the pronounced impact of disruptions to circadian tim-
ing on female reproductive functioning and health, it is critical
that a full understanding of the mechanisms underlying these
processes be garnered. The SCN sits at the center of a hierar-
chy of temporal control, coordinating the activity of positive and
negative upstream regulators of the HPG axis (Figure 4). In addi-
tion to receiving direct estrogenic feedback, the SCN also receive
sex steroid feedback, indirectly, via estrogen-sensitive targets that
communicate directly with the master pacemaker. Many reproduc-
tively relevant monosynaptic targets of the SCN express estrogen
receptors, providing a further means of integration for circadian
and estrogenic signaling necessary for optimal fecundity. Given the
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ubiquity of autonomous clock function in the CNS and periph-
ery, it is likely that many targets of the SCN contain independent
clocks to temporally modulate their network environment and
further ensure ideal timing of reproductive events. The means by

which other well-established regulators of the HPG axis syner-
gize with these circadian controlled circuits to optimize female
reproductive health represents and exciting and vital opportunity
for further enquiry.
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