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Carbon monoxide (CO) is a colorless, odorless,
and tasteless diatomic gas that has long been con-
sidered a toxic byproduct of environmental and
industrial processes. The toxic effect of CO is well
known and resides in its strong affinity for
hemoglobin, which is nearly 245 times that of

oxygen [1]. In addition, partial occupation of CO
at the heme binding sites inhibits the release of O2
from the remaining heme groups, shifting the O2
dissociation curve to the left. These actions of CO
reduce the O2 carrying capacity and delivery
potential leading to tissue hypoxia. Higher con-
centrations of CO also bind to cytochromes P450,
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Abstract
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cytochrome c, and myoglobin further amplifying
the detrimental actions of CO [2]. Paradoxically,
studies in the mid 20th century reported that CO is
also generated endogenously in humans, and that
under specific pathophysiological conditions CO
production is greatly increased [3, 4]. The daily
production of CO in the human body is quite sub-
stantial; approaching nearly 20 μmoles/hour [5].
The predominant biological source of CO (> 86%)
is from the degradation of heme by the enzyme
heme oxygenase (HO) with minor amounts
formed by photo-oxidation, lipid peroxidation,
and xenobiotic metabolism [4]. HO cleaves the α-
meso carbon bridge of heme yielding equimolar
amounts of biliverdin, iron, and CO (Fig. 1). This
oxidative reaction serves as the first and rate-lim-
iting step in heme catabolism and is catalyzed by
two distinct isoforms of HO: HO-1 is a ubiqui-
tously distributed isoform that is strongly induced
by biochemical and biophysical stress while HO-2
is constitutively expressed and concentrated in
specific organs such as the brain and testes [6].
HO-1 and HO-2 are expressed in the heart and
blood vessels, and both proteins are found in vas-
cular endothelium and smooth muscle. Moreover,
HO is catalytically active in cardiovascular tissue
as reflected by the HO-1-mediated production of
bilirubin and CO [see 7].

Although long considered an obscure byprod-
uct of heme metabolism with potential toxicolog-
ical implications, the finding that another struc-
turally similar poisonous gas, nitric oxide (NO)
plays a significant role in human health, raised
the possibility that CO may also serve an impor-
tant physiological function [8]. Studies in the
past decade have clearly established the biologi-
cal significance of CO in numerous organ sys-
tems.  In fact, many of the cytoprotective actions
resulting from the induction of HO-1 are
attributable to the generation of CO. In addition,
studies employing the exogenous application of
CO have confirmed the protective properties of
this gas in several pathological conditions.
However, emerging evidence suggests that in
some instances an overproduction of CO may
have deleterious effects. In this article, we will
focus on the effects of CO in the cardiovascular
system and emphasize the potential therapeutic
approaches that target this gas in treating specif-
ic cardiovascular diseases.

CO in atherosclerosis and 
vascular injury

Atherosclerosis and its cardiovascular complica-
tions are the major cause of morbidity and mortali-
ty of the industrialized world. Considerable evi-
dence suggests that the HO-1/CO system plays a
beneficial role in this disorder. HO-1 is highly
expressed in the endothelium and foam cells of
atherosclerotic lesions in both humans and animals
[9]. Moreover, oxidized low density lipoprotein, a
major determinant in the pathogenesis of
atherosclerosis, is a potent inducer of HO-1 in vas-
cular cells [10]. In addition, the first human case of
HO-1 deficiency displayed early atherosclerotic
changes in the vasculature as reflected by the pres-
ence of fatty streaks and fibrous plaque [11, 12].
Interestingly, a long (GT)n microsatellite polymor-
phism in the human HO-1 promoter that is linked to
reduced expression is associated with susceptibility
to coronary artery disease in some patient popula-
tions, suggesting that the induction of HO-1 is a
protective response in humans [13–15]. Several
animal models of atherosclerosis have also identi-
fied HO-1 as an important modulator of atheroscle-
rosis. Inhibition of HO enzyme activity increases
lesion formation in Watanabe heritable hyperlipi-
demic rabbits and low density lipoprotein (LDL)-
receptor knockout mice fed a high fat diet [16, 17].
Alternatively, pharmacological induction of HO-1
or adenovirus-mediated gene transfer of HO-1
decreases lesion formation in murine models of
atherosclerosis whereas the inhibition of HO-1 pro-
motes lesion development [18]. In addition, trans-
genic mice deficient in HO-1 in an apolipoprotein E
null background exhibit accelerated and more
advanced atherosclerotic lesion formation in
response to a western diet compared to control ani-
mals, despite similar elevations in total plasma
cholesterol levels [19].

A role for CO in promoting the anti-atherogenic
property of this enzyme was recently established in
models of transplant atherosclerosis. Continuous
exposure to a relatively low concentration of CO
(250 ppm) for 56 days retards the development of
atherosclerotic lesions following the transplantation
of aortic segments of Brown Norway rats into
Lewis rats [20]. CO exposure significantly reduces
intimal hyperplasia as well as the accumulation of
leukocytes in the adventitia of aortas transplanted
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into recipients. The ability of CO to inhibit graft
infiltration by activated leukocytes is dose-depen-
dent and associated with diminished expression of
pro-inflammatory genes, including the major histo-
compatibility class II antigens and intracellular
adhesion molecule-1. The capacity of CO to block
transplant atherosclerosis may explain its ability to
improve both allograft and xenograft survival fol-
lowing organ transplantation [21–23]. While CO
can protect against transplant atherosclerosis and
rejection, it is not known whether it can influence
the development of atherosclerosis in genetic and
dietary animal models.

Recent work also indicates that the HO-1/CO
system exerts a salutary effect on the pathologic
remodeling response following balloon angioplasty.
Several studies have demonstrated that prior induc-
tion of HO-1 by hemin attenuates vascular neointi-
ma formation following balloon injury of rat carotid
arteries, while inhibition of HO activity exacerbates
lesion formation [24–26]. In addition, localized
adenovirus-mediated HO-1 gene delivery immedi-
ately following arterial injury ameliorates neointi-
ma formation in rat carotid and pig femoral arteries
[27, 28]. Moreover, HO-1 deficient mice exhibit
exaggerated neointima formation following wire
induced arterial injury and robust SMC prolifera-
tion in a murine model of vein graft stenosis [19,
27]. Finally, it appears that HO-1 may also modu-
late the vascular response to injury in humans since
a HO-1 promoter polymorphism connected to
impaired inducibility is associated with enhanced
restenosis in patients undergoing percutaneous
transluminal angioplasty in femoropopliteal arteries
and with angiographic restenosis and adverse car-
diac events after coronary stenting [29, 30].

More recently, CO has been directly demonstrat-
ed to modify the vascular response to injury.
Inhalation of CO (250 ppm) for one hour prior to
balloon injury of rat carotid arteries is sufficient to
block intimal thickening by approximately 60%
[20]. Similarly, we found that incubation of vessel
segments with a saturated solution of CO (~875
μM) immediately after balloon injury leads to a
marked decrease in neointima formation [31]. CO
does not alter the negative inward remodeling
response following injury since the circumferential
length of both the inner and outer elastic laminae is
unaffected. However, arteries transiently exposed to
CO demonstrate significantly reduced DNA synthe-
sis leading to a diminished intimal cell population.
While CO clearly inhibits lesion formation follow-
ing arterial injury in rats, additional studies examin-
ing whether CO can blunt the remodeling response
in larger, non-rodent species are needed to further
validate the therapeutic potential of this gas.

Several potential mechanisms may contribute to
the vasoprotective actions of CO (Fig. 2). Since
excessive vascular smooth muscle cell (SMC) pro-
liferation following endovascular injury is a major
determinant of neointima formation, the ability of
CO to inhibit SMC growth is highly relevant.
Inhibition of CO synthesis or CO scavenging with
hemoglobin promotes the growth of SMC while
delivery of CO attenuates cell growth in response to
several mitogens [20, 25, 27, 32, 33]. The antipro-
liferative action of CO is mediated by the soluble
guanylate cyclase/cGMP pathway since inhibitors
of guanylate cyclase or protein kinase G restores
SMC growth [20, 27]. Flow cytometry studies
demonstrate that HO-1 overexpression or the
exogenous administration of CO arrests cultured
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Fig. 1 Heme oxygenase
degrades heme to equimolar
amounts of iron, biliverdin,
and carbon monoxide. (M,
methyl (CH3); P, propionate
(CH2-CH2-COOH); Fe, iron;
V, vinyl (CH=CH2; CO, car-
bon monoxide).



SMC in the G0/G1 phase of the cell cycle [20, 27,
32]. This inhibition of cell cycle progression is
associated with a marked decrease in cyclin-depen-
dent kinase 2 (cdk2) activity, a critical event
required for S-phase entry and DNA synthesis [32].
The ability of CO to block cdk2 activity is likely
mediated via its ability to modulate the expression
of key regulatory proteins. In particular, CO sup-
presses the expression of the cdk2 activators, cyclin
A and D1, while stimulating the expression of the
cdk2 inhibitor, p21 [20, 32, 34]. Consistent with
these in vitro findings, we recently reported that
CO-treated vessels display reduced expression of
the G1 cyclins, cyclin E and A [28].

Aside from activating soluble guanylate cyclase,
CO modulates the activity of other mitogenic sig-
naling pathways. CO blocks the phosphorylation
and activation of the mitogen-activated protein
kinase (MAPK), ERK1/2, via its inhibitory effect
on the mitochondrial respiratory chain [34].
Interestingly, CO also blocks NAD(P)H oxidase
and this contributes to the inhibition of cyclin D1
expression [34], raising the possibility that CO-
mediated alterations in redox signaling may under-

lie some of the antiproliferative actions of this gas.
Furthermore, CO stimulates p38 MAPK activity in
a cGMP-dependent manner and this has been impli-
cated in the suppression of cyclin A and D1 expres-
sion along with the induction of p21 [17]. More
recently, the activation of p38 MAPK by CO was
shown to increase caveolin-1 expression in cultured
SMC and in neointimal lesions of injured arteries
[35]. Significantly, genetic depletion of caveolin-1
abolishes the antiproliferative effect of CO.
Collectively, these findings suggest that CO inhibits
SMC growth via multiple, overlapping signaling
pathways that converge to arrest SMC in the G0/G1
phase of the cell cycle.

Interestingly, HO-1 stimulates cell cycle pro-
gression and proliferation in vascular endothelium
[see 36]. Transduction of the HO-1 gene into
endothelial cells (EC) promotes their growth and
the development of capillary-like tube structures
while inhibition of HO activity blocks cell growth,
and tube formation. In addition, overexpression of
HO-1 facilitates angiogenesis in human pancreatic
cancer and in a rat model of hindlimb ischemia
[37, 38]. The mechanism(s) by which HO-1 is able

675

J. Cell. Mol. Med. Vol 10, No 3, 2006

Fig. 2 Vasoprotective actions of heme oxygenase-1 (HO-1)-derived carbon monoxide (CO). CO preserves vascu-
lar homeostasis via multiple mechanisms. CO inhibits smooth muscle cell (SMC) growth, endothelial cell (EC) acti-
vation, SMC and EC apoptosis, and the generation of pro-inflammatory cytokines, and stimulates the synthesis of
anti-inflammatory cytokines. In addition, CO blocks the activation of mast cells and basophils, the aggregation and
adhesion of platelets, and the formation of fibrin.



to stimulate the growth of vascular endothelium
and angiogenesis is not known, but may be related
to the production of vascular endothelial growth
factor [36]. Recently, evidence for a role of CO in
promoting endothelial growth and capillary
sprouting has been provided [39, 40]. However,
additional studies are needed to directly determine
whether CO influences angiogenesis and the
underlying mechanism(s) of action. The ability of
CO to stimulate EC regrowth at sites of arterial
injury would provide another mechanism to limit
lesion formation since the reendothelialization of
the vessel wall is believed to maintain the under-
lying SMC in a quiescent state.

In addition to regulating vascular cell growth,
CO modulates cell survival. The exogenous appli-
cation of CO inhibits apoptosis in both SMCs and
ECs [41–44]. The anti-apoptotic actions of CO are
mediated via several discrete mechanisms. CO
blocks the cytokine-mediated mitochondrial release
of cytochrome c in vascular cells and this is associ-
ated with a decrease in the expression and activity
of the pro-apoptotic proteins p53 and Bid, respec-
tively. In addition, CO suppresses the expression of
Fas/Fas ligand and the downstream activation of
caspase 8 by cytokines. A role for heat shock pro-
tein-70 has also been implicated in the anti-apop-
totic actions of CO [45]. More recently, we found
that CO also inhibits SMC apoptosis during endo-
plasmic reticulum stress and this is associated with
decreased expression of the pro-apoptotic transcrip-
tion factor, GADD153 [43]. The capacity of CO to
block the death receptor (extrinsic), mitochondrial
(intrinsic), and endoplasmic reticulum pathways of
apoptosis likely contributes to its ability to inhibit
apoptosis in numerous pathological conditions. In
the vasculature, inhibition of apoptosis by CO may
suppress plaque formation by preventing the devel-
opment of the acellular lipid necrotic core.

Another major mechanism by which CO exerts
an anti-atherogenic effect is by arresting inflamma-
tion. CO inhibits the lipopolysaccharide-mediated
expression of pro-inflammatory cytokines such as
tumor necrosis factor-α, interleukin-1β and
macrophage inflammatory protein-1β while simul-
taneously increasing the expression of the anti-
inflammatory cytokine interleukin-10 in both EC
and macrophages [46]. Furthermore, CO downreg-
ulates the inflammatory response by blocking the
release of NO from inducible NO synthase and the

expression of granulocyte-macrophage colony
stimulating factor from macrophages and SMC [47,
48]. Both the activation of soluble guanylate
cyclase and p38 MAPK have been implicated in
suppression of inflammatory cytokines by CO [46,
47]. Other anti-inflammatory actions of CO include
desensitization of the adhesive response of leuko-
cytes following endotoxin administration, the inhi-
bition of histamine release from mast cells, and the
prevention of immunological activation of
basophils [49, 50]. Thus, CO is able to control the
inflammatory response in a multifold manner in
several distinct cell types.

Emerging studies indicate that CO may also
exert important protection against thrombosis. Both
endogenously derived and exogenously applied CO
inhibits platelet aggregation by stimulating the acti-
vation of soluble guanylate cyclase [51, 52]. In
addition, CO mitigates platelet adhesion to venular
endothelium in response to inflammation [49].
Furthermore, CO inhibits platelet aggregation and
thrombosis following organ transplantation, and
may contribute to the inhibition of platelet-depen-
dent thrombosis following the induction of HO-1 in
a rodent artery injury model [21, 53]. Significantly,
inhalation of CO rescues mice from lethal ischemic
injury by preventing microvascular thrombosis and
the accumulation of fibrin [54]. This protection is
driven by the activation of soluble guanylate
cyclase and the suppression of plasminogen activa-
tor inhibitor-1 expression. These findings suggest
that CO may play a fundamental role in preserving
blood fluidity under various inimical conditions by
inhibiting platelet activation and fibrin formation. 

However, not all studies show a cytoprotective role
for CO in the vasculature. Acute exposure of bovine
pulmonary aortic EC to CO induces apoptosis [55].
This toxic effect is believed to arise from the CO-
mediated increase in peroxynitrite formation sec-
ondary to the displacement of NO from heme proteins.
In addition, high concentrations of CO induce oxida-
tive stress [see 2]. CO can bind to mitochondrial heme
proteins and disrupt the mitochondrial electron trans-
port chain leading to the generation of superoxide.
Furthermore, CO has been associated with the conver-
sion of xanthine dehydrogenase to xanthine oxidase
leading to the generation of reactive oxygen species.
Thus, under certain conditions, CO may adversely
affect vascular viability and function by stimulating
nitrosative and/or oxidative stress. 
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CO and myocardial 
ischemia-reperfusion injury

Considerable evidence supports a protective role
for the HO-1/CO system against coronary artery
ischemia-reperfusion injury. Pharmacological
induction of HO-1 significantly reduces infarct size
and the incidence of reperfusion arrythmias follow-
ing myocardial ischemia-reperfusion, whereas car-
diac tissue damage is exacerbated by HO inhibitors
[56–58]. Similarly, cardiac-specific overexpression
of HO-1 protects against ischemia-reperfusion-
induced cardiac dysfunction and apoptosis in isolat-
ed-perfused heart preparations [59, 60]. In addition,
isolated hearts from heterozygote HO-1 knockout
mice demonstrate an increased susceptibility to
ischemia-reperfusion injury relative to wild type
controls [61]. A maladaptive response consisting of
enhanced ventricular dilatation, infarction, and
thrombosis has also been reported in HO-1 null
mice during hypoxia [62]. Finally, gene delivery of
HO-1 by adeno-associated virus several weeks in
advance of coronary ligation leads to marked
myocardial protection in a rat model of acute
ischemia-reperfusion injury [63]. Moreover, the
pre-emptive delivery of HO-1 inhibits postmyocar-
dial infarct remodeling and restores ventricular
function following ischemia-reperfusion [64].

Recent studies indicate that CO can also confer
cytoprotective actions in the heart. Treatment of
isolated cardiac cells or hearts with a CO-releasing
molecule preserves cell viability and myocardial
performance against hypoxia-reoxygenation dam-
age [65]. Similarly, the administration of a CO-
releasing compound at the time of reperfusion
reduces infarct size in an in vivo murine model of
coronary occlusion [66]. Interestingly, CO causes
the heart to shift to a preconditioned phenotype.
Mice receiving a short infusion of CO are protected
against myocardial infarction for up to 72 hours,
which is equivalent to the protection afforded by
ischemic preconditioning [67]. Inhalation of CO
also protects against myocardial ischemia-reperfu-
sion injury in rats, safeguards the heart during
reperfusion after cardiopulmonary bypass in pigs,
and attenuates ischemia-reperfusion injury follow-
ing cardiac transplantation [68–70]. Interestingly, a
recent report found that CO exerts a biphasic effect
on cardiac performance following ischemia-reper-
fusion in isolated-perfused rat hearts [71]. While

very low concentrations of CO (0.001–0.01%) in
the perfusion buffer improves post-ischemic recov-
ery of hemodynamic parameters and reduces infarct
size and ventricular fibrillation, a higher concentra-
tion of CO (0.1%) led to severe ventricular fibrilla-
tion. Thus, the cardioprotection mediated by CO
may be strictly related to the concentration of the
gas that is used.

CO and blood pressure regulation

Studies in the past decade have established that CO
is an important regulator of vasomotor tone.
Exogenously administered CO relaxes isolated ves-
sels from numerous tissues and animal species [see
72]. Furthermore, infusion of CO dilates resistance
vessels in several organs, including liver, heart, kid-
ney, and lung. The CO-induced vasodilation is
reversible, not a consequence of tissue hypoxia, and
is independent of any adrenergic effect or the pres-
ence of the endothelium. Similar to NO, CO relaxes
numerous vascular tissues by activating soluble
guanylate cyclase in vascular smooth muscle lead-
ing to the production of cGMP. However, unlike
NO, which forms a pentacoordinate complex with
the heme moiety of the enzyme, CO forms a hexa-
coordinate complex and this likely contributes to the
lower potency of CO for soluble guanylate cyclase
activation and vasodilation [73]. Although cGMP
appears to play a major role in CO-induced dilation
in large vessels such as the aorta, CO promotes
relaxation in resistance vessels by stimulating calci-
um-activated potassium channels in vascular SMC.
This mode of action by CO was first identified in rat
tail arteries, where CO was shown to directly inter-
act with histidine residues in the channel to increase
their open probability [74] and has subsequently
been extended to include renal interlobular arteries
and porcine cerebral arterioles [see 72]. 

However, dilation in response to CO is not a
universal finding. CO has no effect on the contrac-
tile status of canine and rabbit cerebral vessels
[72].  More recently, we demonstrated that physio-
logically relevant concentrations of CO also fail to
dilate rodent middle cerebral arteries [75].
Significantly, we found that exogenously applied
or endogenously derived CO promotes vasocon-
striction of isolated skeletal muscle arterioles [76].
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This response is abolished by removal of the
endothelium and converted to dilation by NO syn-
thase inhibition, suggesting that CO may evoke its
constrictor effect by inhibiting endothelial NO for-
mation. Consistent with this hypothesis, biochemi-
cal studies have shown that CO inhibits NO syn-
thase activity by directly binding to the heme moi-
ety of the enzyme [77]. Moreover, CO-mediated
inhibition of endothelial NO synthesis and
impaired vasodilation have recently been reported
in renal and cerebral microvessels [78, 79], raising
the possibility that CO may promote endothelial
dysfunction in some vascular beds.

Previous studies by our laboratory and others
demonstrate that endogenously-formed CO con-
tributes to central nervous system (CNS) mediated
blood pressure regulation. Systemic administration
of the heme oxygenase inhibitor, zinc deuteropor-
phyrin 2,4-bis ethylene glycol (ZnDPBG) blocks
brain HO activity and increases blood pressure in
Spargue-Dawley rats by increasing CNS sympa-
thetic outflow [80]. ZnDPBG administration
directly into the nucleus of the tractus solitarius
(NTS) of rats also increases blood pressure and this
effect is reversed by ipsilateral microinjection of
CO into the NTS. Furthermore, the systemic pres-
sor effect of ZnDPBG can also be reversed by CO
administration directly into the NTS [81].
Collectively, these findings suggest that endoge-
nous CO production in the NTS helps to maintain
normal blood pressure by suppressing the activity
of the sympathetic nervous system.

The HO-1/CO system appears to be a key regu-
lator of blood pressure and alterations in this path-
way have been linked to the pathogenesis of hyper-
tension. However, the role of HO-1 in blood pres-
sure regulation varies with different animal models
and experimental settings. Pharmacological induc-
tion of HO-1 or the administration of HO substrates
normalizes blood pressure in spontaneously hyper-
tensive rats (SHR) [80, 82, 83]. Moreover, a single
intracardiac injection of a retroviral vector contain-
ing human HO-1 in SHR is able to produce
widespread transgene expression and this is associ-
ated with a significant decrease in blood pressure
[84]. The antihypertensive effect of HO-1 is likely
mediated by CO since the administration of
biliverdin does not significantly alter systemic
blood pressure [80]. Interestingly, HO-1 expression
in vascular tissues is lower in SHR at a pre-hyper-

tensive stage but similar to age-matched control
animals during the established stage of hyperten-
sion [85]. Moreover, the activities of the down-
stream targets of CO, including soluble guanylate
cyclase, are also reduced in pre-hypertensive SHR
rats. These finding indicate that suppression of the
HO-1/CO/cGMP signaling pathway precedes the
development of hypertension and may contribute to
the rise in blood pressure in SHR. 

A beneficial role for the HO-1/CO system has
also been proposed in angiotensin II-induced hyper-
tension. Chronic administration of angiotensin II
induces hypertension in rats and this is accompanied
by the induction of HO-1 in various tissues, includ-
ing blood vessels. The upregulation of HO-1 in this
model is believed to serve a protective compensato-
ry mechanism by attenuating the pressor response to
constrictor stimuli [86]. In addition, HO-1 affords
protection in the one kidney-one clip model of ren-
ovascular hypertension. In this model, HO-1-null
mice demonstrate more severe hypertension and
renal injury compared to wild-type animals [87].
Significantly, the antihypertensive action of HO-1 is
not restricted to the systemic circulation. Induction
of HO-1 expression and CO production inhibits the
structural remodeling of pulmonary arteries and the
development of pulmonary hypertension in response
to chronic hypoxia [88]. Similar protection against
pulmonary hypertension is noted in transgenic mice
overexpressing HO-1 [89].

However, excessive production of CO may also
be detrimental. In particular, overproduction of CO
has been implicated in the vascular collapse during
septic shock. Endotoxemia results in the extensive
induction of HO-1 within the SMC and EC of large
vessels and arterioles [90]. Moreover, the adminis-
tration of the HO inhibitor, zinc protoporphyrin-IX
abrogates endotoxin-induced hypotension, suggest-
ing that CO may contribute to the decrease in sys-
temic blood pressure. Interestingly, while HO-1 null
mice are better able to maintain their systemic blood
pressure relative to wild type animals, they exhibit
increased oxidative stress, end organ damage, and
mortality during endotoxemia [91]. Consistent with
these findings, the exogenous administration of CO
has been demonstrated to blunt the deterioration of
lung, kidney, and liver function during septic shock
[92]. Thus, while CO may participate in the
hypotensive response to sepsis it may play an impor-
tant role in preserving organ function.
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Surprisingly, CO promotes endothelial dysfunc-
tion and hypertension in salt-sensitive forms of
hypertension. Studies in our laboratory found that
placing Dahl salt-sensitive rats on a high salt diet
for 4 weeks leads to an increase in blood pressure
that is associated with a significant increase in vas-
cular HO-1 protein expression and CO production
[93]. In addition, isolated gracilis muscle arterioles
from salt-treated animals demonstrate a reduced
response to the endothelium-dependent vasodilator,
acetylcholine, and to the NO synthase inhibitor, L-
NAME. Furthermore, flow-induced dilations are
abolished in these rats [93]. However, all these
responses are fully restored by acutely treating
blood vessels with a HO inhibitor. Moreover, the
co-application of CO prevents the restoration of
flow-induced dilation by HO inhibition [94].
Significantly, we observed that the administration
of the HO inhibitor, zinc deuteroporphyrin 2,4-bis
glycol, lowers blood pressure in Dahl rats treated
with a high salt diet but not in low salt control ani-
mals [94]. Collectively, these results indicate that
HO-1-derived CO mediates endothelial dysfunction
and contributes to hypertension in these animals fed
a high salt diet. Similarly, we found that increased
CO synthesis contributes to the development of
endothelial dysfunction in deoxycorticosterone
acetate-salt hypertensive rats [95]. However,
endogenous CO formation is not upregulated in
SHR rats indicating that increases in CO production
in salt-sensitive animals is not a consequence of
high blood pressure per se but may be, rather asso-
ciated with the salt-sensitive trait [95]. 

Interestingly, the vascular effect of CO in hyper-
tension varies depending on the vascular bed. While
increased CO production promotes skeletal muscle
arteriolar endothelial dysfunction in Dahl salt-sen-
sitive rats, elevated HO-1 expression and CO syn-
thesis in the coronary arteries of the same animal
helps maintain cardiac perfusion during salt-
induced hypertension [96]. The reason(s) for the
divergent action by CO in different vascular beds is
not known but may be related to differences in sol-
uble guanylate cyclase content, calcium-activated
potassium channel density, and/or NO bioavailabil-
ity in different blood vessels. 

More recently, we found that CO may also pro-
mote hypertension and endothelial dysfunction in
metabolic syndrome [97]. Obese Zucker rats, a well
established genetic model of obesity and metabolic

syndrome, demonstrate increased respiratory CO
excretion relative to lean control animals. This is
consistent with a previous report in patients with type
2 diabetes showing increased respiratory CO levels
[98]. However, the administration of a HO inhibitor
lowers CO excretion and normalizes blood pressure
in the obese animals. Furthermore, HO inhibition
restores endothelial function in resistance vessels
from these animals without any change in metabolic
parameters. These findings suggest that approaches
targeting the endogenous production of CO may pro-
vide a novel therapeutic approach in treating vascu-
lar disease in patients with metabolic syndrome. 

Further support for a role for HO-1 in promoting
hypertension is provided by genetic studies demon-
strating that transgenic overexpression of HO-1 in
vascular SMC elevates blood pressure in mice [99].
Since the ability of CO to activate soluble guanylate
cyclase is less than that for NO, it was suggested that
overproduction of CO in these transgenic animals
impairs NO-mediated increases in cGMP.  Thus, CO
may elicit a hypertensive response by decreasing the
synthesis and vascular response to NO. 

In summary, CO evokes a complex and, at times,
opposing set of actions to regulate blood pressure
(Fig. 3). This regulation occurs at multiple levels
and involves several organ systems. CO exerts an
antihypertensive effect by directly relaxing SMC via
the activation of soluble guanylate cyclase and/or
calcium-activated potassium channels. Beyond its
direct vasodilating effect, CO may also inhibit vas-
cular tone by regulating the synthesis of vasoactive
compounds. In this respect, CO has been shown to
inhibit the synthesis of the potent vasoconstrictor,
endothelin-1 and may block the cytochrome P-450-
dependent synthesis of endogenous vasoconstrictor
substances [82, 83, 100]. In addition, CO may stim-
ulate the vascular release of NO from internal stores
[78]. Finally, CO may also lower blood pressure by
depressing sympathetic outflow from the CNS and
by decreasing cardiac contractility [80, 81].
However, in certain circumstances, these actions
that promote a reduction in blood pressure are coun-
terbalanced by the ability of CO to inhibit both the
synthesis and vascular response to NO, and
marginally increase circulating renin activity
[101–102]. Thus, the relative importance and role
that CO plays in modulating blood pressure will
likely vary depending on the underlying physiologi-
cal state and the amount of CO being generated.
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Therapeutic application of CO to
cardiovascular disease

CO has recently emerged as a potential therapeutic
modality for the treatment of cardiovascular dis-
ease. Several strategies have been proposed for tar-
geting HO-1 or CO to cardiovascular tissue (Table
1). The use of pharmacological inducers of HO-1
offers a promising approach.  Many potent inducers
of HO-1 have been identified and shown to exert
beneficial effects in the circulation. Heme and its
synthetic analogues are strong inducers of HO-1
and have been demonstrated to protect against car-
diovascular disease in numerous animal models. In
addition to inducing HO-1, heme may also promote
CO synthesis by providing additional substrate for
the enzyme. We previously demonstrated that CO
synthesis is likely substrate-limited in vascular
cells, and that endogenous application of heme
results in an immediate increase in the rate of CO
synthesis [103]. However, heme and its derivatives
possess pro-oxidant properties and will require cau-
tion in their use. Natural antioxidants and dietary
supplements offer an alternative approach to stimu-
late HO-1 expression that may not provoke tissue
damage [104]. Interestingly, there is increasing

recognition that many of the vanguard drugs used to
treat cardiovascular disease, including aspirin,
statins, nitrovasodilators, rapamycin, and paclitax-
ol, are effective inducers of HO-1 and exert their
clinical benefits, at least in part, through the release
of CO [see 105]. A possible concern with the use of
pharmacological inducers of HO-1 relates to the GT
length polymorphism in the HO-1 promoter that
may make such an approach difficult in patients
with the long GT repeats that are more resistant to
HO-1 induction. Increasing HO-1 expression via
viral-mediated delivery of HO-1 circumvents this
problem and provides for a more selective approach
in targeting this gene to specific tissues [18, 27,28,
63, 64, 84]. Gene therapy approaches with HO-1
have proven highly effective in animal studies, and
the recent development of inducible and/or tissue
specific vectors will allow for a more refined pat-
tern of HO-1 expression. However, current limita-
tions in human gene therapy are well known and
will require further improvements in vector design
and certification of clinical safety and efficacy.

The administration of CO provides a direct
approach in delivering the gas. Inhalation of CO has
been demonstrated to be effective in several animal
models of cardiovascular disease [20, 68–70, 92].
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Fig. 3 Divergent regulatory
effects on blood pressure by
HO-1-derived carbon monox-
ide (CO). CO can exert an anti-
hypertensive effect by inhibit-
ing vasomotor tone, the gener-
ation of vasoconstrictors, cen-
tral nervous system (CNS)
sympathetic outflow, and car-
diac output, while stimulating
nitric oxide (NO) release from
vascular stores. Alternatively,
CO can promote hypertension
by blocking endothelial NO
synthase (eNOS) activity and
the response of soluble
guanylate cyclase (sGC) to
NO, and by increasing circu-
lating renin activity.



However, reports on tolerance to CO inhalation are
contradictory and require further investigation
[106–108]. The use of prodrugs to generate CO pro-
vides another route for the systemic administration
of CO. In particular, dichloromethane is readily
metabolized by cytochrome P450 isozymes to CO
and CO2. Interestingly, the production of CO fol-
lowing the oral ingestion of dichloromethane
markedly attenuates intimal thickening in a model
of chronic allogeneic aorta rejection in rats, demon-
strating the feasibility of this technique to convey
biologically relevant concentrations of CO [109].
More recently, the generation of novel CO-releas-
ing compounds (CORMs) provides another alterna-
tive for the delivery of CO. Several CORMs with
various solubility and release kinetics have been
synthesized and their biological activity validated
in both vascular and cardiac tissue [see 110]. These
compounds may allow for a more controlled deliv-
ery of CO and could easily be impregnated onto
various medical devices, including coronary stents.
Finally, the combined use of CO with CO-sensitiz-
ing agents, such as 3-(5’-hydroxymethyl-2-furyl)-
1-benzyl indazole (YC-1), may circumnavigate the
possible development of tissue hypoxia by decreas-
ing the amount of CO required to exert its thera-
peutic effect [111]. 

Since emerging studies suggest that CO may in
certain instances promote cardiovascular dysfunc-

tion by stimulating the production of reactive oxy-
gen species and/or by inhibiting heme-containing
proteins (e.g. endothelial NO synthase), approaches
that prevent the formation of CO may also be of
therapeutic relevance. Metalloporphyrins are well
recognized and potent inhibitors of HO that have
been widely employed to block the endogenous for-
mation of CO. These pharmacological inhibitors
resemble heme in their porphyrin structure, but the
iron core is substituted by a heavy metal such as
zinc, tin, or cobalt. These substituted porphyrins
compete with heme for binding to HO and can be
used to block HO activity both acutely and chroni-
cally [28, 80]. However, at high doses these metal-
loporphyrins are not selective for HO and can para-
doxically induce the expression of HO-1 [see 7]. In
addition, some metalloporphyrins are photosensi-
tive and can undergo non-enzymatic degradation to
release CO. Interestingly, recent work has identified
novel non-porphyrin inhibitors of HO. Several imi-
dazole-dioxolane derivatives have been demon-
strated to be potent inhibitors of HO [114, 115].
Significantly, these compounds have no effect on
NO synthase or soluble guanylate cyclase activity,
and a subset of these derivatives exhibit high selec-
tively for HO-1 relative to HO-2. These later com-
pounds may serve as important pharmacological
tools to further define the role of HO-1 and CO in
the cardiovascular system. Finally, CO production
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A

Enhancing endogenous CO synthesis and/or activity
• pharmacological induction of HO-1
• gene deliver of HO-1
• increasing substrate availability
• application of CO-sensitizing compounds

B

Exogenous delivery of CO
• inhalation of CO
• CO-containing solutions
• use of prodrugs to generate CO
• use of CO-releasing compounds

C

Inhibition of endogenous CO synthesis
• use of metalloporphyrins or imidazole-dioxolane compounds
• HO-1 antisense technology
• HO-1 small interference RNA technology

Table 1   Therapeutic strategies targeting CO in cardiovascular disease



may be blocked by inhibiting the expression of HO-
1. Molecular approaches targeting HO-1 mRNA
using both antisense and small interference RNA
technology have been successfully employed and
may provide a more specific approach in downreg-
ulating CO synthesis [112, 113]. 

Conclusion

Studies in the past few decades have defined the
molecular pathways responsible for the endogenous
production of CO and have highlighted the many
biological effects of this gas in the cardiovascular
system. This work has clearly established CO as a
physiologically relevant signaling gas, and has impli-
cated alterations in endogenous CO synthesis in the
development of cardiovascular disease.  Strategies
targeting CO represent a novel therapeutic modality
in treating a myriad of cardiovascular disorders.
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