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Abstract: Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current
methods for the detection of biologically active SEB rely upon its ability to cause emesis when
administered to live kittens or monkeys. This technique suffers from poor reproducibility and low
sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data
presented here show the first successful implementation of an alternative method to live animal
testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel
cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals,
we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji
B-cells. We presented this SEB–MHC class II complex to specific Vβ5.3 regions of the human T-cell
line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified
and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex
vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here
also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by
three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells
enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity
by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the
lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation
than the splenocyte cells containing the highest concentration of APC cells.

Keywords: staphylococcal enterotoxin type B; T-cell line; B-cell line; splenocyte

Key Contribution: The presented breakthroughs show the first successful implementation of an
activity assay for SEB using the HPB-ALL T-cell line combined with the Raji B-cell line as an
alternative to live animal emetic bioassays.

1. Introduction

Staphylococcus aureus is a common and widespread bacterial pathogen producing
twenty-three different staphylococcal enterotoxins (SEs) that are the cause of some quarter
million cases of foodborne illness in the United States per year [1]. One of the most po-
tent virulence factors generated with high ingestion and inhalation toxicity (inhalational
LD50 ∼= 20 ng/kg of body weight) is Staphylococcal enterotoxin B (SEB), which is the only
enterotoxin classified as a biological weapon due to its thermal stability, its relative ease
of production, and the lack of an existing cure for it; this results in food supplies being
susceptible to intentional or accidental contamination [2,3]. SEB affects the gastrointestinal
system, induces vomiting, and stimulates the immune system. The immune response
begins with the attachment of SEB via binding to major histocompatibility complex (MHC)
class II molecules expressed on the surface of antigen-presenting cells (APC). Antigen
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presentation does not need antigen processing to induce T-cell activation; however, the
level of cytokine secretion induced by intact superantigens was statistically lower than
that for processed superantigens [4]. The toxin also binds to the variable region (V-β)
on the T-cell receptor (TCR) molecule, forming a bridge between the APC and the TCR,
and causes polyclonal and uncontrolled activation of CD4+ T-cells [2,5–7]. Although the
super-antigenic and emetic responses are two separate effects of SEs, both responses are
strongly correlated. The other studies using site-directed mutagenesis to create altered SE
molecules showed an accompanying reduction in T-cell activation with the loss of emetic
responses [8,9]. It was estimated that SEB was responsible for 10% of the staphylococcal
enterotoxins in food poisoning outbreak cases [3,10,11]. It was shown that, among the
71 isolates originating from outbreaks of food poisoning, 54 (76.1%) possessed the SEB, SEA,
SEC, or SED genes. Since those strains were capable of producing not only SEB but also
SEA, SEC, and SED, it was not possible to independently evaluate the role of SEB alone in
those cases of food poisoning [12]. This finding emphasized the need to develop new meth-
ods to detect biologically active SEB in order to ensure food safety and to prevent SEB from
entering the food supply. The currently accepted method to detect SEs via their activity
is an in vivo bioassay using live monkeys or kittens. In this bioassay, SEs are directly ad-
ministered into the stomach of the animal and the animals are observed for emesis [13–15].
An administered dose of 10 µg of SEA produces vomiting in 50% of the animals [13,14,16].
This bioassay suffers from poor reproducibility, is expensive, has low sensitivity, and is
ethically objectionable because of the requirement for the use of experimental animals,
which causes concern for their welfare. Unfortunately, the sensitive immunological assays
that have been developed to measure the presence of SEs cannot differentiate between
the active forms of SEs (which are public health threats) and inactive toxins [15,17]. A
method that can discern active toxin from inactive or inactivated toxin would be beneficial
for the experimental development of treatment and for the processing operations of food.
It was shown that food ingredients such as the olive compound 4-hydroxytyrosol, apple
juice, and apple polyphenols inhibit biological activity in SEA [18,19]. Heat treatments,
such as the pasteurization process for milk, reduced SEA activity [20], as does pulsed
ultraviolet light treatment [21]. In our previous study, we utilized the superantigen activity
of SEs to stimulate primary naïve CD4+ T-cells and developed an assay that can distinguish
between active and inactive toxins in food [20,22,23]. These methods utilize the induction
by SEs of cytokines including IL-2 [22,23], IFN-γ [24], TNF, [25], and the cell surface marker
CD154 [26]. We measured SEs by the quantification of cytokine secretion using flow cytom-
etry [4,26] or qRT-PCR [24]. However, to eliminate any use of animals in our assays, we
utilized a human T-lymphocyte Jurkat cell-line expressing the luciferase reporter gene and
developed a bioluminescence-based assay for the detection of biologically active SEE and
SED [23,27]. We also demonstrated that SEE specifically causes the internalization of TCR
Vβ8 in a dose-dependent manner and developed a flow cytometric assay for the detection
and quantitation of biologically active SEE [28]. Correspondingly, we demonstrated that
active SEA specifically reduces surface TCR Vβ9 in a dose-dependent manner and used
this observation to quantify the biologically active SEA [4]. However, those assays cannot
detect SEB. The objective of this study was then to develop alternative methods to in vivo
monkey or kitten bioassays for SEB detection that would be able to differentiate between
active and inactive SEB.

2. Results
2.1. Ex Vivo Cell-Based Assay

In order to evaluate the ability of the ex vivo assay to quantify SEB, we measured the
effect of SEB at concentrations of 5, 1, and 0.2 µg/mL on splenocyte cells, which contained
22% of CD4+ T-cells on a population that was enriched by the negative selection of CD4+

T-cells with >90% purity and on a population enriched by the positive selection of CD4+

T-cells with >95% purity (Figure 1). After one to three days, the BrdU stain was added to
cell cultures, and then, the T-cell proliferation was spectroscopically measured. Our result
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shows that we are unable to detect any activity of cell proliferation during the first 24 h of
incubation with SEB. However, at both time periods of 48 h and 72 h, the amount of DNA
synthesized in the cells since the commencement of the experiment was linearly correlated
with the SEB concentration in splenocytes and with positively and negatively selected
purified CD4+ T-cells. The highly enriched and positively isolated CD4+ T-cell population,
which had the lowest fraction of APC cells (below 5%), provided a higher signal than the
splenocyte cells containing the highest concentrations of APC cells. The limit of detection
was 1 µg/mL of SEB in both the splenocytes and CD4+ T-cells. T-cell proliferation peaked
at 48 h and was reduced after 72 h in all three cell types.
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Figure 1. The SEB activation of splenocytes and purified CD4+ T-cells. Splenocytes (a), negatively Scheme 4. T-cells (b), 
and positively selected CD4+ T-cells (c) were incubated with 5, 1, and 0.2 µg/mL of SEB. After incubation for one to three 
days, the newly synthesized DNA was measured on each day. The error bars represent standard errors. 
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Figure 1. The SEB activation of splenocytes and purified CD4+ T-cells. Splenocytes (a), negatively
Scheme 4. T-cells (b), and positively selected CD4+ T-cells (c) were incubated with 5, 1, and 0.2 µg/mL
of SEB. After incubation for one to three days, the newly synthesized DNA was measured on each
day. The error bars represent standard errors.

2.2. In Vitro Cell-Based Assay

The ex vivo method described in the previous section has further advantages over the
in vivo bioassays that used monkeys or kittens. Far fewer animals are required because
a single mouse spleen can provide enough cells for as many as 500 tests. However, this
ex vivo bioassay is still ethically problematic because of the necessary sacrifice of live
experimental mice. Consequently, we looked for suitable cell lines that could be used
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as an alternative to mouse splenocytes and conducted experiments evaluating the use
of the human T-cell acute lymphoblastic leukemia cell line (HPB-ALL) for the detection
and quantification of biologically active SEB. We utilized Raji B-cells as antigen-presenting
cells (APCs) in conjunction with HPB-ALL. The combined cultures of HPB-ALL and
Raji cells were then incubated for 48 h with various concentrations of SEB. The relative
concentrations of interleukin 2 (IL-2), interleukin 10 (IL-10), and tumor necrosis factor alpha
(TNF-α) secreted by HPB-ALL and Raji B-cells were determined using ELISA. Since SEB
shares considerable similarity in terms of amino acid sequence with other SEs, we applied
SEA, SED, and SEE to evaluate the cross reactivity and the specificity of the assay. One-
way analysis of variance (ANOVA) was then used to identify any statistically significant
differences between the various cell treatments and control. These data are presented in
Figure 2.
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Figure 2. Assay cross-reactivity and specificity. HPB-ALL T-cells and Raji B-cells were incubated at
48 h with 1 µg/mL of SEA, SEB, SED, SEE, or control media. The specific inductions of IL-2 (a), IL-10
(b), and TNF-α (c) secretion were measured by ELISA. The error bars represent standard errors.

2.3. HPB-ALL Cells Express Vβ5.3

It has been reported that SEB stimulates human T-cells that bear any of the Vβ subunit
variants 1.1, 3.2, 6.4, 12, 13.2, 14, 15.1, 17, 20, and 22 and that SEA stimulates human T-cells
that bear Vβ5.3 [29]. Our flow cytometric analysis in Figure 3 shows that the human
HPB-ALL T-cell line expresses the Vβ5.3 gene.

There were unexpected associations found between SEB and Vβ5.3. As shown in the
ELISA results in Figure 2, SEB at a concentration of 1 µg/mL stimulates human HPB-ALL
T-cells and induces the secretion of levels of IL-2, IL-10, and TNF-α above that of the control
and without cross reactivity with SEA, or SED and SEE. This activity assay is highly specific
for the detection of SEB, and only SEB was able to induce the secretion of IL-2, IL-10, and
TNF-α using this pair of cell lines. However, the latter two cytokines are not complimentary,
and although TNF-α secretion was found to be stimulated by SEB compared to the control
and the other SEs tested, the anti-inflammatory cytokine IL-10 was reported to block the
production of TNF-α and to reduce the rate of lethal superantigen-induced toxic shock [30].
The lower degree of stimulated TNF-α secretion may be a result of the co-secretion of IL-10.
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Figure 3. The human HPB-ALL T-cell line was stained with PE-labeled antibody to Vβ5.3 and
compared with unstained cells. The histogram y-axis represents the relative number of cells, and the
histogram x-axis represents the cell-associated PE fluorescence on a logarithmic scale.

2.4. Limit of Detection

The limit of detection for the presence of biologically active SEB was determined using
concentrations of SEB ranging from 1 mg/mL to 0.1 pg/mL in the 48-hour incubation of
HPB-ALL T-cells in combination with the Raji B-cells. The results in Figure 4 show that the
amount of secretion of IL-2 was significantly different (p < 0.05) between the treatment and
the control. We observed a limit of detection of 10 pg/mL of SEB.
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Figure 4. In vitro assay for the quantification of biologically active SEB. The HPB-ALL T-cells in a
co-culture with Raji B-cells were incubated in a 96-well plate for 48 h with increasing concentrations
of SEB. The IL-2 concentration was measured by ELISA using a microplate reader with a 450 nm
filter. The error bars represent standard errors.
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3. Discussion

In this research study, we evaluated a specific assay for SEB using a cell-based alter-
native method to the emetic bioassays using monkeys or kittens, which are the currently
accepted methods used to measure the biological activity of Staphylococcal enterotoxins.
We present, for the first time, successful use of the human T-cell acute lymphoblastic
leukemia (HPB-ALL) cell line in combination with a B-cell line, leading to the development
of an inexpensive alternative to live animal testing for the detection and quantification
of biologically active SEB. The essential mechanism for this assay is complexation of the
SEB toxin and the MHC class II molecules expressed on the surface of Raji B-cells, which
then bind to the T-cell receptors of HPB-ALL cells, leading to super-antigenic activation.
The result is a new assay that is 100,000 times more sensitive than the ex vivo murine
splenocyte-proliferative response. SEB is a threat to public health with respect to accidental
contamination or poor handling, and it is also classified as a potential biological weapon
with respect to the intentional contamination of food supplies. It was reported that SEA,
but not SEB, stimulates human T-cells bearing Vβ5.3 [29]. However, our ELISA results
in Figures 3 and 4 show that SEB stimulates human HPB-ALL T-cells and induces the
secretion of higher levels of IL-2, IL-10, and TNF-α than the control. Despite SEB having
considerable amino acid sequence similarity with the other common SEs, this cell-based
assay is specific to SEB and has no cross reactivity with SEA, SED, and SEE (Figure 3). It
is possible that the T-cell receptor that is expressed on the surface of the HPB-ALL cell
line contributes to the assay specificity. This preference between specific T-cell lines and
specific SE subtypes has been noted before. When we applied SEA, SEB, SED, and SEE
to the CCRF-CEM T-cell line in combination with the Raji B-cell line, the results show
that this assay is very specific to SEA detection; only SEA activated the CCRF-CEM T-cell
line [31]. Prior research has shown the relationship between super-antigenic activity and
the emetic activity of Staphylococcal enterotoxin. The antibodies that emerged as a result
of immune response against a nontoxic mutant of SEA were found to inhibit both the
T-cell proliferation induced by toxic SEA and the emetic activity of the active toxin [8].
The site-directed mutagenesis applied to eliminate the emetic activity of Staphylococcal
enterotoxin type C2 further resulted in the elimination of SEC2 super-antigenic activi-
ties [9]. It was, therefore, assumed that an assay capable of measuring super-antigenic
activity will likewise be capable of predicting emetic response and be capable of discerning
active enterotoxin. The ability to differentiate between the inactive and active forms of
enterotoxin, which poses a threat to public health, is important for the development of
effective food treatment methods. Heat treatment, such as the pasteurization process for
milk, reduced SEA activity [20] and pulsed ultraviolet light treatment [21]. The results of
this research show that highly enriched and positively isolated murine CD4+ T-cells with
less than 5% prevalence of APC provided higher cell proliferation by stimulation with SEB
than murine splenocyte cells containing a high natural concentration of APC cells. This
appears to suggest that the requirement for the interaction of two separate types of cells,
the T-cell and an accessory, as a safety mechanism in immune response does not exist in
the response to SEB. Prior research has shown that treatments utilizing the neutralizing
anti-MHC class II antibody blocks the proliferation of purified CD4+ T-cells in response
to SEA [32]. The data in that study suggest that a subpopulation of purified CD4+ T-cells,
by the presentation of an SE molecule via MHC class II, can perform both the roles of the
traditional APCs and of T-cells, providing adequate accessory signals to themselves or
proximate CD4+ T-cells to trigger T-cell proliferation.

4. Materials and Methods
4.1. Chemicals and Reagents

The SEB, SEA, SED, and SEE toxins were obtained from Toxin Technology (Sara-
sota, FL, USA), and their purity levels at >95% were determined by SDS-PAGE and the
Coomassie blue stain. The toxins were reconstituted in water. The PE-conjugated mouse
anti-human Vβ5.3 antibody was obtained from Novus Biologicals (Centennial, CO, USA).
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4.2. Media

The cell culture media for splenocytes were sourced from Gibco (Gibco/Thermo Fisher,
Waltham, MA, USA). The cell growth medium consisted of RPMI-1640 with the addition of
10% fetal bovine serum (HyClone, Logan, UT, USA), 200 mM of glutamine, 1 mM of sodium
pyruvate, 1× MEM (Roswell Park Memorial Institute medium) antibiotic-antimycotic, and
nonessential amino acids. For murine splenocyte cells, we added an additional 50 µM
of beta-mercaptoethanol to the media (Sigma, St. Louis, MO, USA). The Russ-10 cell
culture medium consisted of 450 mL of RPMI-1640 medium without glutamine (Gibco),
10% fetal bovine serum (HyClone, Logan, UT, USA), 5 mL of sodium pyruvate (Gibco),
0.25 mL of 100 mM β-mercaptoethanol (Sigma), 5 mL of 200 mM glutamine (Gibco), 5 mL
of antibiotic-antimycotic (Gibco; containing penicillin, streptomycin, and fungizone), and
5 mL of nonessential amino acid mix (Gibco). The lysis buffer consisted of 150 mM of
NH4Cl, 100 µM of Na2EDTA, and 10 mM of KHCO3.

The cell culture media for the human cell lines were comprised of RPMI 1640 supple-
mented with 10% FCS, 1% MEM nonessential amino acids, 100 nM of sodium pyruvate,
and antibiotic-antimycotic solution. The cell cultures were maintained under a humidified
atmosphere containing 5% CO2 in an incubator kept at 37 °C.

4.3. Splenocyte Isolation and Human Cell Lines

The spleens from female C57BL/6 mice were aseptically removed, and a syringe
with a needle filled with the culture medium was used to harvest the splenocytes. The
suspension of cells was then centrifuged at 200× g at 4 ◦C for 10 min. The red blood
cells were lysed with a lysis buffer and then centrifuged and resuspended in the Russ-10
medium. The viable cells were counted using trypan blue and a hemocytometer.

The human T lymphoblastoid line HPB-ALL and the Raji B-cell line were obtained
from the Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures
(Germany). All cells were maintained in an incubator at 37 ◦C under a humidified 5%
CO2 atmosphere.

4.4. Positive or Negative Isolation of Murine CD4+ T-Cells

For the positive and negative isolations of murine CD4+ T-cells, the Dynabeads Mouse
CD4 L3T4 Positive Isolation kit and the Dynal Mouse CD4 Negative Isolation Kit were used
according to the manufacturer’s instructions (Thermo Fisher Scientific). For the positive
selection isolation buffer, PBS supplemented with 0.1% BSA and 2 mM of EDTA was
briefly used to resuspend splenocytes at a concentration of 1 × 107/mL. The Dynabeads
(25 µL of Dynabeads per 107 cells) were washed and incubated with splenocytes for 20 min
on ice and were gently rotated. Afterwards, the cells containing the Dynabeads were
placed on a magnet for 2 min. The media were then removed, the cells still attached to
the Dynabeads were washed three times with the isolation buffer, and then they were
resuspended in Russ-10 media (107 cells per 100 µL of media). The DETACHaBEAD mouse
CD4 was added (10 µL per 107 cells) and incubated for 45 min with gentle rotation at room
temperature. The cells detached from the Dynabeads were then washed three times and
resuspended in media. For the negative selection of CD4 cells, heat-inactivated FBS and
antibody were added to the splenocytes and incubated for 20 min on ice. The cells were
washed with an isolation buffer, and pre-washed mouse depletion Dynabeads were then
added and incubated for 15 min with gentle rotation at room temperature. The cells and the
Dynabeads were then placed on a magnet, and the supernatant was obtained and further
washed. The supernatant contained the negatively isolated mouse CD4 T cells.

4.5. Quantitative Determinations of SEs by Cytokine Secretion

In a clear 96 well plate, 50 µL of 2 × 106 cells per mL suspension of HPB-ALL cells,
25 µL of a 2 × 106 cells per mL suspension of Raji cells, and 25 µL of SEs at four times the
final target concentration were combined in a cell culture medium. The cells were then
incubated at 37 ◦C for up to two days. The supernatants were then harvested after 24
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and 48 h and were further tested for cytokine secretion (IL-2, IL-10, and TNFα) by ELISA
following the manufacturer’s instructions (BD Bioscience OptEIA Human ELISA).

4.6. Measurement of Bromodeoxyuridine (BrdU)

After incubation, cell proliferation was measured by adding bromodeoxyuridine (5-
bromo-2-deoxyuridine, BrdU)-labeled DNA to each well 4 h before fixation, as instructed
by the outlines from the manufacturer (Calbiochem, San Diego, CA, USA). We briefly
describe this procedure: diluted BrdU label was added to the cells and incubated at 37 ◦C
for 4 h. The labeling medium was then removed by spinning the cells at 200× g for 10 min.
Fixative denature reagent (200 µL/well) was added and incubated for 30 min at RT and
then decanted. The anti-BrdU antibody, attached to horse radish peroxidase, was then
added (100 µL/well) and incubated for 90 min at RT. The wells were washed three times,
the substrates were added at 100 µL/well, and then they were incubated until development
was sufficient (5–30 min). The spectroscopic measurements were made at absorbances of
620 and 450 nm.

4.7. Flow Cytometry

Flow cytometry was performed using a FACSAria Fusion instrument from BD Bio-
sciences (San Jose, CA, USA). The data analysis was performed using FlowJo software from
BD Biosciences.

4.8. Statistical Analysis

Statistical analysis was performed with SigmaStat 3.5 for Windows (Systat Software,
San Jose, CA, USA). One-way analysis of variance was used to determine the detection of
SEB. The experiments were repeated at least three times, and only results with p < 0.05
were considered statistically significant. A t-test analysis was used to determine whether
there were any significant differences between treatment and the control.

4.9. Ethics Statement

All of the procedures with animals were carried out according to institutional guide-
lines for husbandry approved by the Institutional Animal Care and Use Committee of the
U.S. Department of Agriculture, Western Regional Research Center (USDA IACUC). These
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(Protocol #13-1). The mice were euthanized using rapid cervical dislocation to minimize
their suffering.
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