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Abstract: The robustness and stability of the system depend on structural integrity. This stability is,
however, compromised by aging, wear and tear, overloads, and environmental factors. A study of
vibration and fatigue cracking for structural health monitoring is one of the core research areas in
recent times. In this paper, the structural dynamics and fatigue crack propagation behavior when
subjected to thermal and mechanical loads were studied. It investigates the modal parameters of
uncracked and various cracked specimens under uniform and non-uniform temperature conditions.
The analytical model was validated by experimental and numerical approaches. The analysis was
evaluated by considering different heating rates to attain the required temperatures. The heating
rates were controlled by a proportional-integral-derivative (PID) temperature controller. It showed
that a slow heating rate required an ample amount of time but more accurate results than quick
heating. This suggested that the heating rate can cause variation in the structural response, especially
at elevated temperatures. A small variation in modal parameters was also observed when the applied
uniform temperatures were changed to non-uniform temperatures. This study substantiates the
fatigue crack propagation behavior of pre-seeded cracks. The results show that propagated cracking
depends on applied temperatures and associated mass. The appearance of double crack fronts and
multiple cracks were observed. The appearance of multiple cracks seems to be due to the selection
of the pre-seeded crack shape. Hence, the real cracks and pre-seeded cracks are distinct and need
careful consideration in fatigue crack propagation analysis.

Keywords: fatigue crack propagation; vibration analysis; crack depth measurement; modal parameters

1. Introduction

Engineering structures and components experience fatigue and failure during opera-
tions. This failure is due to many reasons, such as wear and tear, cycles of loads, working
environments, crack occurrence and propagation, etc. Researchers considered that early
detection is the solution to prevent catastrophic damage. Modal analysis is one of the
common techniques used to study structure health monitoring [1-3]. This paper aims
to study the modal and crack propagation behavior of a beam subjected to thermal and
mechanical loads.

Generally, the vibration of the components impacts the durability and reliability of
the system. Warminska et al. [4] outlined that structural dynamics were driven by thermal
distribution. In a similar study, Yang and Shen [5] stated that vibration response was
determined by the thermal effect, boundary conditions, and material composition. Shen
and Wang [6] identified temperature as impacting the vibration frequency and marginal
influence on the nonlinear-to linear frequency ratio. Kitipornchai et al. [7] studied random
vibration and noticed it to be affected by temperatures. Fatigue due to vibration is also
studied based on applications [8-10]. Vibration-based studies examined the dynamic
response of beams and damage quantification approaches for metallic and non-metallic

Materials 2021, 14, 7071. https:/ /doi.org/10.3390/ma14227071

https://www.mdpi.com/journal /materials


https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-4847-3301
https://orcid.org/0000-0001-9028-1288
https://doi.org/10.3390/ma14227071
https://doi.org/10.3390/ma14227071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14227071
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14227071?type=check_update&version=3

Materials 2021, 14, 7071

2 0f 22

materials [11-14]. The vibration analysis method was often used to extract defects and faults
in real applications such as an exhaust manifold [15], a turbine blade and rotor [16,17],
servo-hydraulics [18], a jet engine [19], etc. The mechanical system was disturbed by
coupled loads. The changes in applied thermal and mechanical loads alter the fundamental
frequencies of the system [20,21]. The thermal effect on structures was studied in different
scenarios [22-29]. Techniques were developed to predict the high-frequency response of
beams, explore the natural thermal vibration, and study the mechanical fatigue of metallic
beams. The researchers noticed that the applied thermal load generates thermal stresses
and changes in mechanical properties. Thermal vibration was caused by thermally induced
expansion. It was also found that the interatomic bond length increases with increasing
temperatures [23]. Recent review papers on the dynamic response of the system at elevated
temperatures can be found in the literature [1,2,30-33].

Even though there are various studies on structure dynamics, the existing research has
not considered the heating duration and non-uniform temperatures conditions which could
potentially affect the structural dynamics. In this study, the modal parameters and crack
propagation behavior of a cantilever beam subjected to thermal and mechanical loads were
evaluated. This beam was selected because many aircraft wings and turbine blades operate
akin to a cantilever beam. This research considered three heating rates to examine the effect
of heating duration on structural instabilities. Ramping of 2 °C/min was assumed as a
slow heating rate, 5 °C/min as moderate, and 8 °C/min as high. This variation in ramping
temperature to achieve the required temperature allowed the beam to be exposed to the
heat for different durations, even for the same temperature. The evaluation of the modal
response and fatigue crack propagation analysis was conducted separately for uniform
and non-uniform temperatures. A pre-seeded crack of rectangular shape was selected to
evaluate the crack propagation in this study.

The finite element method (FEM) and dual boundary element method (DBEM) are
further techniques used to analyze the structural dynamics. FEM is commonly used to
study large structures. One of the disadvantages of FEM is modelling cracks in FEM
comprises re-meshing of the element particularly during crack growth [34,35]. Moreover,
DBEM simplifies the step of the remeshing process and acquires more accurate results by
capturing the stress field at the crack front [36,37]. Recently, a coupled FEM-DBEM approach
was proposed based on the superposition principle to analyze crack scenarios [38,39]. This
coupled procedure has the advantages of minimizing the runtimes, and is able to predict the
stress intensity factor, crack growth and its crack paths with accuracy. However, this paper
is more focused on the analytical and experimental factors for crack propagation analysis.
However, we used numerical modelling for comparative studies on modal parameters,
thermal distribution and stress—strain distribution only, and hence present our results.

The paper proceeds with an analytical formulation to estimate the modal parameters
subjected to thermal and mechanical loads. This formulation considered the effective length
of the beam due to thermal expansion along with the accelerometer mass in a fixed-free
boundary condition. Next, a linear temperature distribution approximation along the
beam is presented. The experimental method and numerical analysis are then described
on the basis of a test performed in uniform and non-uniform temperature conditions. In
the Results and Discussion section, the thermal properties of the experimental metal Al
2024-T3 and thermal and elastic strain intensity analysis are discussed. The comparison of
the modal behavior of a beam under uniform and non-uniform temperatures conditions is
also reported. The last section presents the crack propagation behavior when subjected to
thermal and mechanical loads.

2. Material and Methods
2.1. Analytical Formulation

The study of the structural dynamics of cantilever beams is familiar, because many
engineering applications, particularly aircrafts and turbines, operate akin to a cantilever
beam. In this formulation, the Bernoulli-Euler beam theory with a uniform cross-section in
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fixed-free boundary conditions is considered. The vibration force F(x, t) and the accelerom-
eter with its mass m is mounted at the free end of the beam. Generally, the original length
of the beam changes due to the applied temperature. Therefore, the effective length of the
beam L., which is the original length with its thermal expansion, is considered for this
analysis. The beam is assumed in one-dimensional longitudinal expansion only because
the beam width B and thickness / are insignificant compared to its length. The equation of
the beam can be expressed as:

otu 0%u
where u represents the transverse displacement, p is the mass density of the beam, and
A is the cross-sectional area. The applied force is zero for free bending vibration, and
consequently, the equation is reduced as:

EI otu(x,t) u(x,t)
(pA+m)< ox* >+ oz 0 @

The solution of Equation (2) can be obtained through a separation of dependent
variable method expressed as:
u(x, t) =U(x)V(t) (©)]

Thus, the free vibration equation of the beam can be deduced in the form of a separable
variable method as:

d*U(x) 2V (1)
. EI ( dx* ) _ dr? (4)

(oA +m)  U(x) V(t)

Let w? be constant, then

d*U(x) 2
o () am .
(pA+m) U(x) V(t)

Separating the time and spatial variable, respectively, we have:

dz;;(t) +w?V(t) =0 (6)
d*u A+m)U
( dxgx)) _ o2 (p Eﬂ;) (x) _ 0 @)

Solving the free vibration equation of the beam as discussed in our previous paper [40],
we obtained the fundamental frequency of the beam expressed as:

_w _ (.BnLe)z EI
f - 27T - 27T (pA+m)Le4 (8)

The modulus E is a temperature-dependent property that varies with temperature.
The modulus decreases with increasing thermal energy along the beam. This decrease
is assumed as being linear with temperature rise. The approximate relationship [41] is
given as:

E(T) =E, (1 - cp£> 9

where ¢ = 0.3 is the proportional constant, T, is the melting temperature, T is the tempera-
ture at the measured value of E, and E, is the modulus at 20 °C. When the beam is long,
such that it has different temperature zones across the beam length, the effective or the
equivalent modulus of the beam can be calculated by taking the average of the modulus.
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Considering that the effective modulus E, is more applicable when the cross-section area of
the beam is non-uniform, the fundamental frequency of the beam due to linear temperature
distribution can be obtained as:

w  (BuLe)’ E.I
f - 21 - 27 (pA+m)L€4 (10)

The modifications in the fundamental frequency due to the crack propagation on the
beam can be found as [42]:
AQ
20“"
where Q is the total deformation energy due to the beam deflection and AQ is the change
in the deformation energy due to crack formation, represented as:

Awye = (11)

M?
AO = — 12
Q=3 (12)
where x; is the stiffness of the crack beam represented by Equation (13)
Bh?E
= (13)
727 (4)

2 3 4 5 6
where F(f) = 0638(f5) —1035(4) +3.720(f) —5177(}) +7553(f) -
7 8
7.332 (tﬁc) +2491 (tﬁc) is the crack function and ¢, is the crack depth.
Thus, the new natural frequency of crack beam can be computed from Equation (14):

_ AQ
Wye = (1 - 2Q>wn (14)

The amplitude of the beam was estimated using Equation (3). The modal amplitude
is dependent on the respective natural frequencies of crack and non-damaged beam. The
natural frequencies of the beam at different temperatures were analyzed using Equation (10).
The change in the frequencies due to crack formation was computed using Equation (14).

2.2. Linear Temperature Distribution Approximation

Aircraft wings and turbine blades operate akin to a cantilever beam, and the tem-
perature distribution is not uniform, but instead resembles a type of linear temperature
distribution. This beam can be treated as one-dimensional because the thickness of the
blades is thin as compared to its length. In such a case, we can use the one-dimensional
law. We expressed the heat conduction equation based on Fourier’s law of the beam in
Equation (15). Figure 1 shows the heat flow by conduction. We can write the equilibrium
energy as Equation (16).

oT
q—(q+a§fHM>:0 (16)

By solving the equation, we can find that (—kAngg ) = 0. If the cross-section area and

2T
2

thermal conductivity are constant, we find that ( oy

) = 0. Integrating, we get ?TI =Cy,
Integrating again, we obtain

T=Cix+Cy (17)

where C; and C; are integration constants, which can be found from the given boundary
conditions as T(0) = Ty at x = 0 and T(L,) = T, at x = L,.
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Hence, T1 = Cz and T2 = Cng + Tl.

/\_/\/

T1

/\_/\/

Figure 1. Heat flow by conduction.

Therefore, the linear temperature distribution at any point on the beam can be found as:

T(x) = (TZLETl)er T (18)

2.3. Experimental Methods

Aluminium 2024-T3 was selected for this research. Three types of specimens: without
crack, with crack, and propagating cracks were chosen for the experiment. The crack
specimens were classified into three crack depths: 0.25, 0.5 and 1 mm, each with a rect-
angular shape. This predefined crack depth was chosen to test the beam at various crack
conditions under thermal and mechanical loads. The crack location was the same for of
all the experiment specimens, which were 4.5 mm away from the fixed end. This crack
location was considered because of the maximum stress concentration in the fillet region of
the geometry. The geometry and its dimensions are shown in Figure 2.
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Figure 2. Specimen geometry dimensions in mm (a) without crack (b) with crack.
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The specimens were manufactured to have accurate dimensions using a computer
numerical control machine. This experimental arrangement was considered to access the
modal response of the beam under uniform and non-uniform temperatures at a maximum
temperature of 200 °C. The beam response was evaluated at three heating rates, namely
2,5 and 8 °C/min. The first heating rate was assumed as a slow heating rate, while the
others were assumed as moderate and high, respectively. These rates were chosen to test
the influence of heating duration on modal parameters. This controlled rate of heating
was achieved by using a proportional-integral-derivative (PID) temperature controller
manufactured by Omega engineering, Manchester, UK. The detail of the experimental
scheme is shown in Figure 3, and the experimental setup is shown in Figure 4. For uniform
temperature, the heat was supplied in both heating mats. However, the heat was supplied
only at one heating mat for non-uniform temperature, i.e., a linear temperature distribution.
Thereby, we were able to achieve the linear temperature distribution across the beam.

| [ P [ i
| | Crackdepth | |  Rateofheating | § |
I ! [ | !
| i . i i Uniform b :
. i i - P Frequency i
i I » H P i
: 25°C T .
! i P : : o L Amplitude i
. [ — 50 °C P i
P [ ) H 100 °C [ i
| [ P o | [
i 0.25 mm b Ramp 2 °C/min b 150 °C b !
| J T R i o i
! ! 0.50 mm D Ramp 5 °C/min L b i
Pl [ i : . P i
: i P Ramp 8 °C/min . Non-uniform b i
| [ il P i
[ b [ 25-27°C b !
i g?g 21:[11 : ‘ _i:_, 3350 °C | E Frequency i
L : . ! 100-180°C " Amplitude |
P [ il 131-150 °C i i
! [ i o i
! [ Pl [ i
- L N L . Bl

,,,,,,,,,,,,,,,,,

Figure 3. Detail of the experiments.

2.4. Numerical Analysis

The numerical simulation to analyze the modal parameters was conducted using
the ANSYS©2019 R2 workbench (Ansys, Inc. Canonsburg, PA, USA). The geometry of
the specimen was drawn from the build-in design modeler. The model was built in a
fixed-free boundary condition. The sinusoidal load with an amplitude of 2 mm was
enforced as a mechanical load at the fixed end. The thermal loads were provided in a
steady-state condition. The thermal properties of the material, such as the elastic modulus,
coefficient of thermal expansion, and thermal conductivity were incorporated into the
model at respective temperatures. The modal analysis module was utilized to evaluate
the modal frequency of the beam for healthy and pre-seeded crack specimens separately.
The harmonic module was used to analyze the modal amplitude of the beam. The meshed
density of this study was 3 mm, with 8833 nodes and 1728 elements. This evaluation of
modal parameters was conducted separately for with crack and without crack conditions
at various temperatures.
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Figure 4. Experiment set-up.

3. Results and Discussions
3.1. Thermal Properties of Al 2024-T3

Aluminium 2024-T3 is selected for this research. The thermal properties of Al 2024-T3
were tested for various temperatures in the dynamic mechanical analyzer (DMA) and
thermal-mechanical analyzer (TMA). The macro-expansion probe was used for TMA
results; however, a single cantilever clamp was used for elastic modulus DMA results. The
elastic modulus is sensitive to temperatures, as shown in Figure 5. The modulus decreases
linearly with the temperature rise. The tests were conducted with a temperature ramp of
2 °C/min to raise the temperature from 30 to 250 °C. The coefficient of thermal expansion
of healthy specimen is shown in Figure 6, and crack specimens of 0.25, 0.5, and 1 mm crack
depth are shown in Figures 7-9, respectively. The results show that thermal expansion
increases linearly with the temperature rise. It also shown that changes in temperature
and crack depths have small changes in dimension per degree Celsius as depicted in the
figures. This suggests that the coefficient of thermal expansion varies per degree Celsius
and also concerning crack depth.

The thermal expansions were measured without crack and with crack conditions.
It was noticed that the coefficient of thermal expansion is increased from 0.039 to 0.097 um/°C
in the case of without cracks. However, in 0.25 mm crack depth it increases from 0.041 to
0.096 um/°C while, in 0.5 mm it rises from 0.0071 to 0.083957 um/°C and 0.1 mm crack
depths start from —0.031 to 0.073 um/°C. Therefore, the coefficient of thermal expansion
is not uniform in all cases. Comparatively, the greater temperature has higher thermal
expansion per degree Celsius than lower temperature. This indicates that the thermal
expansion increases linearly with an increase in temperature, but with a different rate and
crack conditions.
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Figure 5. Elastic modulus of Al 2424-T3.
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Figure 9. Thermal expansion of 1 mm crack depth specimen.

3.2. Thermal and Elastic Strain Intensity Analysis

The applied temperature is one of the factors that affect the modal response of the
beam. In this study, two types of temperatures, uniform and non-uniform temperature
loads, were employed to evaluate the effect on modal parameters and stress and strain
intensity. The evaluations were executed separately for both temperatures and different
cracked and uncracked specimens. In uniform temperatures, the temperature across the
beam was maintained at the same temperatures. However, in non-uniform temperatures,
the two ends of the beam were maintained at different temperatures, as described in the
details of the experiments. The numerical analysis showed that the temperatures were
linearly distributed across the beam in the case of non-uniform temperatures. The heat
flow was from the high-temperature region to the low-temperature zone. In this study, all
the higher temperatures were maintained at the free end, while lower temperatures were
maintained at the fixed end. It was noticed that heat flux was concentrated more at the
crack region, which was the fillet zone of the beam.

The assessment of stress and strain intensity was conducted for all types of specimens
in both uniform and non-uniform temperatures distribution. It was observed that there
was a stress concentration in the crack zone than in any other area of the beam. Moreover,
the stress and strain intensity were more concentrated at the back of the crack region than
in the crack area, as shown in Figure 10. It was also noticed that the stress concentration for
the uncracked specimen was in the fillet region of the specimen. It was seen that stress and
strain were produced more when the temperature increases. There was an augmentation
of stress and strain intensity in the crack tip region when the crack depth increases. Hence,
crack depth and applied thermal influence the stress and strain intensity.

3.3. Modal Behavior of a Beam under Uniform and Non-Uniform Temperature

This research work studies the modal behavior of the cantilever beam when subjected
to thermal and mechanical loads. The evaluation of the modal parameters was imple-
mented in a uniform and non-uniform temperature distribution conditions. The modal
behavior of the beam was examined at three heating rates, as discussed in a previous
paper [40]. The modal characteristic of the beam in uniform temperature was presented in
a previous paper [40]. This paper analyzed the beam response under non-uniform temper-
ature conditions and comparison of the modal dynamics in both temperatures. The natural
frequencies of the healthy and crack specimens were evaluated. The decrease in modal
parameters with the temperature rise was seen in the case of uniform temperature. The
decreasing trend of fundamental frequency for the healthy specimen is shown in Figure 11.
The natural frequencies of crack specimens with crack depths of 0.25, 0.5 and 1 mm are
presented in Figures 12-14, respectively. It was seen that heating rates impacted the modal
frequencies, as depicted in the figures. Moreover, this heating effect was negligible at low
temperatures but considerable at high temperatures.
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(b)

Figure 10. Stress intensity of 0.25 mm crack depth at 100-180 °C. (a) Top view, (b) Bottom view.
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Figure 11. Natural frequency of healthy specimen in non-uniform temperature.
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Figure 12. Natural frequency of 0.25 mm crack depth in non-uniform temperature.

----o---- Analytical
-------- Ramped at 2<C/min
----0---- Ramped at 5C/min

Ramped at 8<T/min
----#---- Numerical

27-25 50-33  100-80 150-131 200-185
Temperature (°C)

----e---- Analytical
----0---- Ramped at 2 T/min
----o---- Ramped at 5 <T/min

Ramped at 8 T/min
----e---- Numerical

27-25  50-33  100-80 150-131 200-85
Temperature (°C)



Materials 2021, 14, 7071

11 of 22

575
— Q=z::::
- v--_--.:::::s;_\
I 57 TR
= AN
3 NI
S 565 Ny
s N
§ 5 ----e---- Analytical ‘
= Ramp at 2 T/min o
g Ramp at 5 </min
= 55.5 Ramp at 8 <T/min
= ----e---- Numerical

55

27-25  50-33  100-80 150-131 200-185
Temperature (°C)

Figure 13. Natural frequency of 0.5 mm crack depth in non-uniform temperature.
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Figure 14. Natural frequency of 1 mm crack depth in non-uniform temperature.

The change in fundamental frequencies for crack depths was also visible. The frequen-
cies decrease when the crack depth increases. This drop in frequencies was steadier at low
temperatures and crack depths. However, this tends to progress rapidly when the crack
depth and temperature rise. However, this frequency behavior is limited, as it becomes
steadier once it reaches certain crack depths, as represented in Figures 13 and 14. The
modal amplitudes of the beam when subjected to thermal and mechanical loads for uncracked
samples and samples with crack depths of 0.25, 0.5 and 1 mm are presented in Figures 15-18,
respectively. The amplitude drop corresponded to the frequencies. It decreases with the
decrease in frequencies as the temperatures rise. Similarly, the heating effect affected it.
The ramp in temperature of 2 °C/min showed the lowest amplitude compared to the ramp
of 5 °C/min and 8 °C/min. This signifies that heating at a lower rate accommodates more
heat into the beam, and thereby the beam becomes less stiff. However, this effect was
insignificant at low temperatures and was more considerable at high temperatures.

In this study, the modal parameters of the cantilever beam were compared for both
uniform and non-uniform temperatures. The results show that the modal parameters vary
for both the temperatures conditions. It was noticed that the modal parameters were higher
under non-uniform temperatures than under uniform temperatures. Even though there
was a small variation in their responses, it was still noticeable. This small difference is due
to the small temperature ranges. Their dissimilarities were minimal at low temperatures
and visible at higher temperatures. The comparison of the fundamental frequencies for
healthy and various crack depths specimens is shown in Figures 19-22. Similarly, the
modal amplitude of the cantilever beam varies for both temperatures. The results show
that the amplitude differences were obvious only at high temperatures.
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Figure 17. Modal amplitude of 0.5 mm crack depth in non-uniform temperature.

The variations in the amplitude are due to the differences in the frequencies at the
respective temperature range. The modal amplitude of uncracked and cracked beams is
presented in Figures 23-26. The modal parameters of the cantilever beam were examined
with the changes in thermal properties due to the changes in temperatures. The illustration
of the thermal properties concerning temperatures is shown in Figure 27. As is seen from
the graph, the storage modulus decreases with an increase in temperature, while the
coefficient of thermal expansion increases linearly with the elevation in temperature. The
corresponding changes in natural frequencies with the changes in storage modulus are
presented in Figure 28. It is seen that the fundamental frequencies of the cantilever beam
are related to the changes in the modulus under given temperatures. However, the beam
frequencies and thermal expansion are contrasting. The beam response decreases while
thermal expansion increases when the temperatures rises, as shown in Figure 29. Thus, the
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modal characteristic of the cantilever beam is dependent on the nature of the changes in
thermal properties concerning temperatures.

Modal amplitude (mm)

Figure 18. Modal amplitude of 1 mm crack depth in non-uniform temperature.
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Figure 19. Comparison of natural frequency of undamage specimen ramped at 2 °C/min.
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Figure 20. Comparison of natural frequency of 0.25 mm crack depth ramped at 2 °C/min.
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3.4. Crack Propagation Behavior When Subjected to Thermal and Mechanical Loads

In this study, different types of pre-seeded crack specimens were chosen to analyze
crack propagation. Crack depths of 0.2, 0.5 and 1 mm were considered for the uniform
temperature distribution between 25 and 200 °C, while crack depths of 1, 1.3 and 1.5 mm
were chosen for the non-uniform temperature distribution. The differences in crack depth
for both temperature types were considered, because lower crack depth takes a longer
time to propagate, which becomes a problem regarding maintaining the non-uniform
temperature. Therefore, greater crack depths were considered under non-uniform analysis.
The propagated crack depth was captured using a Dino-Lite Digital Microscope. Then,
crack depths were measured based on pixels contained in the picture capture from the
specimen. The propagated crack depth measurement for a pre-seeded crack depth of
0.5 mm at 25 °C is shown in Figure 30.

It was observed that crack propagation was quicker at lower temperatures than at
elevated temperatures. This is due to the formation of plasticity at lower temperatures and
more ductility at higher temperatures. It was also noticed that sometimes, a propagated
crack develops multiple crack fronts within the pre-seeded crack. This is more frequent
during the lower-temperature experiments. Moreover, the fatigue crack propagation was
quicker when there was a single crack in the same direction. However, the propagation
appeared sluggish whenever there was a dual crack front from the opposite end. Never-
theless, the speed of fatigue crack propagation was dependent on applied temperatures,
attached end mass, and its alignment.

The evaluation of fatigue crack propagation at different temperatures showed a non-
uniform crack pattern. This was, however, due to the selected shape of the pre-seeded crack.
The occurrence of the first crack from the pre-seeded crack was not identical, even under
the same boundary conditions. In this research, a rectangular-shaped pre-seeded crack was
considered, which sometimes generated multiple cracks, as shown in Figure 31. It sometimes
presented a double crack front. This propagation accelerates at lower temperatures than
at elevated temperatures. This happened due to the growth of plasticity at the crack tip.
Therefore, the modal parameters of the beam were not identical in the case of propagated
crack. The actual crack and pre-seeded crack might be the problem. Hence, fatigue crack
propagation evaluation on a pre-seeded crack, especially a rectangular crack, was not
viable. This suggested that crack propagation analysis should be based on a real crack, or
something resembling it.

Crack
Initiation

Figure 30. Cont.
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1.911 mm

Figure 30. Sequence of crack propagation of pre-seeded 0.5 mm crack depth at room temperature. (a) 1st capture at crack
initiation, (b) 2nd capture, (c) 3rd capture, (d) 4th capture, (e) 5th capture, (f) 6th capture, (g) 7th capture.

(b)

Figure 31. Cont.
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(d)

Figure 31. Double crack appearance in pre-seeded 1 mm crack depth. (a) Top view, (b) bottom view, (c) side view, (d) final breaking.

Fatigue crack propagation evaluation was performed for various pre-seeded crack
depths. The analysis was performed separately for uniform temperatures and non-uniform
temperatures. The dynamic response of the beam was recorded during the crack propaga-
tion. The crack depth measurement and its modal parameters for a 0.25 mm pre-seeded
crack depth subjected to isothermal and mechanical loads is given in Table 1. "Total pixel” is
the total number of pixels contains in the specimen thickness. ‘Scaled pixel” is the number
of pixels contained in a 1 mm ruler. Therefore, the number of pixels contained in 1 mm
can be found. The crack depth pixel is the total number of pixels present in the crack.
Hence, crack depth can be found by using the number of pixels contained in the crack.
These procedures for measuring crack depth were repeated for each crack depth until total
damage was achieved. It was observed that crack propagation was different for different
temperatures. The corresponding natural frequency and amplitude were recorded during
the crack propagation. It showed that the experimental results were comparable to the
analytical results, although there was a small variation.

Table 1. Crack propagation at isothermal temperature of 50 °C for pre-seeded 0.25 mm crack depth.

Crack Crack Total Scaled — 1 Pixel = Natural(lﬁzquency Modal(;\lrlzl))lltude
Depth Depth Pixel Pixel Pixel mm

(mm) Pixel Experiment Analytical Experiment Analytical
0.4047 26 203 64 64.2405 0.0156 16.3 16.23 18.11 18.13
0.8786 57 205 65 64.8734 0.0154 15.11 14.97 17.93 17.85
0.9511 62 206 65 65.1899 0.0153 14.74 14.62 17.26 17.14
1.6874 110 206 65 65.1899 0.0153 12.81 12.65 15.38 15.21
2.1996 142 204 65 64.5570 0.0155 10.73 10.61 11.81 11.69
2.6667 173 205 64 64.8734 0.0154 6.71 6.68 5.16 5.13
2.8812 186 204 65 64.5570 0.0155 521 5.1 41 3.97

The results of crack propagation analysis show that a constant crack depth cannot be
obtained for different temperatures. The propagation was not identical. The appearance
of the first crack or crack initiation consumed much of the time in the whole propagation
leading to failure. Additionally, the crack initiation was dependent on the pre-seeded
crack depth. It was noticed that a deeper crack depth tends to appear to initiate cracking
easily. Once the crack appeared, it was easier to accelerate the crack growth. This study
observed that crack propagations were irregular, and they varied according to applied
temperatures and pre-seeded cracks, as shown in the figures below. The comparison of
frequency for isothermal temperatures are presented in Figures 32 and 33, while Figures 34
and 35 show the results of the modal amplitudes. The modal amplitudes are dependent
on their fundamental frequencies; therefore, they vary with the variance in frequency.
The comparison of modal parameters under non-uniform temperatures is presented in
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Figures 36 and 37. The results show that modal parameters are more linear in nature than
those of uniform temperatures. This suggests that the applied temperatures affect the
modal parameters of the beam.
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Figure 32. Comparison of the natural frequency of the propagated crack at an isothermal temperature

of 50 and 100 °C.
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Figure 33. Comparison of the natural frequency of the propagated crack at an isothermal temperature
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Figure 34. Comparison of the modal amplitude of the propagated crack at an isothermal temperature
of 50 and 100 °C.
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Figure 35. Comparison of the modal amplitude of the propagated crack at an isothermal temperature
of 150 and 200 °C.
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Figure 36. Comparison of the modal amplitude of propagated crack at a non-uniform temperature.
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Figure 37. Comparison of the natural frequency of the propagated crack at a non-uniform temperature.

4. Conclusions

The vibration and fatigue cracking depending on structural dynamics are of serious
concern in engineering applications. The applied temperature and heating rate can affect
the overall structural integrity. This research aims to study the impact of applied thermal
load and the heating rate on modal dynamics and crack propagation behavior. The evalu-
ation showed that there was a variation in modal responses when changing the applied
temperature, although the difference was small but considerable at high temperatures.
The modal parameters were different for different heating rates, especially at elevated
temperatures. This showed that experimental analysis at slow heating rates provided more
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precise results with the analytical results. The dissimilarities of modal response were also
associated with the changes in thermal properties due to the change in temperatures.

This study demonstrated the fatigue crack propagation behavior of a cantilever beam
under uniform and non-uniform temperatures conditions. The results of crack propagation
demonstrate nonlinear crack growth at both high and low temperatures. Sometimes, double
crack fronts and multiple cracks developed on the pre-seeded crack surface. However,
this may be due to the selected pre-seeded crack shape. A pre-seeded rectangular crack
shape was considered for this research. Hence, fatigue crack propagation evaluation on a
pre-seeded crack, especially a rectangular crack, was not viable. It is worthwhile to choose
a real crack for crack propagation analysis in the future.
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