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Introduction: Galactose-deficient IgA1 (Gd-IgA1) plays a key role in the pathogenesis of IgA nephropathy

(IgAN). Tonsillectomy has been beneficial to some patients with IgAN, possibly due to the removal of

tonsillar cytokine-activated cells producing Gd-IgA1. To test this hypothesis, we used immortalized IgA1-

producing cell lines derived from tonsils of patients with IgAN or obstructive sleep apnea (OSA) and

assessed the effect of leukemia inhibitory factor (LIF) or oncostatin M (OSM) on Gd-IgA1 production.

Methods: Gd-IgA1 production was measured by lectin enzyme-linked immunosorbent assay; JAK-STAT

signaling in cultured cells was assessed by immunoblotting of cell lysates; and validated by using small

interfering RNA (siRNA) knock-down and small-molecule inhibitors.

Results: IgAN-derived cells produced more Gd-IgA1 than the cells from patients with OSA, and exhibited

elevated Gd-IgA1 production in response to LIF, but not OSM. This effect was associated with dysregulated

STAT1 phosphorylation, as confirmed by STAT1 siRNA knock-down. JAK2 inhibitor, AZD1480 exhibited a

dose-dependent inhibition of the LIF-induced Gd-IgA1 overproduction. Unexpectedly, high concentrations

of AZD1480, but only in the presence of LIF, reduced Gd-IgA1 production in the cells derived from patients

with IgAN to that of the control cells from patients with OSA. Based on modeling LIF-LIFR-gp130-JAK2

receptor complex, we postulate that LIF binding to LIFR may sequester gp130 and/or JAK2 from other

pathways; and when combined with JAK2 inhibition, enables full blockade of the aberrant O-glycosylation

pathways in IgAN.

Conclusion: In summary, IgAN cells exhibit LIF-mediated overproduction of Gd-IgA1 due to abnormal

signaling. JAK2 inhibitors can counter these LIF-induced effects and block Gd-IgA1 synthesis in IgAN.
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gAN is the most common primary glomerulonephritis
in the world, with progression to kidney failure in

up to 40% of patients. Development of disease-specific
therapies is urgently needed. A potential association
between the mucosal immune system and IgAN has
been proposed because the main production sites of
IgA1 are in the mucosal tissues, and a common clinical
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feature of IgAN is macroscopic hematuria concurrent
with upper respiratory tract infection.1,2 In addition,
urinary abnormalities often occur after tonsillar
irritation.3

The “multi-hit hypothesis” has been suggested for
the pathobiology of IgAN,4 wherein Gd-IgA1 glyco-
forms form immune complexes with Gd-IgA1-specific
IgG autoantibodies. Some of these complexes deposit
in the glomeruli and induce kidney injury. Serum
levels of Gd-IgA1 and IgG autoantibodies are associated
with disease progression.5-8 Although the major sour-
ces of Gd-IgA1 production in vivo are still under
investigation, the production of Gd-IgA1 by tonsillar B
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Table 1. Clinical and laboratory data of the volunteers
Patients profile Obstructive sleep apnea IgA nephropathy

n 3 3

Age, year 24.67 � 4.73 28.0 � 5.57

Sex M ¼ 3 M ¼ 1, F ¼ 2

sCr, mg/dl 0.75 � 0.04 0.70 � 0.18

BUN, mg/dl 13.00 � 2.65 13.67 � 2.52

eGFR, ml/min/1.73 m2 106.00 � 6.06 93.67 � 11.95

Protein-to-urine Cr ratio, g/gCr – 0.51 � 0.43

Hematuria (RBCs per HPF)

<20 – 0

20–49 – 2

>50 – 1

Data expressed as mean � SD. M, male: F, female; BUN, blood urea nitrogen; sCr,
serum creatinine; eGFR, estimated glomerular filtration rate; Cr, creatinine; –, not
done.
Hematuria was assessed by assigning scores according to the number of red blood
cells (RBCs) per high-power field (HPF).

TRANSLATIONAL RESEARCH K Yamada et al.: LIF Signaling in Tonsillar Cells, IgA Nephropathy
cells has been proposed as one possible source and
could explain that tonsillectomy improved clinical
symptoms in some patients with IgAN.9,10

It has also been suggested that Gd-IgA1 in the
circulating blood may be produced, in part, by
palatine-tonsil B cells.11 Previous studies showed that
a tumor-necrosis-factor family member, a
proliferation-inducing ligand (APRIL) was overex-
pressed in B cells located in germinal centers of tonsils
from patients with IgAN, and its expression levels
correlated with the severity of proteinuria. Serum
level of Gd-IgA1 in many patients with IgAN
decreased after tonsillectomy.12 A nationwide retro-
spective study in Japan found that tonsillectomy is
associated with improved renal survival rates in pa-
tients with IgAN.13 As for supporting, a randomized
controlled trial reported tonsillectomy with cortico-
steroid pulse therapy being effective14; specifically,
the rate of proteinuria reduction was significant in the
tonsillectomy with pulse therapy group compared to
the steroid pulse monotherapy group during the
observation period of 1 year after the start of
treatment.

Genome-wide association studies (GWAS) in IgAN
have identified a number of cytokine-related and
mucosal-immunity-related loci. TheChr.22q12 locuswith
HORMAD2/LIF/OSM genes was identified in several
studies, and is associated with the regulation of IgA
production in the mucosa and serum IgA levels.15-17

Furthermore, another GWAS study revealed that the
same locus was associated with acute tonsilitis and
chronic inflammation of tonsils leading to
tonsillectomy.18

Previous studies of LIF/OSM cytokines revealed that
LIF stimulation of immortalized IgA1-producing cell lines
derived from peripheral blood of patients with IgAN
increased Gd-IgA1 production.19 Signaling studies
implicated abnormal activation of Src family kinase rep-
resented by Lyn.20 In addition, clinical studies of
peripheral-blood cells suggest that changes in phos-
phorylation of STAT1 (phospho-STAT1; pSTAT1) may
affect theprogressionof renal lesions.21 Elevatednumbers
of IgA-positive cells,9,22,23 enhanced expression of B-cell
activating factor (BAFF),24 and enhanced expression of
APRIL12,25 have been reported in tonsils from patients
with IgAN. However, the mechanisms of the signal
transduction alteration are still not clear.

In this study, we analyzed the effects of LIF or OSM
on IgA1 and Gd-IgA1 production using tonsillar cells
from patients with IgAN and disease controls. The
purpose of this study was to obtain a better under-
standing of IgA1-producing tonsillar cells from pa-
tients with IgAN and the effect of cytokines encoded in
one of the IgAN-associated GWAS loci.
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METHODS

Patient Cohorts

Palatine tonsils were obtained from patients with biopsy-
proven IgAN and patients with OSA (disease controls)
who had undergone tonsillectomy at the Department of
Otorhinolaryngology of Juntendo University Hospital.
Protocols for obtaining the tonsil samples for isolation of
cellswere approved by the Institutional ReviewBoard for
Human Use of the Juntendo University Faculty of Medi-
cine, and the samples were obtained after written
informed consent. In Table 1, we provide selected clinical
and laboratory data of the volunteers.

Generation of Epstein-Barr Virus-Immortalized

IgA1-Secreting Cell Lines

Tonsillar tissue specimens were dissected into small
pieces that were then mechanically dissociated using a
100-mm cell strainer. Mononuclear cells were isolated
using Ficoll-Hypaque density gradient and thereafter
immortalized by infection with Epstein-Barr virus
(EBV).26

IgA1-secreting cell lines were subcloned by limiting
dilution, as described before.26 We then randomly
selected IgA1-secreting cell lines from 3 patients with
IgAN and 3 patients with OSA (Table 1). The selected
cell lines exhibited stable growth, production of IgA,
and the degree of galactose deficiency of the secreted
IgA1. Cells were cultured in RPMI 1640 supplemented
with 20% fetal bovine serum, 100 U/ml of penicillin,
and 0.1 mg/ml of streptomycin in a humidified CO2

(5%) incubator at 37 �C. Cell viability was assessed by
using trypan blue exclusion.

Treatment of IgA1-Secreting Cells With LIF and

JAK2 Inhibitors

IgA1-secreting cells were plated at 1 � 105 cells/well in
24-well plates, stimulated with LIF (40 ng/ml) or OSM
Kidney International Reports (2024) 9, 423–435
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(40 ng/ml) in the absence or presence of JAK2 inhibitor
AZD1480 (LC Laboratories, Woburn, MA) (0 to 0.3 mM)
or AG490. The cells were preincubated with the in-
hibitor for 60 minutes before the addition of cytokine.
The cells were then incubated with LIF or OSM for 30
minutes after preincubation with the inhibitor or a
mock control. Samples of culture medium were har-
vested after 5 days for analyses of total IgA1 and Gd-
IgA1.

Determination of Total IgA Concentration

Total IgA was measured by enzyme-linked immuno-
sorbent assay. Ninety-six-well plates were coated with
0.1 mg/well of goat IgG F(ab’)2 specific for human IgA
(Jackson ImmunoResearch Inc., West Grove, PA),
blocked with 1% BSA in phosphate-buffered saline
(PBS) with 0.05% Tween 20 (PBS-T), washed, and
incubated with serially diluted samples of cell-culture
supernatants from IgA-producing cells. Serially
diluted standardized serum (Bio-Rad, Hercules, CA)
was used to generate a calibration curve for IgA
quantification. Bound IgA was detected after addition
of biotinylated goat IgG F(ab’)2 specific for human IgA
(Biosource, San Diego, CA), followed by avidin–
horseradish peroxidase conjugate (Extravidin; Sigma,
St. Louis, MO) and peroxidase substrate o-phenyl-
enediamine-hydrogen peroxide (Sigma). Optical den-
sities (ODs) were measured at 490 nm using an EL808
microplate reader (BioTek, Winooski, VT).

As indicated above, we have cloned IgA-secreting
cells and confirmed that the secreted IgA is exclu-
sively IgA1.26 However, because the enzyme-linked
immunosorbent assay is not specific for IgA1 because
of the use of polyclonal anti-IgA antibody, we refer to
the measured analyte as IgA for formal reasons.

Gd-IgA1 Assay

Amount of Gd-IgA1 secreted in culture medium was
determined by lectin enzyme-linked immunosorbent
assay. Microplates coated with 0.25 mg/well of goat IgG
F(ab’)2 specific for human IgA (Jackson ImmunoR-
esearch Inc.) were blocked with 1% BSA in PBS-T,
washed, and then cell-culture supernatant with 100
ng of IgA per well was added and incubated overnight
at 4 �C. Captured IgA was desialylated using neur-
aminidase (Arthrobacter ureafaciens; Glyko, Toronto,
Canada) at 2 mU/ml for 3 hours at 37 �C. Gd-IgA1 was
detected using biotinylated N-acetylgalactosamine
(GalNAc)-specific lectin from Helix aspersa (HAA,
Sigma; 2 mg/ml in 1% BSA in PBS-T), followed by
avidin–horseradish peroxidase conjugate (Sigma) and
peroxidase substrate o-phenylenediamine-hydrogen
peroxide (Sigma). ODs were measured at 490 nm. The
Gd-IgA1 concentration was expressed in Units defined
Kidney International Reports (2024) 9, 423–435
as the ratio of OD determined for the individual sample
to the OD for a standard Gd-IgA1 (Ale) myeloma pro-
tein. Specifically, 100 Units was defined as the OD of
100 ng of the standard Gd-IgA1 protein.27

Sodium Dodecyl Sulfate-Polyacrylamide Gel

Electrophoresis and Western Blot Analysis

LIF-treated cells were pelleted by centrifugation,
washed using ice-cold PBS, and lysed in M-PER lysis
buffer containing protease inhibitor cocktail and
phosphatase inhibitor cocktail (Thermo Fisher Scienti-
fic, Waltham, MA). Cell debris was removed by
centrifugation for 10 minutes at 20,000g at 4 �C. Protein
concentrations in the supernatants were measured us-
ing a protein assay kit (Bio-Rad); aliquots correspond-
ing to 7 mg/lane of total protein were separated by
sodium dodecyl sulfate-polyacrylamide gel electro-
phoresis and transferred to polyvinylidene difluoride
membrane for Western-blot analysis. After the trans-
fer, the membranes were blocked using Superblock
(Thermo Fisher Scientific) and incubated with phos-
pho-Y701-STAT1-specific rabbit polyclonal antibody,
diluted 1:800 in blocking buffer, or with STAT1-
specific mouse monoclonal antibody diluted 1:10,000
(R&D Systems, Minneapolis, MN). Bound antibodies
were detected by addition of HRP-conjugated
anti-rabbit (1:10,000) or anti-mouse (1:10,000) IgG an-
tibodies (Southern Biotech, Birmingham, AL), respec-
tively, followed by addition of chemiluminescence
substrate (Thermo Fisher Scientific). The detected
bands were visualized on a Kodak radiography film.
Densitometric evaluation with ImageJ software was
used to express the amount of phospho-Y701-STAT1
relative to STAT1 protein in cellular lysates. Actin-
specific antibody served as an additional control of
protein load.

Real-Time Quantitative Polymerase Chain

Reaction

RNA was isolated from 2 � 105 cells using RNeasy 96
Mini Kit (Qiagen, Hilden, Germany), converted to
complementary DNA by SuperScript III First-Strand
Synthesis SuperMix kit (Invitrogen, Carlsbad, CA).
Levels of STAT1 and GAPDH transcripts were deter-
mined by real-time quantitative polymerase chain re-
action using LightCycler 480 DNA SYBR Green I
Master chemistry on LightCycler 480 instrument
(Roche, Basel, Switzerland), as reported before.20 The
primer sets for STAT1 and GAPDH genes are provided
in the Supplementary Table S1. Results were expressed
as the fold change versus the control groups after the
results were normalized with corresponding GAPDH
housekeeping gene mRNA values using the 2

–DDCT

method.28
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Figure 1. IgA1 and Gd-IgA1 production by IgA1-producing cell lines
derived from tonsils and the effect of LIF or OSM stimulation. (a)
Experimental protocol for treatment of IgA1-secreting cells. Cells
were stimulated with LIF (40 ng/ml), OSM (40 ng/ml), or control on
day 0. Cell-culture medium was harvested on day 5 for determination
of IgA and Gd-IgA1. (b) There were no differences in the concen-
trations of IgA in the cell-culture medium between cells from OSA
versus patients with IgAN (Figure 1b, top). Treatment with LIF or
OSM did not alter IgA concentration in the medium. For Gd-IgA1,
baseline production was higher in the cells from patients with
IgAN than from OSA group. LIF increased Gd-IgA1 production in the
cells from patients with IgAN but not from OSA group. Treatment
with OSM did not cause significant changes in OSA or IgAN group.
One hundred Units of Gd-IgA1 was defined as 100 ng of the standard
Gd-IgA1 (Figure 1b bottom). All data are presented as mean � SD
values and mean values for individual cell lines are shown by black
circles. *P < 0.05; **P < 0.01. IgAN, IgA nephropathy; ns, not sta-
tistically significant; LIF, leukemia inhibitory factor; OSA, obstructive
sleep apnea; OSM, oncostatin M.
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STAT1 siRNA Knock-Down

IgA1-producing cell lines derived from tonsillar cells
from 3 patients with IgAN and 3 patients with OSAwere
transfected usingON-TARGETplus SMARTpool siRNAs
(Thermo Fisher Scientific) specific for human STAT1.
ON-TARGETplus Non-targeting SMARTpool siRNAs
served as controls. Cells were inoculated at density 5 �
105/ml for 24 hours before siRNAswere added, following
our previously published protocol.27 Before trans-
fection, the cells were harvested by centrifugation for 10
minutes at 300g and resuspended at room temperature in
Nucleofector Solution C (Lonza, Basel, Switzerland) at
density of 2.5� 106 cells per 100 ml for each transfection.
After addition of 1.4 mg of individual siRNA, cells were
pulsed in Amaxa nucleofector II (Lonza) using program
X-001, immediately transferred to a 24-well panel con-
taining 1.4 ml of cell-culture medium and incubated in
humidified CO2 incubator at 37 �C. Twenty-four hours
after transfection, the knock-down efficiency was
determined by real-time quantitative polymerase chain
reaction. The knock-down effect was expressed as
complementary DNA level of the individual gene
normalized to the level of GAPDH, after respective
siRNA treatment, divided by respective value obtained
after treatment by nontargeting siRNA.

Statistical Analyses

Results were expressed as mean � SD values. Data were
analyzed using 2-tailed Student’s t test (unpaired or
paired, as applicable). For analyzing multiple groups, 1-
way analysis of variance was used, and values of
P < 0.05 were regarded significant.

RESULTS

IgA1-Producing Cell Lines From Tonsils of

Patients With IgAN and Those With OSA

EBV-immortalized IgA1-producing cell lines derived
from tonsils of patients with IgAN and those with OSA
secreted comparable amounts of IgA1 into the culture
medium under baseline conditions. LIF supplementation
did not alter total IgA1 production in any group
(Figure 1b, top). Tonsillar IgA1-secreting cell lines from
patients with IgAN produced more Gd-IgA1 than those
from OSA (P < 0.01) (Figure 1b, bottom). However, LIF
but not OSM increased Gd-IgA1 production by tonsillar
IgA1-secreting cell lines frompatientswith IgANbut not
from patients with OSA (P < 0.05) (Figure 1b, bottom).

LIF Stimulation Induced STAT1 Phosphorylation

in IgA1-Secreting Cells From Tonsils of Patients

With IgAN to a Greater Extent Than in Cells

From OSA

Baseline pSTAT1 was elevated in the cell lines from
patients with IgAN compared to those from OSA group
426
(Figure 2). LIF stimulation initially down-regulated
pSTAT1 in IgAN-derived cells at 5 minutes (Figure 2a
and b, left panels, Supplementary Figure S1) and, after
Kidney International Reports (2024) 9, 423–435



Figure 2. Activation of STAT1 and STAT3 in IgA1-secreting tonsillar cell lines by LIF or OSM. (a) Representative blots show phosphorylation of
STAT1 (pSTAT1) (Y701) after 5-, 15-, 30-, and 60-minute stimulation with LIF (left panels) or OSM (right panels). Total STAT1 protein served as a
loading control. Baseline pSTAT1 was enhanced in cells from IgAN group compared to those from OSA group. Treatment with LIF further
enhanced pSTAT1 at different time points, reaching peak at 15 minutes. Treatment with OSM did not induce significant changes of pSTAT1 at
different time points. STAT3 was not phosphorylated in any of the tested groups at baseline or after LIF or OSM stimulation. (b) Densitometric
analyses of pSTAT1 normalized to total STAT1 (n ¼ 3 in each group). pSTAT1 relative to total STAT1 level in OSA samples (control) was set to 1
for the comparisons. Actin blot is shown as an additional control for protein load. All data are presented as mean � SD values and mean values
for individual cell lines are shown by black circles. *P < 0.05. IgAN, IgA nephropathy; ns, not statistically significant; LIF, leukemia inhibitory
factor; OSA, obstructive sleep apnea; OSM, oncostatin M.
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this initial downregulation, increased at 15 minutes and
remained elevated up to 60 minutes. Treatment with
OSM did not increase pSTAT1 amounts in the cells from
OSA group, nor did it enhance the upregulated pSTAT1
in cells from patients with IgAN (Figure 2a and b, right
panels). Because STAT3 is activated by some IL-6-family
cytokines, we tested whether LIF or OSM can induce
STAT3 phosphorylation. We found that LIF or OSM
stimulation did not alter pSTAT3 at Y705 in the cells
from IgAN and OSA groups (Figure 2a, both panels).

JAK2 Mediates LIF-Induced Overproduction of

Gd-IgA1

To assess if JAK2 pathway was involved in LIF-
mediated overproduction of Gd-IgA1, a JAK2 inhibi-
tor, AZD1480, was used in the LIF stimulation study.
AZD1480 inhibited in a dose-dependent fashion the
Kidney International Reports (2024) 9, 423–435
LIF-enhanced production of Gd-IgA1 in IgA1-
producing cell lines from patients with IgAN.
Notably, AZD1480 at 30 nM and higher concentrations
reduced production of Gd-IgA1 by IgAN cells to the
level observed for OSA cells (Figure 3a), but only in the
presence of LIF (Figure 3a) and not OSM (Figure 3b).
Similar effect was observed for another JAK2 inhibitor,
AG490, that also reduced production of Gd-IgA1 in
IgAN cells stimulated with LIF to the level observed for
OSA cells (Supplementary Figure S2). The enhanced
pSTAT1 induced by LIF was significantly reduced by
AZD1480 (Figure 3c and e). These results indicated that
LIF signaling was mediated by JAK2-STAT1 pathway.
However, AZD1480 treatment without LIF did not
inhibit production of Gd-IgA1 in IgAN (Figure 4a).
AZD1480 inhibited pSTAT1 in a dose-dependent
manner (Figure 4b and c).
427



Figure 3. Impact of JAK2 inhibitor AZD1480 on Gd-IgA1 production and activation of STAT1 by LIF versus OSM in IgA1-secreting tonsillar
cell lines. (a) LIF-induced overproduction of Gd-IgA1 in tonsillar IgA1-producing cells from patients with IgAN was inhibited by AZD1480 in
a dose-dependent manner. (b) Conversely, OSM alone or OSM with AZD1480 did not alter Gd-IgA1 production. The cells were pre-
incubated with the inhibitor for 60 minutes before addition of a cytokine. One-hundred Units of Gd-IgA1 was defined as 100 ng of the
standard Gd-IgA1. (c) LIF enhanced phosphorylation of STAT1 (pSTAT1) and this effect was downregulated by AZD1480 in a dose-
dependent manner. (d) Conversely, OSM or OSM with AZD1480 did not alter pSTAT1. In panels c and d, the cells were incubated with
LIF or OSM for 30 minutes. Actin blots are shown as additional controls for protein load. (e and f) Densitometric analysis of pSTAT1 of data
from b and d was performed for each sample (n ¼ 3). pSTAT1 relative to total STAT1 level in OSA control cells (control) was set to 1.
Statistical analysis for (a, b, e, and f) was performed by 1-way analysis of variance followed by Tukey’s multiple comparison test. All data
are presented as mean � SD values and mean values for individual cell lines are shown by black circles. *P < 0.05; **P < 0.01; ***P <
0.005. IgAN, IgA nephropathy; ns, not statistically significant; LIF, leukemia inhibitory factor; OSA, obstructive sleep apnea; OSM,
oncostatin M.
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STAT1 siRNA Knock-Down Reduced

LIF-Mediated Overproduction of Gd-IgA1

To confirm that STAT1 mediated LIF-induced Gd-IgA1
overproduction in IgA1-producing cell lines from pa-
tients with IgAN, we used a gene-specific siRNA knock-
down. STAT1 siRNA knock-down reduced STAT1
expression in cell lines frompatients with IgAN aswell as
OSA by approximately 90% (Figure 5a). Corresponding
428
reduction of STAT1 protein (>80%) was confirmed by
immunodetection (Figure 5b and c). Furthermore,
pSTAT1 was also reduced (data not shown). Analysis
of secreted IgA1 revealed that STAT1 siRNA knock-
down significantly reduced the LIF-induced over-
production of Gd-IgA1 in IgAN-derived cell lines
(Figure 5d), without impacting total IgA1 production
(Supplementary Figure S3).
Kidney International Reports (2024) 9, 423–435



Figure 4. JAK2 inhibitor AZD1480 alone does not affect production
of Gd-IgA1 in IgA1-secreting tonsillar cell lines. (a) Gd-IgA1
production by tonsillar IgA1-producing cell lines from patients
with OSA and IgAN was evaluated in the absence and presence
of AZD1480 (3–300 nM). AZD 1480 did not change baseline levels
of Gd-IgA1 in the tested cell lines. (b) Representative western blot
of phosphorylation of STAT1 (pSTAT1) and total STAT1 in the
absence or presence of AZD1480 (3–300 nM) in mock-stimulated
tonsillar IgA1-producing cells. Baseline phosphorylation of STAT1
was inhibited by treatment of AZD1480 in a dose-dependent
manner. Actin blot is shown as an additional control for protein
load. (c) Densitometric analysis of pSTAT1 immunoblot data from
panel b was performed in all samples (n ¼ 3 in each group).
pSTAT1 relative to total STAT1 level in OSA (control) was set to 1.
All data are presented as mean � SD values and mean values
for individual cell lines are shown by black circles. *P < 0.05,
**P < 0.01. IgAN, IgA nephropathy; ns, not statistically signifi-
cant; OSA, obstructive sleep apnea.

K Yamada et al.: LIF Signaling in Tonsillar Cells, IgA Nephropathy TRANSLATIONAL RESEARCH

Kidney International Reports (2024) 9, 423–435
JAK2 Inhibitor AZD1480 Inhibited Gd-IgA1

Overproduction Induced by IL-6-Family

Cytokines

The effects of JAK2 inhibitors on IL-6, LIF, or
OSM-mediated effects were assessed for IgA1 cell
lines from patients with IgAN and those with OSA
(Figure 6). LIF and IL-6, but not OSM, increased
Gd-IgA1 production in the cell lines from patients
with IgAN. AZD1480 inhibitor blocked this in-
crease. Notably, LIF-induced Gd-IgA1 production
was reduced by the JAK2 inhibitor to the levels
of control cells. Production of Gd-IgA1 by the
cell lines from patients with OSA was not affected
by IL-6, LIF, OSM, or by JAK2 inhibitor,
AZD1480.

DISCUSSION

Macroscopic hematuria and other signs of disease
exacerbation often occur along with or after an upper
respiratory tract infection. In Japan, tonsillectomy
combined with steroid-pulse therapy has shown
favorable clinical outcomes, and this treatment regime
is performed frequently in some patients with
IgAN.13,14,29,30 Based on these pieces of evidence,
Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines have been revised, and in Japan, it is indi-
cated that tonsillectomy should be considered,
depending on the individual case.31

Recently, GWAS research on IgAN involving
Asian and Western patients has progressed and
revealed multiple candidate genes involved in
mucosal immunity.15,32,33 Genes related to mucosa-
related lymphoid tissues involved in IgA produc-
tion, such as ITGAM and TNFSF13, have risk alleles.
A subset of patients with IgAN had elevated serum
levels of APRIL, a cytokine related to BAFF.34 Factors
such as Toll-like receptor 9 (TLR9) may be involved
in the pathogenesis of IgAN via APRIL and BAFF
pathways.12,24 Other risk-associated loci include
HORMAD2 locus that encodes multiple genes
including LIF and OSM. Moreover, a recent study
showed that the involvement of the MTMR3/HOR-
MAD2/LIF/OSM locus in IgAN pathogenesis is likely
mediated by TLR9 pathways.35 Interestingly, LIF
was shown as a drug target gene with a high score by
the GWAS additional functional criteria evaluation.17

In this study, we examined the signaling in the LIF/
JAK/STAT system related to elevated Gd-IgA1
production.

We previously generated EBV-immortalized IgA1-
producing cell lines derived from peripheral blood of
healthy individuals and patients with IgAN and used
429



Figure 5. STAT1 siRNA knock-down reduced LIF-induced Gd-IgA1 overproduction. (a–c) Quantitative polymerase chain reaction analysis of
STAT1 gene expression (a) and SDS-PAGE/Western blotting of STAT1 protein (b and c) showed that siRNA knock-down of STAT1 decreased the
expression of STAT1 in the cells from OSA and patients with IgAN. Actin blot is shown as an additional control for protein load. (d) siRNA knock-
down of STAT1 reduced LIF-mediated overproduction of Gd-IgA1 in IgAN-derived cells. siRNA knock-down of STAT1 did not affect production of
Gd-IgA1 after being stimulated with LIF in OSA-derived cells. One hundred Units of Gd-IgA1 was defined as 100 ng of the standard Gd-IgA1.
Statistical analysis for (d) was performed by 1-way analysis of variance followed by Tukey’s multiple comparison test. All data are presented as
mean � SD values and mean values for individual cell lines are shown by black circles. *P < 0.05; **P < 0.01. IgAN, IgA nephropathy; k/d,
knock-down; ns, not statistically significant; OSA, obstructive sleep apnea.
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those cells as resource to examine the mechanisms of
aberrant IgA1 glycosylation and cytokine-mediated
intracellular signaling leading to enhanced galactose
deficiency of IgA1. The production of Gd-IgA1 in
IgAN is related to altered expression and/or activity of
2 glycosyltransferases. Specifically, reduced expression
of core 1 b1,3-galactosyltransferase, which adds
galactose to GalNAc and elevated expression of a-N-
acetylgalactosaminide a-2,6-sialyltransferase 2, which
adds sialic acid to GalNAc are related to Gd-IgA1
production.36 In the cells from patients with IgAN,
STAT3 and STAT1 signaling abnormalities were asso-
ciated with Gd-IgA1 overproduction due to IL-6 family
cytokines.20,27 Abnormal STAT phosphorylation of
immune cells obtained from patients with IgAN also
affects renal tissue lesions, and in particular, changes in
pSTAT1 are associated with disease severity (protein-
uria, renal function).21
430
Tonsils are located mainly at the gateway of the
respiratory tract and are reportedly one of the sec-
ondary lymphatic organs of the immune system. The
palatine tonsil is composed of B cell-dominant lym-
phocytes and a small number of myeloid cells. In our
study, pSTAT1 was highly expressed in tonsillar cells
from patients with IgAN indicating its possible roles in
Gd-IgA1 production.

LIF is an IL-6 related cytokine that uses gp130 for
signal transduction and has been previously implicated
in mucosal immunity.37 LIF stimulation induced
pSTAT1 (Y701) production in IgA1-producing cells
from tonsils of patients with IgAN to a greater degree
compared to those from OSA. LIF signaling did not
involve STAT3 activation (Figure 2). JAK2 inhibitor
(AZD1480) inhibited LIF-induced pSTAT1 in the cells
from patients with IgAN, and inhibited Gd-IgA1
overproduction induced by LIF (Figure 3). These
Kidney International Reports (2024) 9, 423–435



Figure 6. Effect of JAK2 inhibitor AZD1480 on Gd-IgA1 production in the presence or absence of IL-6, LIF, or OSM. Cell lines derived from OSA
(blue) and IgAN (red) tonsils were stimulated with IL-6, LIF, OSM alone or in the presence of JAK2 inhibitor AZD1480 (300nM). None of these
treatments altered Gd-IgA1 production in OSA group. In IgAN group, LIF and IL-6 increased Gd-IgA1 productions. Furthermore, AZD1480 with LIF
stimulation reduced Gd-IgA1 production. All data are presented as mean � SD values and mean values for individual cell lines are shown by
black circles. *P < 0.05, ***P < 0.005. ns, not statistically significant. IgAN, IgA nephropathy; ns, not statistically significant; LIF, leukemia
inhibitory factor; OSA, obstructive sleep apnea; OSM, oncostatin M.
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results suggest that the LIF-LIFR/gp130-JAK2-STAT1
pathway in the tonsillar cells of patients with IgAN
plays a key role in Gd-IgA1 production compared to
disease controls.

Furthermore, these results offered 2 possible hy-
potheses that can explain why the inhibitor together
with LIF, but not the inhibitor alone, reduced Gd-IgA1
production in IgAN-derived cells to the level of Gd-
IgA1 production by OSA-derived cells. In Figure 7,
we provide a model of the LIF signaling complex. LIF
drives association of gp130 and LIFR. In addition to
LIFR, gp130 forms extracellular receptor complexes
with other cytokine receptor chains, including IL-
6R,48-52 IL-11R,53 OSMR,54 IL-27R,55 IL-12Rb2.56 Thus,
gp130 enables signal transduction for multiple cyto-
kine receptors. One possible mechanism to explain our
findings is based on the fact that LIF drives formation
of the receptor complex, which causes sequestration of
intracellular gp130 from other receptor complexes. The
dimeric receptor then “scavenges” the intracellular
homodimeric JAK2 through interaction with the cyto-
plasmic tails of LIFR and gp130. Decreased Gd-IgA1
production could be due to the combined effect of
reducing available gp130 and inhibiting pSTAT1 pro-
duction by AZD1480 at the level of JAK2. Notably, IL-
6-mediated Gd-IgA1 overproduction was also blocked
Kidney International Reports (2024) 9, 423–435
by JAK2 inhibitor. However, this signaling pathway
was mediated by STAT3, and JAK2 inhibitor did not
reduce Gd-IgA1 production to that by OSA-derived
cells (Supplementary Figure S4a). Therefore, the JAK2
inhibitor effects seem to be distinct for LIF-LIFR-
STAT1 pathway and we have confirmed that by us-
ing another JAK2 inhibitor, AG490 (Supplementary
Figure S2).

JAK/STAT is a major pathway that responds to and
transduces inflammatory signals from extracellular li-
gands such as cytokines and chemokines.57 GWAS
revealed a strong association of the genomic locus that
encodes LIF with the risk of IgAN.15,58 The abnormal
LIF/LIFR-gp130/JAK2/STAT1 signaling in tonsillar
cells in patients with IgAN may play a key role for
disease progression.

The Helix aspersa lectin used in this study is a lectin
specific for GalNAc. Therefore, an alternative way to
explain the effect of JAK2 inhibitor with LIF stimula-
tion might be based on a reduced content of GalNAc in
the secreted IgA1. Future studies should include
assessment of GalNAc-transferases that add GalNAc to
Ser/Thr residues of IgA1. Furthermore, LIF increased
Gd-IgA1 production, but did not increase pSTAT1/
STAT1 ratio compared to the unstimulated cells. Given
the AZD1480 and STAT1 siRNA knock-down results,
431



Figure 7. LIFR, gp130, and LIF ternary complex and inhibition of the JAK/STAT signaling pathways. Upon binding to the LIFR/gp130 heter-
odimeric receptor complex, cytokine LIF can activate the JAK/STAT pathway, leading to the altered downstream gene expression. (a) The
extracellular ternary complex of gp130/LIFR/LIF complex and a composite model of the intracellular protein JAK2 are shown in ribbon model
with each protein shaded magenta (gp130), cyan (LIFR), orange (LIF), or yellow (JAK2). The inhibitor AZD1480 is shown in spheres repre-
sentation (dark blue). (b) shows the Kekulé diagram of AZD1480, an inhibitor of JAK2 kinase activity used in these studies. (c) The kinase
domain of JAK2 is shown in yellow surface representation with AZD-1480 bound. Amino acid residues in proximity to the inhibitor are shaded
in slate color. The following protein coordinates were used to generate models in this figure: LIFR [PDB ID:2Q7N],38 and LIF/gp130 [PDB
ID:1PVH].39 The initial core composite gp130/LIFR/LIF structure was generated according to methods in recent papers.19,38 Additional do-
mains for LIFR (domains 6–8) were generated by AlphaFold,40 and domains 4–6 of gp130 were taken from PDB ID: 3L5I.41 All domains were
rigidly fit to the cryo-reconstruction in (see, Zhou Y, et al.).42 To generate the homology model of JAK2, structures of JAK2 domains FERM-
SH2 [PDB ID: 6E2Q],43 pseudokinase [PDB ID: 4FVQ],44 and kinase with AZD1480 [PDB ID: 2XA4]45 were aligned on the JAK1 dimeric complex
[PDB ID: 7T6F].46 A composite of the JAK2 domains was submitted to SWISS-MODEL47 to fill in missing gaps between structures with the
dimeric JAK1 structure as a guide. Two individual JAK2 structures were aligned to the 2 copies of JAK1 to yield the dimeric JAK2. LIF,
leukemia inhibitory factor; LIFR, leukemia inhibitory factor receptor.
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this would imply the necessary but not sufficient role
for STAT1 in Gd-IgA1 production. There might be as
yet unknown transcription factors/other regulatory
components involved. In IgA1-producing cells from
peripheral blood from patients with IgAN, LIF-induced
Gd-IgA1 production by increased pSTAT1 with Src
family kinase activation, not via JAK2.20 To determine
whether these differences are universal for all patients
with IgAN, we plan in our future studies to compare
peripheral-blood-derived and tonsil-derived IgA1-
secreting cells obtained from the same individuals. In
the future, it is necessary to identify and analyze the
causative cells in Gd-IgA1 production based on the
differences in signal transduction involved in the
pathogenesis of IgAN, which may help to identify
possible therapeutic regimes.
432
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