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Although “genomically” humanized animals are invaluable tools
for generating human disease models as well as for biomedical
research, their development has been mainly restricted to mice
via established transgenic-based and embryonic stem cell-based
technologies. Since rats are widely used for studying human dis-
ease and for drug efficacy and toxicity testing, humanized rat
models would be preferred over mice for several applications.
However, the development of sophisticated humanized rat models
has been hampered by the difficulty of complex genetic manipu-
lations in rats. Additionally, several genes and gene clusters, which
are megabase range in size, were difficult to introduce into rats
with conventional technologies. As a proof of concept, we herein
report the generation of genomically humanized rats expressing
key human drug-metabolizing enzymes in the absence of their
orthologous rat counterparts via the combination of chromosome
transfer using mouse artificial chromosome (MAC) and genome
editing technologies. About 1.5 Mb and 700 kb of the entire UDP
glucuronosyltransferase family 2 and cytochrome P450 family
3 subfamily A genomic regions, respectively, were successfully
introduced via the MACs into rats. The transchromosomic rats
were combined with rats carrying deletions of the endogenous
orthologous genes, achieved by genome editing. In the “trans-
chromosomic humanized” rat strains, the gene expression, phar-
macokinetics, and metabolism observed in humans were well
reproduced. Thus, the combination of chromosome transfer and
genome editing technologies can be used to generate fully hu-
manized rats for improved prediction of the pharmacokinetics
and drug–drug interactions in humans, and for basic research,
drug discovery, and development.

humanized animal model | mouse artificial chromosome | chromosome
transfer | genome editing | transchromosomic rat

Genomically humanized animals obtained by the introduction
of entire human genomic loci into model organisms are

invaluable tools as disease models, for investigating cis-acting
regulatory elements, and understanding their role in domainwide
regulation, as well as for several biomedical applications (1). The
development of humanized animal models has been mainly
limited to mice via transgenic and embryonic stem (ES) cell-
based technologies (2). Since rats are widely used animal mod-
els for studying human disease and for testing the efficacy and
toxicity of drugs, their humanization would be more preferable
over that of mice for various applications (3, 4). However, since
complex manipulation in rat ES cells is much more challenging,

megabase (Mb)-sized humanized rat models have yet to be de-
veloped, possibly owing to the chromosomal instability during
long in vitro culture (5).
The generation of humanized mouse models with Mb-sized

human genomic loci is very difficult via conventional gene
transfer techniques, including the use of plasmids, P1-derived
artificial chromosomes (PACs), and bacterial artificial chromo-
somes (BACs), due to the capacity for cloning DNA (6–8). To
overcome this obstacle, sequential recombinase-mediated cas-
sette exchange (S-RMCE) or sequential knockin via BACs in
mouse ES cells was used to develop humanized mice with Mb-
sized large genomic DNA (9, 10). However, these methods are
very laborious owing to the requirement for more than five
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rounds of cloning, selection of correctly targeted mouse ES cell
clones, and testing their capacity to form chimeric mice at
each step.
This challenge was addressed by applying transchromosomic

(Tc) technology using human chromosome fragments (hCFs), or
human artificial chromosomes (HACs), to generate mice with Mb-
sized segments of the human genome (11–17). The most significant
problem with freely segregating chromosomes with human cen-
tromeres has been mosaicism, possibly owing to the instability of
hCFs or HACs in mice. Thus, to improve the stability, we con-
structed mouse artificial chromosome (MAC) vectors from a na-
tive mouse chromosome by chromosome engineering (18). The
MAC vector was more stable in adult tissues and hematopoietic
cells in mice than hCFs or HAC vectors (18, 19). However, the
cloning of large Mb-sized segments from human chromosomes
into MACs and the application of Tc technology with hCFs/HACs/
MACs to rats have not been reported.
Since the Tc technology can introduce a Mb-sized human gene

but not disrupt the orthologous gene, the Tc technologies are
required to combine with knockout (KO) technologies such as
conventional KO technologies in mouse ES cells or genome
editing to generate fully humanized animal models. Genome
editing technologies, such as zinc-finger nuclease (ZFN), tran-
scription activator-like effector nuclease (TALEN), and clus-
tered regularly interspaced short palindromic repeats/CRISPR-
associated protein 9 (CRISPR/Cas9), were utilized to induce
mutations or large genomic deletions for orthologous gene
cluster KO animals (20–24).
In the present study, we established a strategy for the devel-

opment of Mb-sized gene cluster humanized rat models by com-
bining MAC-mediated genomic transfer (MMGT) and genome
editing technologies. As a proof of concept, we targeted the UDP
glucuronosyltransferase family 2 (UGT2) gene cluster and the
cytochrome P450 family 3 subfamily A (CYP3A) gene cluster
because of their important roles in drug metabolism and the
reported species differences in these genes between humans and
rodents (25, 26). Although the UDP glucuronosyltransferase
family 1 (UGT1) has a very important role in drug metabolism
(27), we decided to select the comparably important UGT2 cluster
for humanization because of its significantly larger size (∼1.5 Mb
versus ∼200 kb), allowing for more challenging validation of the
technology. We established stable humanized Tc rat lines har-
boring a ∼1.5-Mb region including the UGT2 cluster (10 coding
genes) from human chromosome 4 (hChr.4) or a ∼700-kb region
including the CYP3A cluster (four coding genes) from hChr.7 by
the transfer of MACs with desired gene clusters. Furthermore, we
disrupted the endogenous rat Ugt2 gene cluster (∼762 kb) or rat
Cyp3a (Cyp3a23/1 and Cyp3a2) using genome editing technologies.
We also confirmed the retention of the MAC, and the expected
tissue-specific expression and enzymatic function of the UGT2 and
CYP3A enzymes in rats.

Results
Construction of UGT2-MAC and CYP3A-MAC. A MAC vector stably
maintained in mice has been developed and various small- to
intermediate-size genes of interest from circular vectors such as
plasmids, PACs, and BACs have been transferred to the MAC
vector by a site-specific recombination system for several appli-
cations (28–30). However, the loading of a large Mb-sized gene
cluster to the MAC vectors has not been demonstrated yet. In
this study, the HAC-mediated Mb-sized gene cloning system
developed previously was thus applied to the MAC vector and
the MMGT was applied to rat (31, 32). To generate “human-
ized” Tc rats with the entire human UGT2 cluster (10 coding
genes: UGT2B4, UGT2B7, UGT2B10, UGT2B11, UGT2B15,
UGT2B17, UGT2B28, UGT2A1, UGT2A2, and UGT2A3) or
CYP3A cluster (4 coding genes: CYP3A4, CYP3A5, CYP3A7,
and CYP3A43), two MACs containing these clusters were con-

structed using the Cre/loxP-mediated Mb-sized gene cloning
system (Fig. 1).
To clone ∼1.5 Mb of the UGT2 cluster on hChr.4 into a MAC

(MAC4), hChr.4 was transferred from mouse A9 cells to ho-
mologous recombination-proficient DT40 cells using microcell-
mediated chromosome transfer (MMCT). The hChr.4 was
truncated at the AC125239 locus and a loxP sequence was in-
troduced into the AC074378 locus on the hChr.4 in DT40 cells
(Fig. 2A and SI Appendix, Figs. S1–S3). The modified hChr.4,
hChr.4-ΔAC125239-loxP in DT40 cells was then introduced into
Chinese hamster ovary (CHO) cells containing one of the MAC
vectors (MAC4 with hygromycin resistant gene, EGFP gene, and
loxP) using MMCT to obtain hybrid CHO clones with two dif-
ferent exogenous chromosomes: the MAC4 and the modified
hChr.4 (hChr.4-ΔAC125239-loxP). To induce reciprocal trans-
location between the MAC4 and the modified hChr.4, Cre ex-
pression vectors were transfected into the CHO hybrids, and
recombinant clones were selected. Two out of six drug-resistant
clones were PCR positive with UGT2 cluster-, MAC-, and
HPRT-reconstitution-specific primers (SI Appendix, Fig. S4).
Fluorescence in situ hybridization (FISH) analyses showed that
the defined region of hChr.4 containing the UGT2 cluster had
been cloned into the MAC4 vector in the CHO hybrid cells
(designated UGT2-MAC) (Fig. 2A). The CYP3A-MAC was also
constructed as described above for the UGT2-MAC (Fig. 2B and
SI Appendix, Figs. S5–S7).

Generation of Tc Mice with CYP3A-MAC. Before the generation of
Tc rats with the MACs, the MAC function was tested in mice
because no MAC with a Mb-sized gene or gene cluster had ever
been transferred in mice. Tc mice with the CYP3A-MAC and fully
humanized CYP3A (CYP3A-MAC/Cyp3a-KO) mice were gen-
erated. FISH, flow cytometry (FCM), reverse transcription-PCR
(RT-PCR), and drug-metabolizing activity analyses showed that
the CYP3A-MAC was functional and more stably maintained than
CYP3A-HAC in mice, and that the CYP3A-MAC has the same
stability as the empty MAC (SI Appendix, Figs. S8–S11) (16, 18).

Generation of Tc Rats with UGT2-MAC or CYP3A-MAC. Establishment
of germline-competent rat ES cells with the MAC-carrying gene
cluster is challenging due to chromosome instability of rat ES cells
during long-term culture. The UGT2-MAC and CYP3A-MAC
were introduced into a male rat ES cell line (BLK2i-1) via CHO
cells using MMCT. PCR analyses using primers for the detection
of the UGT2-MAC or CYP3A-MAC showed that 12 of 22 BLK2i-
1 (UGT2-MAC) clones and 11 of 12 BLK2i-1 (CYP3A-MAC)
clones contained intact UGT2-MAC and CYP3A-MAC, re-
spectively. FISH analyses showed that the UGT2-MAC and the
CYP3A-MAC were present as an individual chromosome with-
out integration into the host rat chromosomes in BLK2i-1 (UGT2-
MAC) and BLK2i-1 (CYP3A-MAC) clones, respectively (Fig. 2 C
and F). Two BLK2i-1 (UGT2-MAC) clones and 4 BLK2i-1 (CYP3A-
MAC) clones that were karyotypically normal were used for the
subsequent production of chimeras.
In the case of UTG2-MAC rat chimera production, among

13 male chimeric rats, 2 (15%) were capable of germline transmission
(Fig. 2D and Table 1). FISH analyses showed that a single UGT2-
MAC was contained in the Tc rat (Fig. 2E). In the case of CYP3A-
MAC rat chimera production, among 31 male chimeric rats, 11
(35%) were capable of germline transmission (Fig. 2G and Table 1).
FISH analyses showed that a single CYP3A-MAC was contained in
the Tc rat (Fig. 2H). Taken together, the MACs with gene cluster
were successfully transferred to germline-competent rat ES cells and
transmitted through the germline. The germline-transmitted Tc
UGT2-MAC rats and Tc CYP3A-MAC rats were mated with
the Ugt2-KO rats and Cyp3a-KO rats, respectively, to generate
humanized rats, as described below. Both humanized UGT2 and
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CYP3A rats transmitted the UGT2-MAC and CYP3A-MAC,
respectively, stably at least beyond the F8 generation.

Generation of Ugt2-KO and Cyp3a-KO Rats.
Ugt2 cluster KO. The simultaneous formation of two double-strand
breaks (DSBs) causes the joining of separate breakage sites,
resulting in loss of the region between the two DSB sites. Only
Ugt2 genes are included in the rat Ugt2 cluster, which allowed us
to apply the large deletion approach for the generation of Ugt2
KO rats. To produce Ugt2 cluster (∼762-kb) KO rats, we si-
multaneously induced two targeted DSBs in the rat genome
using the CRISPR/Cas9 system. hCas9 mRNA and two gRNAs
with target sites upstream of Ugt2a1 and the coding region of
Ugt2b31-like were injected into rat fertilized eggs (Fig. 3A). Fi-
nally, we obtained one Ugt2 cluster KO rat strain with concate-
nation of the genomic sequence upstream of Ugt2a1, a 102-bp
insertion, and the Ugt2b31-like region. To confirm the disruption
of rat UGT2 function, gemfibrozil glucuronidation activity, a
typical marker activity of UGT2 enzymes, was then investigated
in the F2 rats with homozygous deletion (33). The gemfibrozil
glucuronidation activity test revealed the decrease of metabolic
activity in the liver of Ugt2-KO rats compared with that of wild-
type (WT) rats (Fig. 3B). These results suggested the functional
deletion of rat Ugt2 genes in the Ugt2-KO rats. The Ugt2 cluster
KO rats were mated with the Tc UGT2-MAC rats to generate fully
humanized UGT2 rats (designated UGT2-MAC/Ugt2-KO rats).
The Ugt2-KO and UGT2-MAC/Ugt2-KO rats did not display
any obvious physiological abnormalities. They grew up without any

significant abnormalities, especially in terms of body weight, and
showed no anatomical differences compared with theWT controls.
Cyp3a-KO. Among rat Cyp3as, Cyp3a23/3a1 and Cyp3a2 are the
major CYP3A enzymes in the liver (34, 35). In addition, these
enzymes can metabolize some prototypical substrates of human
CYP3A enzymes (36, 37). Thus, in this study, we decided to
disrupt the most important Cyp3a genes, 3a23/3a1 and 3a2, via
TALEN. A pair of TALEN mRNAs targeting exon 5 of rat
Cyp3a23/3a1 and Cyp3a2 were injected into rat fertilized eggs
(Fig. 3C and SI Appendix, Fig. S12). Finally, we produced two
independent homozygous big deletion (BD) mutants (derived
from nos. 32 and 58) and four independent homozygous in-
sertion/deletion mutants including the 3-bp insertion (derived
from no. 51), the 1-bp deletion (derived from no. 62), the 9-bp
deletion, and the 30-bp deletion (each derived from no. 65). To
confirm the disruption of rat CYP3A function, the metabolic
activity of triazolam, a typical marker of the activity of CYP3A
enzymes (38), was then investigated in the six homozygous rat
lines. Triazolam metabolic activity testing revealed the loss of
CYP3A activity compared with that of WT rats and humans in
five out of the six lines, but not in one line (no. 62) (Fig. 3D). We
randomly selected two lines, no. 65 with the 9-bp deletion (desig-
nated #65del9) and no. 58 with a BD mutation (designated #58)
for further investigation. As with rat Cyp3a2 BD for #65del9 and
#58 (SI Appendix, Fig. S12B), rat Cyp3a was considered to be
functionally deleted in both lines by disruption of Cyp3a23/3a1
and Cyp3a2 via TALEN (Cyp3a-KO). Thus, the #58- and
#65del9-Cyp3a-KO rat strains were selected for the production

Fig. 1. Construction of UGT2-MAC and production of fully humanized UGT2 rats. A schematic diagram of UGT2-MAC construction and fully humanized
UGT2 rat production. hChr.4 was transferred from A9 cells to DT40 cells via MMCT and modified in DT40 cells. Telomere-associated chromosomal truncation
was carried out at the telomere side of the UGT2 cluster and loxP insertion was conducted at its centromere side in DT40 cells. Modified hChr.4 was
transferred to CHO cells containing the MAC vector via MMCT. Cre/loxP-mediated reciprocal translocation generated the UGT2-MAC and a by-product. The
UGT2-MAC was transferred to rat ES cells and chimeric Tc rats were produced. Tc rat lines generated through germline transmission were further mated with
KO rats generated by genome editing to produce fully humanized UGT2 rats.

3074 | www.pnas.org/cgi/doi/10.1073/pnas.1808255116 Kazuki et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808255116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808255116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1808255116


of humanized CYP3A rats. The Cyp3a-KO rats were mated with
the Tc CYP3A-MAC rats to generate CYP3A-humanized rats
(designated CYP3A-MAC/Cyp3a-KO rats). As in the Ugt2-KO
and UGT2-MAC/Ugt2-KO rats, the resultant Cyp3a-KO and
CYP3A-MAC/Cyp3a-KO rats also did not display any obvious
physiological or anatomical abnormalities.

Characterization of UGT2- and CYP3A-Humanized Rats. EGFP enco-
ded by the UGT2-MAC/CYP3A-MAC was expressed in all tis-

sues examined, suggesting that the UGT2-MAC/CYP3A-MAC
was retained in the respective organs (Fig. 4 A and E). FISH
analyses showed that the UGT2-MAC and CYP3A-MAC was
detected in ≥84% and ≥90% of cells, respectively, in all examined
tissues, including the liver, intestine, kidney, spleen, lung, heart,
muscle, thymus, brain, and testis (Fig. 4 B, C, F, and G). To con-
firm expression of the genes from the UGT2-MAC/CYP3A-MAC,
RT-PCR analyses were conducted on various tissues from the Tc
rat. In the UGT2-MAC/Ugt2-KO rats, UGT2A3 was expressed in

Fig. 2. Construction of UGT2-MAC and CYP3A-MAC, and production of Tc rats carrying UGT2-MAC or CYP3A-MAC. (A) Process of UGT2-MAC construction.
hChr.4 was truncated at the AC125239 locus and loxP was inserted at the AC074378 locus. The UGT2 cluster was cloned into the MAC4 via a Cre/loxP-mediated
reciprocal translocation cloning system. Lower shows FISH images before and after translocation cloning in CHO cells. Left shows CHO cells containing the
modified hChr.4 and the MAC4. Right shows CHO cells containing the UGT2-MAC and by-product. The arrowhead indicates the UGT2-MAC. (B) Process of
CYP3A-MAC construction. hChr.7 was truncated at the AC073842 locus and a loxP site was inserted at the AC004922 locus. The CYP3A cluster was cloned into
the MAC1 as described for the UGT2-MAC construction. Lower shows FISH images before and after translocation cloning in CHO cells. Left shows CHO cells
containing the modified hChr.7 and the MAC1. Right shows CHO cells containing the CYP3A-MAC and by-product. The arrowhead indicates the CYP3A-MAC.
(C) FISH image of rat ES cell containing the UGT2-MAC. The arrow shows the UGT2-MAC and the Inset presents an enlarged image of it. (D) Chimeric rats
obtained via injection of rat ES cells carrying the UGT2-MAC. (E) Karyotype of Tc rat containing the UGT2-MAC. (F) FISH image of rat ES cell containing the
CYP3A-MAC. The arrow shows the CYP3A-MAC and the Inset presents an enlarged image of it. (G) Chimeric rats obtained via injection of rat ES cells carrying
the CYP3A-MAC. (H) Karyotype of Tc rat containing the CYP3A-MAC.

Table 1. Production of chimeric Tc rat and germline-transmitted Tc rat

Gene Line no.
No. of injected

embryos
No. of embryos developed

to pups (%)
No. of pups
analyzed No. of chimeras (%)

GT chimeras/total
male chimeras

UGT2 1 33 13 (39) 13 10 (77) 2/8
2 60 36 (60) 35 19 (54) 0/5

CYP3A 4 35 11 (31) 11 9 (82) 4/7
8 60 21 (35) 21 18 (86) 4/8

11 70 46 (66) 46 30 (65) 2/9
21 36 22 (61) 22 21 (95) 1/7

GT, germline transmission.
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the liver, small intestine, and kidney; UGT2B4 was mainly expressed
in the liver; UGT2B7 was expressed in the liver, small intestine,
kidney, and lung; UGT2B10 was expressed in the liver; UGT2B11
was mainly expressed in the liver, small intestine, and kidney;
UGT2B15 was mainly expressed in the liver, small intestine, lung,
brain, and testis; and UGT2B28 was mainly expressed in the liver,
small intestine, and kidney (Fig. 4D). These expression profiles are
largely consistent with those observed in humans (39). To confirm
the effect of UGT2 KO and humanization on the expression of
the related endogenous Ugt1 drug-metabolizing enzymes, we de-
termined the relative expression levels of rat Ugt1a1, Ugt1a5, and
Ugt1a8 in the liver of WT, Ugt2-KO, and UGT2-MAC/Ugt2-KO
rats. We selected those genes because a previous report showed
that their hepatic expression levels in WT rats were remarkably
high compared with those in other tissues (40). According to our
results, there was no significant difference in the hepatic expres-
sion levels of these genes among the three different rat lines (SI
Appendix, Fig. S13). Therefore, Ugt2 KO and humanization do
not significantly affect the expression of the endogenous rat Ugt1
genes that we analyzed in this study.
In the CYP3A-MAC/Cyp3a-KO rats, both CYP3A4 and

CYP3A5 were robustly expressed in the liver and small intestine,
and CYP3A5 additionally in the lung (Fig. 4H). This expression
profile is consistent with the one observed in the previously
generated humanized CYP3A-HAC mice and in humans (16, 41,
42). To confirm the effect of Cyp3a KO and humanization on the
expression of other major Cyp enzymes in rat livers (43), we
determined the relative expression levels of rat Cyp1a2, Cyp2c11,

and Cyp2d2 in the liver of WT, Cyp3a-KO, and CYP3A-MAC/
Cyp3a-KO rats (SI Appendix, Fig. S14). Cyp3a KO moderately
increased the rat Cyp1a2 expression level, while the expression
level in CYP3A-MAC/Cyp3a-KO rats was similar to that in WT
rats. The expression levels of rat Cyp2c11 were highly increased in
both Cyp3a-KO and CYP3A-MAC/Cyp3a-KO rats at a similar
level. The rat Cyp2d2 expression was moderately increased in
both Cyp3a-KO and CYP3A-MAC/Cyp3a-KO rats. Thus, Cyp3a
KO may affect the expression of other endogenous rat Cyp en-
zymes. On the other hand, since the hydroxylation activities of
triazolam were much lower in the liver of Cyp3a-KO rats (Fig.
3D), Cyp enzymes increased by Cyp3a KO do not affect the me-
tabolism of triazolam in the following functional study in CYP3A-
humanized rats.

Functional Analyses in UGT2- and CYP3A-Humanized Rats.
UGT2-humanized rats. To analyze the function of human UGT2 in
rats, zidovudine and gemfibrozil glucuronidation was investi-
gated in WT, Ugt2-KO, and UGT2-MAC/Ugt2-KO rats. In
the present study, these two medications were selected as UGT2-
selective substrates. Zidovudine is mainly metabolized by human
UGT2B7, which is an important isoform in UGT2 family (44). In
the Ugt2-KO rats, no zidovudine glucuronidation activity was
observed in the liver microsomes, indicating that rat Ugt2 is not
functional in the liver. In contrast, higher zidovudine glucur-
onidation activity was observed in an incubation time-dependent
manner in the liver microsomes that were prepared from UGT2-
MAC/Ugt2-KO rats as well as those from WT rats and human

Fig. 3. Production of Ugt2 cluster KO, and Cyp3a23/3a1 and Cyp3a2 KO rats, and enzyme activities in their liver microsomes. (A) Schematic view of the rat
Ugt2 cluster genomic region and the CRISPR/Cas9-induced large deletion. Blue and red represent the target sequences of each gRNA. Protospacer adjacent
motif (PAM) sequences are highlighted in green. The junction sequence after deletion of the Ugt2 cluster is shown at the Bottom. (B) Gemfibrozil was time-
dependently incubated with liver microsomes prepared fromWT and Ugt2-KO rats. The concentration of gemfibrozil glucuronide is shown. (C) Schematic view of
the rat Cyp3a23/3a1 and Cyp3a2 genomic region and sites of gene disruption by TALEN. Exon/intron structures are shown. Left and Right TALEN target sequences
are highlighted in red and blue, respectively. Mismatches are shown in green. (D) Results of 4-OH triazolam activity for each strain (n = 2). Liver microsomes were
incubated with 200 μM triazolam for 30 min. Formation of 4-OH triazolam was determined using HPLC. Data are the mean of duplicate assays.
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(Fig. 5A), showing that the introduced human UGT2 gene(s)
produced functional UGT2 protein(s) in the liver. These results
were also confirmed using gemfibrozil as UGT2-selective sub-
strates (SI Appendix, Fig. S15). Taken together, glucuronidation
activities of UGT2 substrates in liver microsomes from UGT2-
MAC/Ugt2-KO rats were similar to those in human liver
microsomes.
CYP3A-humanized rats. To confirm the functional activity of CYP3A
expressed in liver and intestine of CYP3A-MAC/Cyp3a-KO rats,
the metabolites of the CYP3A probe substrate triazolam, α-OH
triazolam and 4-OH triazolam, were examined (45). Treatment
with pregnenolone 16α-carbonitrile (PCN), a CYP3A inducer,
substantially increased the formation of α-OH triazolam and 4-
OH triazolam in the liver and intestine of CYP3A-MAC/Cyp3a-
KO rats, but not in Cyp3a-KO rats (SI Appendix, Fig. S16). Fur-
thermore, immunoinhibition assays showed that the anti-human
CYP3A4 antibody inhibited triazolam metabolism in the liver
microsomes from CYP3A-MAC/Cyp3a-KO rats but not in those
from WT rats (SI Appendix, Fig. S17). These findings suggest that
human CYP3A proteins expressed in the liver and intestine of
CYP3A-MAC/Cyp3a-KO rats were functional, and that CYP3A-
specific metabolic activities in the liver and intestine of CYP3A-
MAC/Cyp3a-KO rats were mediated by human CYP3A proteins
expressed in the CYP3A-MAC/Cyp3a-KO rats.

The kinetics of triazolam metabolism were analyzed to assess
whether the enzymatic properties of CYP3A introduced in the
CYP3A-MAC/Cyp3a-KO rats were the same as those in humans
(SI Appendix, Fig. S18). The ratios of intrinsic clearance (Vmax/Km)
for α-OH triazolam and 4-OH triazolam formation in the liver
microsomes from CYP3A-MAC/Cyp3a-KO rats and humans were
more than 20-fold higher than those from WT rats (Fig. 5B and SI
Appendix, Table S2), suggesting that the kinetics of triazolam in the
liver microsomes from CYP3A-MAC/Cyp3a-KO rats were very
similar to those from humans, but not to those from WT rats. Next,
we analyzed the pharmacokinetic profiles of triazolam and its me-
tabolites after its i.v. administration of triazolam (SI Appendix, Figs.
S19 and S20 and Table S3). The ratios of areas under the curves
(AUCs) for α-OH triazolam and triazolam (α-OH/triazolam) in
CYP3A-MAC/Cyp3a-KO rats were eightfold higher than those in
Cyp3a-KO rats, while the AUC ratios of α-OH triazolam and 4-
OH triazolam (α-OH/4-OH) in CYP3A-MAC/Cyp3a-KO rats
were much higher than those in WT rats (Fig. 5 C and D and SI
Appendix, Table S3). After the i.v. administration of triazolam,
CYP3A-MAC/Cyp3a-KO rats showed the predominant formation
of α-OH triazolam, consistent with the results in liver microsomes.
Similar results were also obtained after the oral administration of
triazolam (SI Appendix, Table S4). This observation is consis-
tent with the clinical data in humans as described previously (46)
and it reflects a clear species difference in the formation of α-OH

Fig. 4. Analyses of UGT2-MAC and CYP3A-MAC retention, and gene expression profiles in humanized UGT2 and CYP3A rats. (A) GFP images of different
tissues from Tc rat carrying the UGT2-MAC. GFP expression indicates the presence of the MAC. (B) Representative FISH image of liver cells from Tc rat with the
UGT2-MAC. The arrowhead shows the UGT2-MAC. Red and green indicate the MAC and UGT2 cluster, respectively. (C) Retention rate of the UGT2-MAC in
various Tc rat tissues analyzed by FISH. (D) RT-PCR analyses for UGT2 gene expression in different Tc rat tissues. (E) GFP images of different tissues from Tc rat
carrying the CYP3A-MAC. GFP expression indicates the presence of the MAC. (F) Representative FISH image of liver cells from Tc rat with the CYP3A-MAC. The
arrowhead shows the CYP3A-MAC. Red and green indicate the MAC and CYP3A cluster, respectively. (G) Retention rate of the CYP3A-MAC in various Tc rat
tissues analyzed by FISH. (H) RT-PCR analyses for human CYP3A4 and CYP3A5 expression in different Tc rat tissues.
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triazolam and 4-OH triazolam between rats and humans, where
the CYP3A-MAC/Cyp3a-KO rats more faithfully reflect the hu-
man situation than WT rats. Among the pharmacokinetic pa-
rameters calculated, clearances after i.v. and oral administration
in Cyp3a-KO rats were lower than those in WT rats. Oral bio-
availabilities in all strains were decreased by PCN treatment (SI
Appendix, Table S5).
To further validate the value of the CYP3A-MAC/Cyp3a-KO

rats for predicting human drug metabolism, we used midazolam,
another common CYP3A probe drug. As shown in SI Appendix,
Fig. S21, midazolam was preferentially metabolized to 4-OH
midazolam in liver microsomes of WT rats. In contrast, 1′-OH
midazolam was preferentially formed in liver microsomes of
CYP3A-MAC/Cyp3a-KO rats and humans. In summary, our re-
sults show that CYP3A-MAC/Cyp3a-KO rats reflected the human
metabolism of midazolam as well as triazolam. Taken together,
these results strongly support the utility of CYP3A-MAC/Cyp3a-
KO rats as a model to predict human drug metabolism.

Discussion
In this study, we established a sophisticated strategy for the de-
velopment of Mb-sized gene cluster humanized rat models by the
approach of combining MMGT and genome editing technolo-
gies. We successfully cloned human Mb-sized gene clusters into
MACs by a combination of telomere-directed chromosome
truncation and loxP insertion in DT40 cells and Cre/loxP-
mediated reciprocal translocation cloning in CHO cells. We
subsequently introduced the MACs with Mb-sized human gene
clusters into germline-competent rat ES cells. We demonstrated
that MACs containing Mb-sized human gene clusters can be
faithfully transmitted through the germline and maintained stably
in rat tissues. Although the human CYP3A cluster had been pre-
viously cloned into HAC, the CYP3A-HAC was not mitotically
stable in proliferative mouse tissues, such as spleen and bone
marrow (16). In contrast, the CYP3A-MAC developed in this
study were mitotically stable not only in mouse but also in rat
tissues including organs with rapidly proliferating cells. Previously,

we showed that MACs were also stably maintained in human cell
lines in vitro during long-term culture (19). Thus, MACs may be
useful as common vectors for the generation of larger humanized
animals such as pigs, cattle, and monkeys.
To the best of our knowledge, the maximal reported size of

deletion in fertilized eggs via genome editing in rat for which
germline transmission can still occur was 121.7 kb (47). In this
study, we succeeded in generating a Ugt2 cluster KO rat line with
a ∼762-kb deletion. Previous endeavors to delete entire gene
clusters mainly relied on labor- and time-intensive approaches
using the Cre/loxP system, involving the targeting of two in-
dependent loxP sites at each end of the cluster, followed by Cre-
mediated chromosomal deletion in ES cells and testing the ca-
pability of the ES cells to transmit the germline to the next
generation at each step. Although such complex manipulations
have been performed in mice, they are very difficult in rats owing
to the chromosomal instability of rat ES cells. Therefore, the
success of the large deletion in fertilized rat eggs described in this
study is an important achievement and a prerequisite for the
generation of fully humanized rats.
Rats are widely used for in vivo pharmacokinetic and drug–

drug interaction studies for various reasons (48). Although rats
are often considered as more advantageous models than mice for
pharmacological study, the absence of complex genetic manip-
ulation technologies in rat ES cells has thus far hindered the
efficient generation of valuable humanized model rats. At least,
the generation of Cyp-KO rats by genome editing have pre-
viously been described (49, 50). By combining the MAC ap-
proach with state-of-the-art genome engineering technologies,
namely, TALEN and CRISPR/Cas9, the present study provides
the successful generation of humanized UGT2 and CYP3A rats.
In this study, the tissue-specific expression pattern of UGT2

and CYP3A genes observed in humans was reproduced in the
humanized UGT2 and CYP3A rats. It should be noted that tis-
sue-specific expression of UGT2 and CYP3A genes has also been
reported in the human prostate (41, 51). The analysis of the ex-
pression of UGT2 and CYP3A in prostate and their association

Fig. 5. Functional analyses of UGT2 and CYP3A in the liver of UGT2- and CYP3A-humanized rats. (A) Time-dependent change in the concentration of zi-
dovudine glucuronide in the liver microsomes of WT rats, Ugt2-KO rats, UGT2-MAC/Ugt2-KO rats (n = 3 for each group), and humans. (B) Ratios of intrinsic
clearance (Vmax/Km) for α-OH triazolam (TRZ) and 4-OH TRZ formation in liver microsomes from WT rats (gray column), CYP3A-MAC/Cyp3a-KO rats (closed
column), and humans (open column). Liver microsomes were prepared from PCN-treated WT and CYP3A-MAC/Cyp3a-KO rats. Kinetic parameters (Vmax and
Km) were determined as described in Materials and Methods. (C) Ratio of AUC for α-OH TRZ/TRZ and 4-OH TRZ/TRZ in vehicle-treated WT, vehicle-Cyp3a-KO,
and PCN-treated CYP3A-MAC/Cyp3a-KO rats. (D) Ratio of AUC for α-OH TRZ/4-OH TRZ in vehicle-treated WT and PCN-treated CYP3A-MAC/Cyp3a-KO rats. Rats
(n = 3 for each group) were i.v. administered triazolam (2.5 mg/kg) through the tail vein. Data are derived from SI Appendix, Table S3.
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with cancer development using the humanized UGT2 and CYP3A
rats will be an interesting subject for future investigations (52–54).
The conventional Tg methods using plasmids or BACs can be

associated with altered gene expression due to position effects at
the site of integration into the host genome and varying copy
numbers of the transgenes, making faithful reproduction of hu-
man gene expression by this approach in different species very
challenging. Since the MAC technology overcomes these limita-
tions and a single MAC containing the genes of interest can be
transferred readily to different species, the MAC approach has
potential to provide a very powerful tool for achieving reproducible
human gene expression in a variety of different species.
The analysis of species differences is an important application

for rat models humanized for drug-metabolizing enzymes, such
as those described in our study. Such species differences between
humans and rats have been described for hepatic glucur-
onidation of gemfibrozil (55). Consistent with the previ-
ous finding, the glucuronidation rate of gemfibrozil was much
lower in human than in rat liver microsomes (SI Appendix, Fig.
S15). Notably, our humanized UGT2 rats also showed a lower
rate of gemfibrozil glucuronidation than the wild-type rats (SI
Appendix, Fig. S15), indicating that humanized rats can mimic
human glucuronidation of this compound. It has also been
reported that the rates of zidovudine glucuronidation are very
similar between human and rat liver microsomes (56, 57) and the
rates of zidovudine glucuronidation were also similar in liver
microsomes prepared from our humanized UGT2 rats, wild-type
rats, and human in our study (Fig. 5A). It therefore appears likely
that the described humanized UGT rats are a useful tool to
predict human drug glucuronidation.
In the present functional analyses of Cyp3a-KO and human-

ized CYP3A rats, we used triazolam as a probe drug. Triazolam
is a highly specific CYP3A substrate and its clearance occurs
almost entirely by hepatic metabolism by CYP3A after i.v. ad-
ministration (58). First, in vitro studies showed that the forma-
tion rates of 4-OH triazolam in the liver microsomes of Cyp3a-
KO rats were lower than those of WT rats (SI Appendix, Fig.
S16). The in vitro findings were consistent with the in vivo
findings that plasma concentrations of 4-OH triazolam in
vehicle-treated Cyp3a-KO rats were lower than those in vehicle-
treated WT rats (SI Appendix, Fig. S19). These results suggested
that triazolam was preferentially metabolized to 4-OH triazolam
by rat CYP3A enzymes in WT rats. Next, in vitro studies showed
low formation rates of α-OH triazolam and 4-OH triazolam in
liver microsomes of vehicle-treated CYP3A-MAC/Cyp3a-KO
and Cyp3a-KO rats (SI Appendix, Fig. S16). Plasma concentra-
tion profiles of α-OH triazolam and 4-OH triazolam were also
similar between vehicle-treated CYP3A-MAC/Cyp3a-KO and
vehicle-treated Cyp3a-KO rats (SI Appendix, Fig. S19), suggest-
ing that human CYP3A-dependent formation of α-OH triazolam
and 4-OH triazolam in vehicle-treated CYP3A-MAC/Cyp3a-KO
rats was as low as in Cyp3a-KO rats. Importantly, however, PCN
treatment increased the plasma concentrations of α-OH tri-
azolam over those of 4-OH triazolam in CYP3A-MAC/Cyp3a-
KO rats, but not in Cyp3a-KO rats. These results suggested that
the human CYP3A-dependent formation of α-OH triazolam was
enhanced by PCN treatment. Interestingly, plasma concentrations
of 4-OH triazolam were markedly decreased and those of α,4-
dihydroxytriazolam were largely increased by PCN only inWT rats
(SI Appendix, Figs. S19 A and D and S20), suggesting that further
metabolism of 4-OH triazolam to α,4-dihydroxytriazolam may be
enhanced by PCN in WT rats. The further metabolism of 4-OH
complicates the comparison of the AUC ratio of α-OH triazolam
and 4-OH triazolam between PCN-treated CYP3A-MAC/Cyp3a-
KO and PCN-treated WT rats. Thus, the comparison of the AUC
ratios in PCN-treated CYP3A-MAC/Cyp3a-KO rats with those in
vehicle-treated WT rats appeared more accurate and was there-
fore undertaken in our analysis (Fig. 5D). Taking together the

findings of the in vitro (Fig. 5B) and in vivo studies (Fig. 5 C and
D), we observed that 4-OH triazolam preferentially formed in WT
rats, but that α-OH triazolam was mainly formed in CYP3A-
MAC/Cyp3a-KO rats and humans.
Importantly, in these so-called humanized CYP3A and UGT2

rat strains, the pharmacokinetic profiles and metabolism of rele-
vant probe substrates observed in humans were well reproduced.
In this study, we used triazolam as a probe drug to compare the
performance of CYP3A enzymes in humans and rats. However,
the metabolism of not only triazolam but also midazolam showed
different characteristics between humans and rats (59). The
preferential formation of 1′-OH midazolam rather than 4-OH
midazolam occurs in human liver microsomes. In contrast, mid-
azolam is predominantly metabolized to 4-OH midazolam in rat
liver microsomes. This feature found in human liver microsomes
was found in CYP3A-MAC/Cyp3a-KO rats (SI Appendix, Fig.
S21). Another difference between humans and rodents is the fact
that CYP3A4 is expressed in human intestine and liver, whereas
different CYP3A enzymes are expressed in both tissues in rodents
(60). Owing to the human-like expression of CYP3A4 in liver and
intestine of the described humanized rat, this model can also be
applied to study differences of drug metabolism between humans
and rodents resulting from the distinct tissue distribution of cor-
responding enzymes. Therefore, these humanized rats provide
useful models not only for elucidating the mechanism of the
temporal and spatial regulation of UGT2/CYP3A gene expres-
sion, but also for the improved prediction of human pharmaco-
kinetics and drug–drug interactions.
Recently, we successfully modified the CYP3A5 single-

nucleotide polymorphism (SNP) in the humanized CYP3A
mouse using genome editing technology (61). The SNP conver-
sion of CYP3A5 (g.6986G to A, *3 to *1) in the mouse ES cells
and fertilized eggs recapitulated the CYP3A5*1 carrier pheno-
type in humans. This SNP conversion method can also be applied
to rat ES cells or rat fertilized eggs containing MACs with human
genes, such as CYP3A- and UGT2-MACs, providing a means to
readily establish relevant allelic human variants from an existing
MAC humanized rat model. Thus, our approaches may be ap-
plicable to understand pharmacogenetic differences between
major sequences and the variants in humans.
Whereas the UGT2/CYP3A models described in the present

report have primary applications in drug metabolism and phar-
macokinetic studies, it should be noted that the approach de-
scribed herein has compelling utility for other applications. Since
MACs can carry multiple and/or very large genes, and can be
transmitted through the germline and stably maintained in vivo,
this technology can be used to generate rat (and presumably
other animal) models containing large genomic regions of genes
with known species specificities, such as genes encoding other
drug-metabolizing enzymes [CYP2C cluster (∼400 kb)], drug
transporters [OATP1 cluster (700 kb)], or components of the
immune system [e.g., the HLA cluster (3 Mb), TCRαδ (1 Mb),
TCRβ (620 kb), IgH (∼1.5 Mb), Igκ (∼2 Mb), and Igλ (∼1 Mb)].
In summary, the described combination of chromosome

transfer of Mb-sized human gene clusters via MAC and genome
editing for orthologous gene disruption provides a powerful
approach for the generation of fully humanized Tc rats with
various important applications in basic research, drug discovery,
and development.

Materials and Methods
Cell Culture.UGT2-MAC and CYP3A-MAC were constructed using a previously
described Mb-sized gene cloning system via HAC (17, 31, 32). MAC4 and
MAC1 vectors were used to generate the UGT2-MAC and, CYP3A-MAC, re-
spectively. The structure of MAC4 contained a centromere from mouse
chromosome 11, EGFP flanked by HS4 insulators, 5′HPRT-loxP site, PGK-hyg,
PGK-puro, and telomeres. The structure of MAC1 contained a centromere
from mouse chromosome 11, EGFP flanked by HS4 insulators, PGK-neo, loxP-3′
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HPRT site, PGK-puro, and telomeres (18). Chicken DT40 cells containing
hChr.4 or hChr.7 were maintained at 40 °C in RPMI medium 1640 supple-
mented with 10% fetal bovine serum (FBS), 1% chicken serum, 50 μM 2-
mercaptoethanol, and 1.5 mg/mL G418 (62). Hprt-deficient CHO (hprt−/−) cells
containing MAC4 or MAC1 used as fusion recipients for hChr.4 or
hChr.7 transfer, respectively, were maintained at 37 °C in Ham’s F-12 nutrient
mixture (Invitrogen) supplemented with 10% FBS. Mouse embryonic fibro-
blasts (MEFs) were isolated from embryos at 13.5 day postcoitum (d.p.c.). MEFs
were grown in DMEM (Sigma-Aldrich) plus 10% FBS. Parental mouse ES cell
lines, TT2F, and the microcell hybrid TT2F clones were maintained on mito-
mycin C (Sigma-Aldrich)-treated Jcl:ICR (CLEA Japan) MEFs and neomycin-
resistant MEFs (Oriental Yeast Co., Ltd.), respectively, as feeder layers in
DMEM with 18% FBS (HyClone), 1 mM sodium pyruvate (Invitrogen), 0.1 mM
nonessential amino acids (Invitrogen), 0.1 mM 2-mercaptoethanol (Sigma-
Aldrich), 2 mM L-glutamine (Invitrogen), and 1,000 units/mL leukemia in-
hibitory factor (Funakoshi). A parental rat ES cell line (BLK2i-1, RGD ID:
10054010) and the microcell hybrid BLK2i-1 clones were maintained on mi-
tomycin C-treated MEFs and neomycin-resistant MEFs, respectively, as feeder
layers, as described previously (63).

Modification of hChr.4 and hChr.7 in DT40 Cells. Homologous recombination-
proficient chicken DT40 cells (1 × 107) were collected in 0.5 mL of RPMI with
25 μg of linearized targeting vector and electroporated at 550 V and 25 μF
using a Gene Pulser apparatus (Bio-Rad). Drug-resistant DT40 clones were
selected in 1.5 mg/mL G418, 0.3 μg/mL puromycin, 1.5 mg/mL hygromycin, or
0.5 mg/mL L-histidinol. Homologous recombination in DT40 hybrid clones
was identified by PCR analyses using primers described in SI Appendix,
Table S1.

MMCT. MMCT was performed as described previously (12). DT40 cells con-
taining the modified chromosomes (hChr.4-ΔAC125239-loxP and hChr.7-
loxP-ΔAC073842) were transferred to CHO (MAC4) and CHO (MAC1) cells,
respectively, via MMCT. To transfer the UGT2-MAC or CYP3A-MAC to mouse
ES cells and rat ES cells, CHO cells containing the UGT2-MAC or CYP3A-MAC
were used as donor microcell hybrids. Briefly, mouse ES and rat ES cells were
fused with microcells prepared from the donor hybrid cells, and selected
with G418 (250 and 150 μg/mL, respectively). The transferred UGT2-MAC and
CYP3A-MAC in each line were characterized by PCR and FISH analyses.

FISH Analyses. The trypsinized cells and homogenized tissue samples were
incubated for 15min in 0.075MKCl, fixedwithmethanol and acetic acid (3:1),
and then slides were prepared using standard methods. FISH analyses were
performed using fixed metaphase or interphase spreads of each cell hybrid

using digoxigenin-labeled (Roche) DNA [humanCOT-1DNA/mouse COT-1 DNA
(Invitrogen)] and biotin-labeled DNA [UGT2-BAC (RP11-643N16), CYP3A-BAC
(RP11-757A13), mouse COT-1 DNA, PGK-neo, β-actin-hisD, PGK-puro, and
PGK-hygro], essentially as described previously (12). Chromosomal DNA was
counterstained with DAPI (Sigma-Aldrich). Images were captured using an
AxioImagerZ2 fluorescence microscope (Carl Zeiss).

Chimeric Rat Production. Chimeric rats were produced as reported previously
(64). Briefly, ES cells derived from each of the BLK2i-1 (UTG2-MAC) (nos. 1
and 2) and BLK2i-1 (CYP3A-MAC) (nos. 4, 8, 11, and 21) cell lines were
microinjected into the blastocoel cavity of Crlj:WI E4.5 blastocysts (9–11 ES
cells per blastocyst). Then, the blastocysts were transferred into uteri of
pseudopregnant recipient rats at 3.5 d.p.c. (12–15 blastocysts per recipient).
The contribution of the ES cells in the resultant offspring was confirmed by
their coat color and/or fluorescence due to GFP gene expression. All animal
experiments were approved by the Animal Care and Use Committee of
National Institute for Physiological Sciences and Tottori University.
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