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Abstract

Environmental and occupational exposure to endocrine disrupting chemicals (EDCs) is a major 

threat to female reproductive health. Bisphenol A (BPA), an environmental toxicant that is 

commonly found in polycarbonate plastics and epoxy resins, has received much attention due to its 

estrogenic activity and high risk of chronic exposure in human. Whereas BPA has been linked to 

infertility and recurrent miscarriage in women, the impact of its exposure on uterine function 

during early pregnancy remains unclear. In a recent publication in Endocrinology, we 

demonstrated that prolonged exposure to an environmental relevant dose of BPA disrupts 

progesterone receptor-regulated uterine functions, thus affecting uterine receptivity for embryo 

implantation and decidua morphogenesis, two critical events for establishment and maintenance of 

early pregnancy. In particular we reported a marked impairment of progesterone receptor (PGR) 

expression and its downstream effector HAND2 in the uterine stromal cells in response to chronic 

BPA exposure. In an earlier study we have shown that HAND2 controls embryo implantation by 

repressing fibroblast growth factor (FGF) expression and the MAP kinase signaling pathway, thus 

inhibiting epithelial proliferation. Interestingly we observed that downregulation of PGR and 

HAND2 expression in uterine stroma upon BPA exposure was associated with an enhanced 

activation of FGFR and MAPK signaling, aberrant proliferation, and lack of uterine receptivity in 

the epithelium. In addition, the proliferation and differentiation of endometrial stromal cells to 

decidual cells, an event critical for the maintenance of early pregnancy, was severely compromised 

in response to BPA. This research highlight will provide an overview of our findings and discuss 

the potential mechanisms by which chronic BPA impairs PGR-HAND2 pathway and adversely 

affects implantation and the establishment of pregnancy.
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Roles of estrogen and progesterone in regulation of uterine function during 

early pregnancy

The physiological functions of mammalian uterus are governed by the concerted actions of 

steroid hormones 17β-estradiol (E) and progesterone (P). These hormones act via their 

cognate receptors to control proliferation and differentiation of the endometrial uterine cells 

and make the uterus competent for establishment of early pregnancy. Specifically, the 

postovulatory E promotes growth of uterine lining by stimulating proliferation of epithelial 

cells. In response to rising level of P that is secreted from the newly formed corpus luteum, 

the uterine epithelium ceases to proliferate and undergoes differentiation to facilitate embryo 

attachment and invasion [1–3]. This is followed by proliferation and differentiation of the 

underlying stromal cells [2, 3]. These cells undergo morphological changes from fibroblastic 

to epithelioid and develop into a unique tissue, termed as decidua, which maintains an 

environment conducive to the growth and development of the implanting embryo (Figure 1). 

Thus, proper decidual morphogenesis is a prerequisite for successful implantation and 

establishment of pregnancy [1–3].

In the mouse, the experimentally induced implantation model (delayed implantation) 

provided the evidence that nidatory E on day 4 of pregnancy plays an essential role in 

embryo implantation and establishment of pregnancy [4]. In this model, deprivation of 

endogenous steroid hormones by removal of ovaries prior to embryo attachment leads to 

suspension of embryo implantation. Administration of P to these animals allows the 

embryos to be viable at the blastocyst stage, but is insufficient to initiate the implantation 

process. However, administration of E to these P-primed pregnant mice allows attachment of 

the blastocyst to the luminal epithelium within 12 to 24 hours, and promotes differentiation 

of the underlying stromal cells to decidual cells within 48 hours. Previous studies using this 

model have shown that the optimal E levels for embryo implantation fall in a narrow range 

of 0.12 to 4 μg/kg body weight. Beyond this range, E is either insufficient or detrimental to 

establishment and maintenance of early pregnancy [4,5]. Collectively, it is clear that uterine 

epithelial receptivity and stromal cell decidualization are acutely dependent on the steroid 

hormone signaling pathways that operate in the uterus during early pregnancy. Indeed, a 

slight perturbation in estrogen receptor (ESR) or progesterone receptor (PGR)-mediated 

signaling in the uterus leads to the development of various reproductive disorders [1, 2, 6].

ESR1- and PGR-regulated stromal factors control uterine receptivity and 

stromal cell decidualization

The physiological effects of E and P are mediated by their cognate nuclear receptors. There 

are two different forms of the estrogen receptors, formerly referred to as ERα and ERβ, and 

encoded by two separate genes, Esr1 and Esr2, respectively. Early studies have shown that E 

via ESR1 stimulates production of paracrine factors, such as IGF1 and FGFs, in uterine 
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stromal cells. These growth factors then act on luminal epithelium and control epithelial 

proliferation [7, 8]. There are two isoforms of PGR, PGR-A and PGR-B, generated from a 

single gene via different promoter usage [9, 10]. Both isoforms have the same DNA binding 

and ligand binding domains, but PGR-B possesses an additional transactivation domain in 

the amino terminal region. In the presence of P, PGR dissociates from the heat shock 

chaperone proteins, undergoes dimerization, and binds to target genes via direct interaction 

with discrete DNA response elements or via tethering interactions with other transcription 

factors. Female mice lacking both PGR-A and PGR-B exhibit hyperplastic uteri that are 

non-receptive to embryo implantation and impairment in decidualization [11].

Using genome-wide gene expression profiling, we and others have identified a number of 

PGR-targets in the mouse and human endometrium [12–14]. Our recent study showed that 

heart and neural crest derivatives expressed protein 2 (HAND2), a basic helix-loop-helix 

transcription factor, is a direct target of PGR [8]. In mouse and human endometrium, Hand2 
is exclusively induced in the uterine stroma in response to P stimulation. Interestingly, our 

studies further revealed that stromal HAND2 plays a central role in controlling the paracrine 

mechanisms that mediate the anti-proliferative effects of P in the luminal epithelium. 

Conditional ablation of Hand2 expression in the mouse uterus leads to infertility, primarily 

due to failure in embryo implantation. Further analysis of Hand2-null uteri revealed 

persistent luminal epithelial proliferation at the time of implantation, indicating that in the 

absence of HAND2, pregnant uteri fail to achieve the receptive status [8]. We also found that 

HAND2 suppresses expression of a subset of stromal fibroblast growth factors (FGFs), e.g., 

FGF1, FGF2, FGF9, and FGF18. In the absence of HAND2, FGFs in the stroma, 

presumably induced by E via stromal ESR1, act in a paracrine fashion to control epithelial 

proliferation through activation of FGFR-FRS2-ERK1/2 pathway (Figure 2). This is also 

accompanied by a sustained phosphorylation and activation of epithelial ESR1 in the uterine 

epithelium of Hand2-null mice. Taken together, these findings suggest that the loss of 

HAND2 in the stroma prevents the epithelium to shift from a proliferative to a differentiated 

state, which is necessary for acquisition of receptivity for implantation.

P, acting via PGR, is the primary driver of endometrial stromal cell differentiation 

process [2, 15]. Interestingly Hand2 expression persists through stromal cell decidualization 

during early pregnancy in the mouse. Our recent studies revealed that Hand2 is a critical 

mediator of PGR in regulation of stromal cell differentiation (unpublished data). Hand2-null 

uterine stromal cells fail to undergo morphological transition to decidual cells and express 

biomarkers that are indicative of decidual uterus. In addition, HAND2 is also critical for 

human endometrial stromal cell decidualization. Silencing of HAND2 expression in human 

endometrial stromal cells results in a decline in the secretion of decidual biomarkers, such as 

IGFBP1 and PRL [16, 17].

Bisphenol A (BPA) is an environmental reproductive toxicant

Environmental and occupational exposure to BPA, an environmental endocrine disrupting 

chemical that is commonly found in polycarbonate plastics and epoxy resins, has received 

much attention in female reproductive health, primarily due to its widespread use and high 

risk of chronic exposure in human [18]. BPA is detectable in body fluids of humans 
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worldwide, with higher levels present in preschool children, adolescents, and occupational 

workers [19]. Clinically, blood BPA concentrations in women are associated with 

reproductive disorders, such as endometrial hyperplasia, endometriosis, recurrent 

miscarriages, and decreased rate of pregnancy in those who seek assisted reproductive 

technologies (ART) [20–22]. It has been reported that the human daily intake (μg/kg/day) of 

this chemical varies from 0.043–14.7 in children, 0.008–1.5 in adults, and 0.0043–100 in 

occupational workers. The level of the biologically active, unconjugated BPA measured in 

human serum falls in a range of 0.5–10 ng/mL, with an average level of approximately 2 

ng/mL [18]. Previous pharmacokinetic studies of BPA in adult CD1 female mice have shown 

that the bioactive unconjugated serum BPA level reaches the maximum at 1 hour (3.28 

ng/mL) and the average AUC0–24 is 0.7 ng/mL after oral administration of 400 μg/kg 

BPA [23].

Early studies indicate that BPA exerts a magnitude of actions in diverse target tissues. BPA 

was originally identified as an estrogen mimic due to its low weak binding affinity to ESR1 

and ESR2 [24, 25]. Recent studies have addressed the estrogenic activity of BPA in target 

tissues at no or low E background. There is also increasing evidence to suggest that BPA 

may exhibit anti-estrogenic activities in the presence of E [25, 26]. BPA also binds to the 

estrogen receptor-related proteins, GPR30, or estrogen receptor-related receptor γ, which 

are known to stimulate rapid intracellular responses through non-genomic signaling 

pathways [25, 27]. More recent studies have also suggested that BPA exposure could lead to a 

long-term change in the expression levels of target genes via epigenetic mechanisms [28–32].

It is known that fetal or neonatal female rodents upon prolonged exposures to BPA 

encounter numerous reproductive disorders later in life, including abnormal puberty, oocyte 

aneuploidy, as well as a decline in reproductive capacity [33–38]. The impact of the BPA 

exposure at environmentally relevant levels on the E and P-regulated uterine functions 

during early pregnancy remains unclear. In our recent publication, we investigated how 

chronic exposure to low levels of BPA in young female mice affects uterine epithelial 

receptivity and stromal cell decidualization, two critical biological events that are acutely 

dependent on steroid hormone-dependent signaling during early pregnancy [39].

Chronic BPA exposure affects embryo implantation and decidualization 

during early pregnancy

Humans are chronically exposed to BPA primarily through oral intakes, multiple times a 

day [40]. In order to recapitulate the BPA exposure situation in human population, 

particularly in teenagers, we designed a multiple dosing regimen for BPA in which young 

female mice were exposed to 0, 60, 600 μg/kg/day of BPA daily in three equal feedings 

during pubertal development. The 60 μg/kg/day dose is relevant to the average level of 

exposure in occupational workers and is close to the dosage of BPA that is considered safe 

for human consumption, which is 50 μg/kg/day [19]. To circumvent the possibility that BPA 

exposure may impair ovarian steroidogenesis and consequently affect uterine functions, we 

employed the delayed model in which embryo implantation is controlled by administration 

of exogenous E and P. Experimental and control pregnant female mice were subjected to 
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delayed implantation as described before. Embryo implantation and decidual response were 

then evaluated in these mice by 12 or 48 hours after E administration, respectively. As 

expected, the control pregnant females mice dosed with vehicle displayed well-formed 

implantation sites along the entire uterine horn. However, the females that were exposed to a 

chronic BPA regimen, exhibited a dose-dependent decline in the number of implantation 

sites. Histological analyses revealed that BPA-exposed uteri exhibited a marked impairment 

in decidualization as indicated by the reduction in the size of the implantation chambers. 

Taken together, these results indicate that chronic exposure to BPA results in an intrauterine 

environment that is unfavorable for embryo implantation and stromal cell decidualization 

during early pregnancy.

BPA affects ESR1- and PGR-dependent molecular pathways to influence 

epithelial receptivity during embryo implantation

To gain insights into the mechanism by which chronic BPA exposure disrupts uterine 

function during early pregnancy, we first examined the expression of ESR1 and PGR in 

vehicle- or BPA-exposed uterine samples collected 12 hours after E administration. This 

period corresponds to the time of blastocyst attachment to the receptive luminal epithelium 

in mice. Immunohistochemistry and gene expression analyses showed that there was no 

appreciable difference in ESR1 expression in the uterine tissues that were dosed with or 

without BPA. While PGR expression in the epithelium was low but comparable in both 

control and BPA-exposed uterine tissues, the expression of PGR in the stroma was 

significantly reduced in uteri of mice that have been exposed to BPA. Consistent with these 

observations we found that the targets of PGR in epithelial cells, such as Ihh, Alox15, and 

Irg1, were expressed at comparable levels in vehicle- or BPA-treated uterine samples. In 

contrast, the stromal targets of PGR including Hand2 and Hoxa10 were markedly reduced in 

BPA-exposed uteri.

To investigate the possibility that BPA interacts with ESR1 to modulate its transcriptional 

activity, we monitored the effect of BPA on factors that are regulated by ESR1 and play a 

critical role in epithelial receptivity and stromal cell differentiation during early pregnancy. 

Targets of ESR1 in the luminal epithelium (Muc1), the glandular epithelium (Lif), as well as 

in the stromal cells (Fra1 and Gja1) were selected for the analyses. Interestingly we 

observed that compared to the vehicle-treated controls, Muc1 expression was significantly 

upregulated while expressions of Lif, Fra1, and Gja1 were markedly downregulated in BPA-

exposed uteri. Collectively these results indicate that BPA selectively interferes with ESR1- 

and PGR-mediated signaling pathways in the uterus during early pregnancy.

In many species including mice, the receptive state is marked by a cessation in epithelial cell 

proliferation prior to implantation. Our recent studies have shown that the cessation of 

epithelial proliferation is mediated by stromal Hand2, which is expressed downstream of 

stromal PGR. As described previously, in mouse uteri lacking Hand2, persistent induction of 

FGFs in the stroma activates FGF receptor (FGFR) and ERK1/2-mediated MAPK signaling 

in the epithelium to promote cell proliferation and impair implantation [8]. Hence down 

regulation of PGR and HAND2 in the uterine stroma by BPA exposure prompted us to 
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determine the effect of this EDC on FGFR signaling at the time of implantation. We 

examined the tyrosine phosphorylation status of FRS2, an adapter protein that links activated 

FGR receptors to downstream signaling pathways, such as ERK1/2. As expected, only low 

levels of phospho-FRS2 (p-FRS2) and phospho-ERK1/2 (p-ERK1/2) were observed in the 

uterine epithelia of control mice at the time of implantation. In contrast, a marked increase in 

the phosphorylation level of these two proteins was seen in the epithelia of BPA-exposed 

uteri, indicating elevated FGFR signaling in response to this EDC (Figure 3). Consistent 

with this observation we found an enhanced proliferation of uterine epithelial cells, as 

indicated by KI67 staining, in response to BPA exposure. We also determined the gene 

expression levels of FGF family members in the uterine stroma of these females and found 

that Fgf1, Fgf7, Fgf9 and Fgf18 levels are markedly elevated in BPA-exposed uteri 

compared to the vehicle-treated controls. These results indicate that downregulation of 

Hand2 in the uterine stroma in response to BPA results in persistent activation of FGFR-

ERK1/2 pathway and enhanced cell proliferation in the epithelium, making the uterus non-

receptive for implantation.

Uterine stromal cell differentiation is impaired in response to BPA exposure

We further investigated the expression level of PGR in uterine tissues collected from female 

mice treated with or without BPA at 48 hours after E stimulation, which overlaps with the 

decidual phase of pregnancy. Immunohistochemical analysis revealed that BPA exposure led 

to an aberrant spatial expression pattern of PGR in the endometrial stroma during 

decidualization. In the control vehicle-exposed uterine sections, PGR was localized to the 

stromal cells outside the primary decidual zone comprising of a few layers of cells in the 

immediate vicinity of the implanted embryo. In the BPA-exposed uterine samples the cells 

in the primary decidual zone expressed PGR, while the cells outside this zone were devoid 

of PGR expression. Interestingly, when stromal cell proliferation and differentiation were 

assessed by immunohistochemistry using antibodies against KI67 and decidual prolactin-

related protein (PRL8A2), we observed that in control uterine tissues the stromal cells in 

close vicinity of the embryos were largely devoid of any KI67 staining indicating that these 

cells have exited the cell cycle and entered the differentiation program. Indeed these cells 

expressed PRL8A2, a differentiation marker of stromal cells. In contrast, the uterine sections 

from BPA-exposed mice exhibited wide spread staining of KI67 in the stromal cells that are 

in close proximity to the implanted embryo. These cells did not undergo differentiation as 

indicated by the lack of expression of PRL8A2. These results indicate that BPA exposure 

affects the differentiation of uterine stromal cells to decidual cells that is critical for the 

establishment of pregnancy.

Perspectives

Several lines of evidence including our current studies suggest that PGR-HAND2-mediated 

molecular pathway is vulnerable to exposure of an environmental toxic chemical with 

estrogenic or anti-estrogenic activity, including BPA. The precise mechanism by which BPA 

affects PGR/HAND2 expression in the uterus remains unclear. Early studies showed that 

BPA is capable of binding to ESR1 and ESR2 with low affinity. It has also been reported 

that pre-treatment of E followed by ingestion of 50 μg/kg of BPA in female rodents reduces 
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the bioavailability of BPA in the uterus [41]. It is plausible that BPA interferes with ESR1-

dependent gene expression in the uterine stroma including PGR during early pregnancy. 

There is also increasing evidence to suggest that chronic BPA exposure could alter gene 

expression in target tissues through epigenetic mechanisms, including DNA methylation in 

“CG” islands of target gene promoters [28, 29, 42]. Whereas the effect of BPA on DNA 

methylation of PGR has not been reported, a recent study has shown that methylation of 

Stat3 and Fkbp5 are affected in the liver of BPA-exposed mice [43, 44]. Furthermore, studies 

from the Taylor laboratory have shown that DNA methylation of Hoxa10, a known target of 

PGR, is affected in response to BPA exposure [31]. Interestingly we noted that the expression 

of Dnmt3b, a member of the methyltransferases responsible for establishing methylation 

patterns [45], is markedly induced in uterine stromal cells in response to chronic low-level 

BPA exposure. It is possible that BPA exposure affects expression of PGR and PGR-targets 

by promoter DNA methylation mechanism. These studies are currently under investigation 

in the laboratory.

Loss of PGR expression or disruption in PGR-mediated signaling is always associated with 

an unopposed E action/P-resistance in the endometrium that is favorable to cell cycle 

progression and inflammatory reaction, leading to various female reproductive 

diseases [46–50]. Our studies revealed that chronic exposure to low levels of BPA during 

pubertal development in female mice adversely affects PGR-HAND2 dependent signaling in 

the uterus and impact the function of this tissue later in life. Hence, deciphering the 

underlying mechanism of aberrant steroid receptor-dependent signaling in the uterus in 

response to BPA exposure will provide novel insights into the BPA-associated female 

reproductive disorders, such as infertility, early pregnancy loss, endometriosis, endometrial 

hyperplasia, and endometrial cancers.

Abbreviation

BPA Bisphenol A

E 17β-estradiol

EDC Endocrine disrupting chemical

ESR Estrogen receptor

ERK1/2 Extracellular signal-regulated kinases 1/2

FRS2 Fibroblast growth factor substrate 2

P Progesterone

PGR Progesterone receptor
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Figure 1. E and P-regulated events critical for establishment of early pregnancy
In mice, the preovulatory ovarian E stimulates uterine epithelial proliferation on days 1 and 

2 of pregnancy. Starting on day 3 of pregnancy, in response to rising P levels, epithelial cells 

cease to proliferate and enter a receptive differentiation program. On day 4 of pregnancy 

following a nidatory surge of E, uterine epithelial cells lose their polarity and allow 

attachment of embryo. The attached embryo breaches the epithelium barrier and triggers the 

P-dominated differentiation program of the subjacent fibroblastic stromal cells into secretory 

decidual cells that maintains an environment conducive to the growth and development of 

the implanting embryo. Reprinted with permission [51]
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Figure 2. Steroid hormones regulate epithelial-stromal cross talk in the uterus during early 
pregnancy
Before implantation, E acting through ESR1, promotes the secretion of FGFs in the 

fibroblastic stromal cells (pink). These growth factors in a paracrine manner act on FGF 

receptors in epithelial cells (purple) to activate FRS2-ERK1/2-mediated signaling pathways 

and drive epithelial proliferation. During the peri-implantation period, P acting on PGR in 

the stroma, stimulates expression of HAND2, which inhibits expression of FGFs and 

consequently blocks E-induced FGFR-ERK1/2-mediated MAPK signaling and inhibits 

epithelial proliferation. Reprinted with permission [1].
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Figure 3. Chronic BPA exposure disrupts PGR-mediated signaling in the uterus
In comparison to non-treated uterine tissues, PGR and HAND2 expression is markedly 

downregulated upon BPA exposure (A). Disruption of PGR-mediated pathways in BPA-

exposed uterine stromal cells leads to a marked enhancement in the FGFR-ERK1/2 MAPK 

signaling in the epithelium and drives persistent proliferation in these cells (B). L, S, and G 

denote luminal epithelium, glandular epithelium, and stroma, respectively.
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