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Abstract: Background: Alopecia areata (AA) is associated with Interferon- γ (IFN-γ)
mediated T-lymphocyte dysfunction and increased circulating Interleukine-17 (IL-17) levels.
Epigallocatechin-3-gallate (EGCG) specifically inhibits IFN-γ pathways and unlike Janus Kinase 1
and 2 (JAK1/JAK2) inhibitors (tofacitinib, ruxolitinib), EGCG is safer, more cost-effective, and is
a topically active agent. Our objective is to test the mode of action of EGCG in vitro and ex vivo
using HaCat, Jurkat cell lines, and peripheral blood mononuclear cells (PBMCs) of AA patients and
healthy controls (HCs), respectively. Methods: distribution of T helper cells (Th1, Th17), and cytotoxic
cells (CD8) in PBMCs isolated from 30 AA patients and 30 HCs was investigated by flowcytomterty.
In vitro treatment of HaCat and Jurkat cells with 40 µm EGCG for 48 h was performed to measure
the level of phosphorylation of signal transducer and activator of transcription protein STAT1, and
replicated in ex vivo model using PBMCs of AA patients. Results: Interestingly, 40 µm EGCG is
capable of completely inhibiting phosphorylation of STAT1 after 48 h in HaCat and Jurkat cells
and ex vivo in PBMCs of AA patients. Based on QPCR data, the action of EGCG on p-STAT1
seems to be mediated via downregulation of the expression of JAK2 but not JAK1 leading to the
inhibition of human leukocyte antigens (HLA-DR and HLA-B) expression probably via IRF-1. On the
other hand, AA patients have significantly increased levels of Th1, Th17, and CD8 cells and the
production of IFN-γ and IL-17 by PBMCs in AA patients was significantly higher compared to HC;
p = 0.008 and p = 0.006, respectively. Total numbers of CD8+ cells were not significantly different
between treated and untreated samples. However, CD8+ cells with positive Natural killer group 2
member D (NKG2D) transmembrane receptor (CD8+ NKG2D+ subset) was significantly reduced
when PBMCs were treated with 20 µm EGCG for 48 h. Conclusion: These results suggest that EGCG
has a synergistic action that inhibits expression of HLA-DR and HLA-B molecules via the IFN-γ
pathway to maintain immune privilege in HF; also it reduces CD8+ NKG2D+ subset.
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1. Introduction

Alopecia areata (AA) is an autoimmune disease focused on the hair follicles (HFs) and nails.
It presents typically as well-demarcated areas of hair loss, which may progress to total scalp hair
loss (alopecia totalis) or whole-body hair loss (alopecia universalis) in a minority of cases. Currently
available treatments are limited in efficacy and frequently unsatisfactory.

There is strong evidence of the involvement of several genes in the pathogenesis of AA including
Immune related genes such as HLA class II genes (HLA-DRA, HLA-DQA, HLA-DQB) [1–3], MICA [2,4],
CTLA4 [2,5], NOTCH4 [2,6], AIRE [7–10], PTPN22 [11,12] FOXP3 [2], IL1RN [13–16] as well as hair and
skin related genes such as MX1 [17], ERBB3 [2,18], PRDX5 [2,19,20] and STX17 [2,21]. There is also
evidence that stress is involved in the pathogenesis of AA via the release of corticotropin-releasing
hormone, substance P, and nerve growth factor, which induce the degranulation of mast-cells and the
release of inflammatory cytokines such as TNF-a, IL-1, and IL-6 [22–25].

The pathogenesis of AA is also thought to be a consequence of collapse of the normal physiological
state of immune privilege (IP) in the HF of genetically susceptible individuals. Collapse of IP results
in autoimmune attack of the originally privileged sites, leading to autoimmune diseases such as
autoimmune uveitis, autoimmune orchitis, and fetal rejection. In AA, follicular IP is characterized by a
lack of expression of major histocompatibility complex (MHC) classes I and II in the proximal part of
the anagen HF [26,27], and the entire lower two-thirds of the anagen HF is devoid of antigen presenting
cells (APCs) [28,29]. Only scant numbers of NK cells, CD4+, are found in the lower portions of the
proximal hair follicle [27]. These features are thought to be mediated by immunosuppressive factors,
such as TGF-β1, α-MSH, IL-10, adrenocorticotrophic hormone (ACTH), and an immunoinhibitory
signal (CD200) secreted by hair follicle cells [30–32].

In the aberrant IP state found in AA, the cellular and molecular elements of normal HF are altered
with upregulation of MHC class I and class II compared to normal control skin [32–34], resulting in
the exposure of auto-antigens to cytotoxic T cells and subsequent infiltration of CD4+ T cells, NK,
and APCs [35]. Expression of the main inducer of MHC class I, IFN-γ, which is a Th1 cytokine, is
increased in the affected skin. In contrast to the normal state, IP guardians, such as TGF-β and α-MSH
are downregulated in AA lesional areas [32,36,37].

It has been suggested that antigen identification and processing by APCs results in IFN-γ
production, which in turn upregulates MHC class I with subsequent sequestration of Tc cells [38,39].
Further production of IFN-γ and upregulation of MHC class II with sequestration of Th1 and Th17 cells
results in HF damage. Immune privilege collapse results in dense infiltration of T-lymphocytes of both
CD4+ and CD8+ phenotypes, which is one of the histopathological hallmarks of AA [40,41]. CD4+ cells
constitute 60–80% of the lymphocytic infiltrate in AA affected skin [40]. Recent investigations have
addressed a number of questions such as: which CD4+ subset has the key role in AA pathogenesis
and whether the effect is mediated by collapsing IP. Naïve CD4+ can differentiate into Th1, Th2, Th17
or CD4+ CD25+ regulatory T cells (Treg), which are characterized by their cytokine profiles [42].
For instance, the CD4+ Th1 subset secretes IFN-γ, TNF- β, and IL-2 [43]. The CD4+ Th2 subset
secretes IL-4, IL-5, IL-10, and IL-13 [44]; the CD4+ Th17 subset secretes IL-17, IL-21, IL-22, IL-23,
and IL-6; and Treg cells secrete TGF-β, and IL-10 [45,46]. Altering the balance between the effector
and regulatory populations of CD4+ cells is a mechanism of autoimmunity in a number of diseases
(Figure 1) [47].
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Figure 1. Proposed role of T cells in immune privilege (IP) collapse. In normal IP state (left panel), 
Treg and other hair follicle (HF) cells secret IP guardians such as TGF-β and IL-10, keeping the MHC 
class I and II expression low. As a result, the HF is devoid of inflammatory lymphocytes (Teff). In the 
aberrant IP state (right panel), the altered balance between inflammatory T cells (Th1 and Th17) and 
Treg is a key element in the pathogenesis. Th1 and Th17 activation results in IFN-γ secretion leading 
to upregulation of MHC class I and II expression. 

The role of Th1 cells in AA pathogenesis is supported by the IFN-γ signature observed in lesional 
tissue [38,39]. Furthermore, expression of Th1 chemokines such as CXCL-9, CXCL-10, and their 
receptor CXCR3 is upregulated and correlated with disease activity [48]. IL-2, which is another Th1 
cytokine, was found to be elevated in peripheral blood of patients with severe AA [49]. Th17 is 
another CD4+ cell population that has been proposed to have a role in AA pathogenesis, and IL-17 
expression was found to be significantly higher in AA-affected skin compared to controls [50]. The 
increase in Th17 cells infiltrating lesional HFs of AA patients was associated with a reduction in 
FOXP3+ Treg [51,52]. Involvement of Th17 in AA might be explained by its role in reducing Treg 
recruitment [52] with resultant development of a pro-inflammatory micro-environment in HFs. Lew 
et al [53] found a single nucleotide polymorphism (rs879577) in the gene for IL-17 receptor (IL-17RA) 
that was significantly increased in Korean AA patients compared to healthy controls [53]. Similarly, 
Aytekin et al. (2014) also showed that IL-17 SNP is associated with increased susceptibility to AA [54]. 
Furthermore, IL-17 was significantly increased in the serum of AA patients when compared to 
healthy controls [55]. 

The NKG2D receptor, which is expressed only on the surface of activated CD8+ cells, has been 
previously implicated in AA by virtue of upregulation of its ligands, ULBP3 and MICA, in the dermal 
papilla and dermal sheath of AA HFs compared to normal [2,56]. NKG2D ligands activate the 
cytotoxic activity of CD8+ T cells [2,57]. Such activation is followed by IFN-γ production from 
cytotoxic CD8+ NKG2D+ T cells mediating inflammation and HF damage [57]. 

It is well known that IFN-γ mediates its action via the JAK-STAT pathway [58]. As a main 
inducer of IP collapse and consequently AA, it is important to understand its activation pathway. 
IFN-γ binds to its receptors, IFNGR1–2, followed by their dimerization and activation of Janus kinase 
enzymes JAK1 and JAK2. JAK enzymes are a phosphorylate signal transducer and activator of 
transcription protein (STAT1), which translocates into the nucleus and binds to IFN-gamma activated 
sequences (GAS). GAS is a specific DNA sequence response to IFN-γ binding by subsequent 
activation of IFN-γ dependent gene expression, which mediates the inflammatory response [59]. 

IFN-γ activates a large number of genes (up to 500) and the transcription factor, interferon 
regulatory factor (IRF-1), is among the key genes regulated by IFN-γ. IRF-1 activates a group of genes 

Figure 1. Proposed role of T cells in immune privilege (IP) collapse. In normal IP state (left panel),
Treg and other hair follicle (HF) cells secret IP guardians such as TGF-β and IL-10, keeping the MHC
class I and II expression low. As a result, the HF is devoid of inflammatory lymphocytes (Teff). In the
aberrant IP state (right panel), the altered balance between inflammatory T cells (Th1 and Th17) and
Treg is a key element in the pathogenesis. Th1 and Th17 activation results in IFN-γ secretion leading to
upregulation of MHC class I and II expression.

The role of Th1 cells in AA pathogenesis is supported by the IFN-γ signature observed in lesional
tissue [38,39]. Furthermore, expression of Th1 chemokines such as CXCL-9, CXCL-10, and their
receptor CXCR3 is upregulated and correlated with disease activity [48]. IL-2, which is another Th1
cytokine, was found to be elevated in peripheral blood of patients with severe AA [49]. Th17 is another
CD4+ cell population that has been proposed to have a role in AA pathogenesis, and IL-17 expression
was found to be significantly higher in AA-affected skin compared to controls [50]. The increase in Th17
cells infiltrating lesional HFs of AA patients was associated with a reduction in FOXP3+ Treg [51,52].
Involvement of Th17 in AA might be explained by its role in reducing Treg recruitment [52] with
resultant development of a pro-inflammatory micro-environment in HFs. Lew et al [53] found a single
nucleotide polymorphism (rs879577) in the gene for IL-17 receptor (IL-17RA) that was significantly
increased in Korean AA patients compared to healthy controls [53]. Similarly, Aytekin et al. (2014) also
showed that IL-17 SNP is associated with increased susceptibility to AA [54]. Furthermore, IL-17 was
significantly increased in the serum of AA patients when compared to healthy controls [55].

The NKG2D receptor, which is expressed only on the surface of activated CD8+ cells, has been
previously implicated in AA by virtue of upregulation of its ligands, ULBP3 and MICA, in the dermal
papilla and dermal sheath of AA HFs compared to normal [2,56]. NKG2D ligands activate the cytotoxic
activity of CD8+ T cells [2,57]. Such activation is followed by IFN-γ production from cytotoxic CD8+
NKG2D+ T cells mediating inflammation and HF damage [57].

It is well known that IFN-γ mediates its action via the JAK-STAT pathway [58]. As a main inducer
of IP collapse and consequently AA, it is important to understand its activation pathway. IFN-γ binds
to its receptors, IFNGR1–2, followed by their dimerization and activation of Janus kinase enzymes
JAK1 and JAK2. JAK enzymes are a phosphorylate signal transducer and activator of transcription
protein (STAT1), which translocates into the nucleus and binds to IFN-gamma activated sequences
(GAS). GAS is a specific DNA sequence response to IFN-γ binding by subsequent activation of IFN-γ
dependent gene expression, which mediates the inflammatory response [59].

IFN-γ activates a large number of genes (up to 500) and the transcription factor, interferon
regulatory factor (IRF-1), is among the key genes regulated by IFN-γ. IRF-1 activates a group of genes
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such as those involved in the transcription of antigen presenting molecules, namely MHC class I and
class II, TAP [60], and adhesion molecules such as ICAM-1 and VCAM-1 [61]. It also promotes the
development and function of Th1 and Tc cells [62]. IRF-1 is also considered a key negative regulator of
Treg through repression of FOXP3 expression [63].

Targeting the JAK-STAT1 pathway by a chemical inhibitor has shown promising results in AA.
Three JAK inhibitors have been used in AA including ruxolitinib, tofacitinib, and baricitinib. Systemic
administration of ruxolitinib resulted in successful hair regrowth in nine patients in a small pilot study
in 12 AA patients [58]. In a case series of 90 patients with extensive alopecia areata, 58% achieved
at least 50% improvement following treatment with the JAK1/3 inhibitor tofacitinib [64]. However,
tofacitinib (which is not licensed in Europe) costs ~$2000/month and can predispose to life-threatening
infections. Treatment with baricitinib (a JAK1 and JAK2 inhibitor), in one patient, was reported
as showing full scalp hair regrowth after nine months [65]. This drug has a high cost, side-effects,
and, in this case, the patient relapsed just a few weeks after cessation of their treatment with JAK
inhibitors [66]. It is, therefore, proposed to target the same pathway, but with less toxic and more
specific inhibitors.

Green tea (Camellia sinensis), has been shown to have many health promoting effects. Catechins
constitute about 40% of the dry weight of green tea and epigallocatechin-3-gallate (EGCG) is the major
component accounting for 60% of the total catechin [67]. Epigallocatechin-3-gallate is a polyphenolic
flavonoid (C22H18O11 of average molecular mass 458 Da) with anti-inflammatory, anti-oxidant, and
anti-tumor properties. It has been found to have an inhibitory effect on IFN-γ signaling via the
JAK-STAT pathway. It reduces STAT1 translocation into the nucleus by inhibiting phosphorylation.
Downregulation of JAK1 and JAK2 enzymes has been achieved by EGCG in human oral cancer cell
lines [68], and a reproducible STAT1 inhibitory effect of EGCG was shown in a study on colorectal cell
lines [69]. Epigallocatechin-3-gallate has also been shown to inhibit T cell proliferation by inhibiting
IL-2 [70] and to be therapeutically beneficial in experimental autoimmune encephalomyelitis [71]. In a
study by Wu and colleagues [72], EGCG at a physiologically achievable concentration of 2.5–10 µm,
inhibited proliferation in primary T cells isolated from C57BL mice spleen. The same experiment
in human subjects was performed by Katiyar [73], applying EGCG cream topically (3 mg EGCG
on 2.5 cm2) to normal volunteers’ skin. The EGCG was applied 30 min before UVB exposure
and an inhibitory effect of EGCG on UVB induced leukocyte infiltration (neutrophil, monocytes,
and macrophage) was observed [74]. No adverse effects have been recorded in human healthy
volunteers after oral administration of 800 mg daily of EGCG for four weeks, which is equivalent to
the EGCG content of 6–18 cups of tea daily, giving EGCG a good safety profile [74]. Additionally,
EGCG is applicable in topical preparations with a good skin penetration index, to minimize possible
side-effects [75].

2. Material and Methods

2.1. Blood Samples

Our study was reviewed and approved by the Institutional Review Boards and Ethics Committees
at the University of Sheffield (LREC Reference Number 002651) and Sheffield Teaching Hospitals (NHS
Permission Reference Number STH18941). Twenty patients with active hair loss and an established
diagnosis of AA were recruited and provide consent at the Department of Dermatology, Royal
Hallamshire Hospital, Sheffield, UK (details of patients are given in the Supplementary Materials,
Table S4). Patients diagnosed with other autoimmune diseases or receiving immunosuppressive drugs
were excluded from the study. The cases recruited included 9 with patchy AA, 5 with alopecia totalis,
and 6 with alopecia universalis. Patients and healthy controls were age-matched and were all females
of Caucasian ethnicity.
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2.2. Cell Lines

HaCat (human keratinocyte line) cells were kindly provided by Professor Sheila McNeil, Dept of
Materials Science and Engineering, and maintained in high glucose Dulbecco’s Modified Eagle’s
Medium DMEM (Lonza) at 5–100% confluence. To harvest the cells, they were incubated in phosphate
buffered saline (PBS) with 0.02% Ethylenediaminetetraacetic acid (EDTA) for 10 min, followed by a
further incubation with 0.05% trypsin/0.02% EDTA (1:1) solution for 3–5 min. A Jurkat cell line was
kindly provided by Vanessa Singleton, Dept of Infection and Immunity, and maintained in Roswell
Park Memorial Institute medium RPMI 1640 (Lonza) at 2–10 × 105 cell density. Media of both cell lines
were supplemented with 10% fetal bovine serum (FBS, Gibco-BRL) and the cells maintained at 37 ◦C
in a 5% CO2 atmosphere.

2.3. Treatment with EGCG

Cells were seeded at a density of 5 × 105 per well in a 6-well plate (HaCat) or 2 × 105 per mL in a
T25 flask (Jurkat). After overnight incubation, they were stimulated with 50 or 100 u/mL recombinant
human IFN-γ (300-02, Peprotech). After 48 h incubation, the cells were treated with 20 or 40 µm EGCG
for 24 or 48 h before being harvested for RNA or protein assays. The EGCG concentrations were
determined after we performed toxicity assays (Figures S1–S3 in Supplementary Materials). The EGCG
(E4143, Sigma) was dissolved in water at 10 mM stock solution. Cells were incubated with IFN-γ for
48 h prior to EGCG treatment to induce STAT1 phosphorylation. The doses were 100 IU/mL IFN-γ in
Jurkat or primary T cells or 50 IU/mL in HaCat cells.

2.4. Peripheral Blood Mononuclear Cell Separation and FACS Analysis

Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized venous blood by
density gradient purification using Lymphoprep as described by the manufacturer (07801, Stem Cell).
They were then stained with two panels of antibodies: IL-17 or Treg panel (Tables S1 and S2). Briefly,
106 PBMCs were incubated for 30 min at room temperature with blue fixable live/dead dye, washed
once with PBS, and stained with antibodies targeting surface markers in each panel. The cells were
then fixed and permeabilized by fix/perm buffer (transcription buffer set, 562725, BD) for 40–50 min
at 4 ◦C, followed by intracellular staining where cells were incubated for 40–50 min at 4 ◦C with
antibodies specific for FOXP3, IL-10 or IL-17. The cells were finally fixed in 2% PFA, staining visualized
by LSR II (Becton Dickinson, Heidelberg, Germany), and further gating performed by Flow Jo software
to determine frequency of T cell subpopulations. Gating of the positive population for each marker
was performed based on a florescence minus one control (FMO). Unstained, single-cell controls and
compensation controls were also used to set-up the experiment. All antibodies were used at dilution
1:100.

2.5. Western Blotting

Peripheral blood mononuclear cells or cell line lysates were prepared by homogenization in
Radioimmunoprecipitation assay (RIPA) buffer (150 mM sodium chloride, 50mM Tris-HCl, pH 7.4,
2 mM ethylenediaminetetraacetic acid, 1% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium
dodecylsulfate) containing a protease inhibitor cocktail (P8340-5ML, Sigma). Protein concentration
was determined by the bicinchoninic acid (BCA) assay (Pierce™ BCA Protein Assay Kit, 23225,
Thermofisher, Loughborough, UK). The cell lysate was boiled for 5 min in 1 × sodium dodecyl
sulfate (SDS) sample buffer (B31010, Lifetechnologies, Loughborough, UK) and proteins separated by
SDS-PAGE (pH8.8, 10% [37:1] acrylamide, 0.375M Tris-Cl and 0.1% SDS, Loughborough, UK). After
electrophoresis, the gel was transferred to a Polyvinylidene difluoride (PVDF) membrane using the iblot
system (Invitrogen, Paisley, UK). Primary antibodies used were 1:1000 monoclonal rabbit anti p-STAT1
IgG (9167, CST), 1:1000 rabbit polyclonal anti-HLA-DR IgG (ab175085), and 1:10,000 monoclonal
rabbit anti-GAPDH IgG (ab128915, Abcam). The secondary antibody used was 1:10,000 polyclonal
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goat anti-rabbit IgG conjugated with peroxidase (4050-05, Southern Biotech, Birmingham, USA).
The membrane was developed using Enhanced chemiluminescence reagent (EZ-ECL) (20-500-500,
Biological Industries, Cromwell, USA) and visualized on a ChemiDoc XRS+ System (Bio-Rad).

2.6. Enzyme-Linked Immunosorbent Assay (ELISA)

Peripheral blood mononuclear cells were isolated from heparinized blood by density gradient
purification over Lymphoprep and stimulated with 5 ng/Ml Phorbol 12-myristate 13-acetate (PMA)
(P-8139, Sigma, Welwyn Garden City, UK ) and 0.1 ug/mL ionomycin (I-0634, Sigma, Welwyn Garden
City, UK) for 3.5 h or left unstimulated. Supernatants were assayed for IL-17 or IFN-γ levels by IL-17
ELISA kit (KAC1591, Invitrogen, Paisley, UK) and IFN-γ ELISA kit (KHC4021, Invitrogen, Paisley,
UK) according to the manufacturer’s instructions. As the unstimulated samples showed undetectable
levels of protein, readings included in the analysis were from PMA/ionomycin stimulated samples.

2.7. RNA Extraction and cDNA Synthesis

Total RNA was extracted using TRIzol reagent method. Briefly, cells were lysed by TRIzol, and the
aqueous phase was separated and collected. The RNA was then precipitated by addition of 0.5 mL of
isopropanol per 1 mL of TRIzol, washed with 75% ethanol and finally re-suspended in 20 µL RNase
free water.

2.8. Q-PCR Analysis of Gene Expression

The relative expression of genes of interest was measured by q-PCR using power SYBER green
fluorescence (Life Technologies) and specific primers for the target gene (details are given in Tables S2
and S3).

2.9. Statistical Analysis

The Q-PCR data was exported in a Microsoft Excel file and means were calculated for the triplicate
repeats in each experiment. Differential expression was determined by the ∆∆Ct method where means
and SD were determined for experimental repeats. An unpaired t-test was used to determine any
significant change in gene expression using GraphPad Prism 6 software (manufacturer, city and
country). For flow cytometry data, the percentage of each T-lymphocyte sub-population was compared
between patients and healthy controls using a two-tailed independent t-test and the corrected t-test
was used whenever the homogeneity of variance was violated. The analysis was done using SPSS
version 22 (SPSS Inc., Chicago, IL, USA). Descriptive statistics are presented as the mean ± standard
deviation. Graphs shown were drawn by GraphPad Prism 6 software (Prism 6, San Diego, CA, USA).

3. Results

3.1. Inhibition of IFN-γ Signalling Pathway by EGCG

To investigate its effect on the IFN-γ signaling pathway (JAK-STAT), keratinocyte HaCat cells
were first incubated with IFN-γ to induce STAT-1 phosphorylation, then treated with EGCG at 20 or
40 µm for 24 or 48 h. The pSTAT1 was significantly inhibited by EGCG with 20 µm and after only
24 h of treatment with EGCG (Figure 2A). There was a reduction in pSTAT1 by 35% in HaCat cells
treated with 20 µm. The increase of EGCG concentration to 40 µm decreased the expression of pSTAT1
by 81% (Figure 2A). To confirm the findings in HaCat cells, we performed the same inhibition tests
in lymphocyte Jurkat cells. There was a reduction in pSTAT1 of 16% in Jurkat treated with 20 µm
(Figure 2B). The increase of EGCG concentration to 40 µm decreased the expression of pSTAT1 by 53%
in Jurkat cells (Figure 2B). To confirm the findings in these cell lines, PBMCs from patients with AA
were treated with 40 µm EGCG for 48 h after which protein was extracted and analyzed by Western
blot. The pSTAT1 protein was shown to be expressed in patients’ PBMCs, and treatment with EGCG
decreased pSTAT1 protein expression by 80% (Figure 2C).
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Figure 2. The effect of Epigallocatechin-3-gallate (EGCG) on P-STAT-1 protein in HaCat (A) and 
Jurkat cells (B). STAT-1 phosphorylation was induced by treating the cells with IFN-γ for 48 h. The 

Figure 2. The effect of Epigallocatechin-3-gallate (EGCG) on P-STAT-1 protein in HaCat (A) and Jurkat
cells (B). STAT-1 phosphorylation was induced by treating the cells with IFN-γ for 48 h. The cells were
then treated with 20 and 40 µm EGCG for 24 or 48 h, with the protein levels determined by Western
blotting. (A) HaCat cells showed marked inhibition at STAT-1 phosphorylation when treated with
40 µm for 48 h. (B) Jurkat cells respond to EGCG treatment in a dose-dependent manner where 40 µm
dosage showed a more marked reduction in p-STAT-1 protein compared to 20 µm. A representative
immunoblot is shown. (C) Peripheral blood mononuclear cells of alopecia areata (AA) patients were
treated with 40 µm EGCG or left untreated. pSTAT1 was shown to be expressed in patients’ samples
and declined after treatment with EGCG. n = 3, p < 0.05 was significant.
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3.2. Effect of EGCG on IFN-γ Downstream Genes

3.2.1. JAK1/JAK2/STAT1 and IRF-1

To confirm that EGCG involved the inhibition of IFN-γ pathway we measured the expression
of JAK1 and JAK2 as well as the key regulated by IFN-γ; interferon regulatory factor (IRF-1).
Keratinocytes (HaCat) cells were first induced by IFN-γ, as described earlier, then treated with
40 µm EGCG for 48 h or left untreated as a control. As expected, EGCG inhibited the expression of
STAT1 in keratinocytes. There was also significant inhibition of JAK2 expression in a dose-dependent
manner, but JAK1 expression was not affected (Figure 3A). Expression of STAT1 downstream genes
such as IRF-1, HLA-DR and HLA-B, was also analyzed in cultured keratinocytes. As shown in
Figure 3A, the expression of IRF-1 was significantly reduced. The reduction of IRF-1 expression was
dose dependent, suggesting that the inhibitory effect of EGCG on STAT1 did affect the expression of
the downstream gene, IRF-1 as well.

3.2.2. HLA-DR and HLA-B

Because of the importance of HLA class I and class II in the immune privilege in the hair follicles
and being at the end of the chain in the JAK1/STAT1 pathway, we wanted to check whether EGCG also
affects the expression of these molecules at protein level. Keratinocyte (HaCat) cells were first induced
by IFN-γ as described earlier, then treated with 20 or 40 µm EGCG for 24 or 48 h or left untreated as a
control. The expression levels of HLA-B did not change after 48 h of treatment of the cells with 20 µm
EGCG. However, a significant (p < 0.01) decrease in the expression of HLA-B was observed with 40 µm
of EGCG, suggesting that only the higher dose of EGCG could have an effect on HLA-B expression
(Figure 3B). In contrast, a significant reduction in HLA-DR expression was observed with the lower
dose of EGCG (20 µm), which persisted with the higher dose (40 µm) (Figure 3B). To confirm the Q-PCR
data, total proteins were extracted from these cells and 20 µg of protein from treated and untreated
cells were loaded on SDS gel, transferred onto a membrane and hybridized with the internal control
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or HLA-DR antibody. The band corresponding
to GAPDH showed that equal amounts of protein were loaded from each treatment. Induction with
IFN-γ enhanced the expression of HLA-DR in HaCat cells. However, treatment with EGCG for 24 h or
48 h reduced the amount of HLA-DR proteins in the cells by more than 36% (Figure 3C). Hybridization
with HLA-B antibody showed no signal, even after induction with IFN-γ, due to the low expression
level of HLA-B in HaCat cells (data not shown).
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Figure 3. The effect of EGCG treatment on IFN-γ downstream genes in HaCat cells. The effect of EGCG 
treatment on IFN-γ downstream genes in the HaCat cell line. Following induction with IFN-γ, HaCat cells 
were treated with 40 μM EGCG for 48 h and expression of IFN-γ downstream genes was investigated 
by Q-PCR. CT values were normalised to GAPDH and differential expression (2^−∆∆CT) of AA 
candidate genes in EGCG treated samples was calculated against untreated samples (A) QPCR results 
for STAT1, JAK1, JAK2, and IRF-1. (B) QPCR results for HLA-B and HLA-DR. Data represented as 
mean ± SEM (n = 4). Significant difference * p < 0.05. ** p < 0.01. (C) Cells were induced with IFN-γ for 
48 h then treated with 20 or 40 μM EGCG for 24 or 48 h. Proteins were extracted and Western blot 
performed using GAPDH or HLA-DR antibody. 

Figure 3. The effect of EGCG treatment on IFN-γ downstream genes in HaCat cells. The effect of
EGCG treatment on IFN-γ downstream genes in the HaCat cell line. Following induction with IFN-γ,
HaCat cells were treated with 40 µM EGCG for 48 h and expression of IFN-γ downstream genes was
investigated by Q-PCR. CT values were normalised to GAPDH and differential expression (2ˆ−∆∆CT)
of AA candidate genes in EGCG treated samples was calculated against untreated samples (A) QPCR
results for STAT1, JAK1, JAK2, and IRF-1. (B) QPCR results for HLA-B and HLA-DR. Data represented
as mean ± SEM (n = 4). Significant difference * p < 0.05. ** p < 0.01. (C) Cells were induced with IFN-γ
for 48 h then treated with 20 or 40 µM EGCG for 24 or 48 h. Proteins were extracted and Western blot
performed using GAPDH or HLA-DR antibody.
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3.3. Inflammatory Cells Th1, NKG2D+ and Th17 and Their Cytokines in AA Patients

To dissect the role of effector/inflammatory T cells in AA pathogenesis, a multi-color flow
cytometry panel was designed to look at all possible T cell subsets that might have a potential role in
the pathogenesis. Peripheral blood mononuclear cells isolated from heparinized blood of AA patients
or HC were analyzed by flow-cytometry after staining the cells with CD4, CD119, and IL-17 as well as
CD8 and NKG2D in the same tube. Not surprisingly, the CD4+ T cell pool was found to be higher
in patients compared to HC (p = 0.03). Very interestingly, further dissection of CD4 T cell subsets
provided an explanation of the increased CD4 T cell population in patients. Th1 as presented by IFN-γ
receptor CD119 (p = 0.003), as well as Th17, investigated by its distinct cytokine secretion of IL-17
(p = 0.001), were significantly higher in AA compared to HC (Figure 4A).

The NKG2D subset of CD8 has previously been shown to have a key role in AA. Therefore, it was
important to validate this in our setting. CD8+ T cell frequencies showed no difference between
AA and HC, but interestingly, the NKG2D subset of CD8+ T-cells was significantly increased in AA
compared to HC (p = 0.015). The increase in Th17 population was confirmed by an ELISA assay, which
showed a significant increase in the production of the intracellular cytokines and IL-17 (p = 0.006)
(Figure 4B). IFN-γ production was also higher (p = 0.008), and this can be linked to Th1 or CD8+
cytotoxic T cells.
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3.4. The Effect of EGCG on CD8 NKG2D Lymphocytes

There was a significant reduction of Th1 in treated PBMCs compared to untreated PBMCs
(Figure 5A). There was also a trend showing a reduction in the number of Th17 cells in treated samples
compared to untreated, but the difference was not significant (Figure 5A). However, there was no
significant difference of Th2 between treated and untreated AA samples. Similarly, total numbers of
CD8+ cells were not significantly different between treated and untreated samples. However, CD8+
NKG2D+ subset was significantly reduced when PBMC were treated with 20 µm EGCG for 48 h
(Figure 5B). It should be mentioned here that the number of CD25+ FOXP3+ Treg cells did not change
significantly when cells were treated with 20 µm EGCG (data not shown).
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3.5. The Effect of EGCG on Pro- and Anti-Inflammatory Cytokines

Alopecia areata is the consequence of an imbalance between the inflammatory and regulatory
arms of the immune system, causing IP collapse. Therefore, the effect of EGCG on the expression of
key inflammatory and regulatory candidate molecules involved in AA pathogenesis, such as IL-17,
CCL-5, TGF-β, and FOXP-3, was investigated by Q-PCR in T cells. CCL-5 expression was significantly
reduced (p < 0.05). This was not surprising as CCL5 is activated by pSTAT1 downstream in the IFN-γ
pathway. The Th17 marker IL-17 was also significantly increased in both cell lines (p < 0.05). On the
other hand, expression of the anti-inflammatory cytokine TGF-β was strongly enhanced (p < 0.01).
The expression of T-reg marker FOXP3 was also increased but this did not reach statistical significance
(Figure 6).
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Figure 6. The effect of EGCG treatment was studied on a group of inflammatory-regulatory genes
involved in IP in immortalized lymphocytes. Following induction with IFN-γ, Jurkat cells were treated
with 40 mM EGCG for 48 h and expression of IL-17, CCL-5, FOXP3, and TGF-β investigated by Q-PCR.
CT values were normalized to GAPDH and differential expression (2ˆ−∆∆CT) of AA candidate genes
in EGCG treated samples was calculated against untreated samples. Data represented as mean ± SEM
(n = 4). Significant difference * p < 0.05, ** p < 0.01.
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4. Discussion

IFN-γ is pivotal in inducing IP collapse in the hair follicle and inhibiting its signaling pathway is
the target of many therapeutic options. JAK inhibitors including ruxolitinib, tofacitinib, and baricitinib
were recently used in clinical trials of several inflammatory/autoimmune diseases, including skin
diseases such as psoriasis [76] and AA [57]. JAK inhibitors are efficient but have relatively high cost
and they can have a range of significant side-effects [66]. For instance, ruxolitinib is a broad JAK (1 and
2) inhibitor with the potential to modulate the signaling pathway of cytokines, including IL-6, IL-10,
IL-22, and IL-3 [77]. Ruxolitinib side-effects include reactivation of tuberculosis, thrombocytopenia,
anemia, and there is a risk of other unknown long-term side-effects [78]. We now propose EGCG as a
potential candidate for AA treatment mainly based on its anti-inflammatory properties and encouraged
by its good safety profile [74,79]. EGCG has an inhibitory effect on IFN-γ signaling via inhibiting STAT1
phosphorylation, which has been demonstrated by many studies [69,80,81]. We therefore sought to
establish whether EGCG acts directly on STAT1 and whether STAT1 inhibition can restore IP in HF.

In this study, AA PMBCs produced significantly higher levels of IFN-γ compared to HC, in
keeping with previous findings [82–84]. Involvement of STAT1 in IFN-γ signaling was previously
suggested by the high levels of p-STAT1 detected in lymphocytes around the affected HF [57]. However,
it was not known whether this was due to an increase of p-STAT1 in circulating lymphocytes or a
phenomenon restricted to skin lymphocytes. In this study, we found that the increased level of p-STAT1
in HF of AA patients is likely to be the result of an increase of p-STAT1 in circulating lymphocytes.

As both JAK1 and JAK2 catalyze STAT1 phosphorylation at Tyr701 [85], we investigated the effect
of EGCG on JAK1 and JAK2 expression and found that EGCG inhibits specifically JAK2 expression
but not JAK1. EGCG specifically blocks JAK2 and therefore will potentially be safer and more efficient
as the broad JAK1/JAK2 inhibitors block the IFN-γ pathway as well as other pathways including IL-2,
IL-6, IL-10, IL-23, and erythropoietin (Epo) [86]. The specificity of EGCG as a pure JAK2 inhibitor does
not reduce its efficiency as this was accompanied by reduction in STAT1 phosphorylation at Tyr701 in
both cell lines, as shown by our data. p-STAT1 interacts with IRF-1, which is a key regulator in IFN-γ
signaling, and IFN-γ induced MHC I expression has been shown to be mediated by IRF-1 [87,88].
Furthermore, the EGCG inhibitory effect on p-STAT1, leading to the significantly decreased IRF-1
expression, which we observed in HaCat cells, is in keeping with the marked reduction in its protein
level, as also demonstrated by Watson and colleagues [81] in colonic epithelial cells.

It is well known that activation of IFN-γ/STAT1/IRF-1 signaling leads to the activation of HLA
class I and class II genes, in particular HLA-B and HLA-DRB1 [89]. Interestingly, we found that
HLA-B expression was significantly reduced after treating HaCat cells with 40 µm EGCG. HLA-B
expression is a major factor controlling immunological balance in tissues manifesting IP. For instance,
low corneal HLA-B27 is an important contributor to ocular immune privilege as demonstrated in
HLA-B27 transgenic mice with ocular inflammation [90]. We have previously shown in AA that there
was an aberrant expression of HLA-DR in the pre-cortical matrix and dermal papilla (DP) of lesional
anagen follicles [33,34]. It has also been shown that MHC class I expression is at a very low level
in the proximal epithelium of healthy anagen HF [91] but becomes highly expressed in AA lesional
tissue [38].

The reduction of p-STAT1 was accompanied by a significant decrease in Th1 cells as well
as a non-significant decrease in Th17 cells. These findings are in keeping with two other recent
studies [55,92], underlining the possible role of these T cell subsets in the disease pathogenesis. In the
light of this increasing evidence supporting the role of CD8+ cells in AA, our novel finding that EGCG
has a significant effect on reducing NKG2D+ cells could have a significant impact in understanding the
mechanisms underlying the pathogenesis of AA. In fact, the NKG2D receptor, which is expressed only
on the surface of activated CD8+ cells, has been previously implicated in AA by virtue of upregulation
of its ligands ULBP3 and MICA in the dermal papilla and dermal sheath of AA HFs compared to
normal [2,56]. NKG2D ligands activate the cytotoxic activity of CD8+ T cells [2,57]. Such activation is
followed by IFN-γ production by cytotoxic CD8+ NKG2D+ T cells mediating inflammation and HF
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damage [57]. Our findings shed more light on the role of cellular immunity mediated by T-lymphocytes
in the pathogenesis of AA and suggest good potential for EGCG as a possible therapeutic agent.

5. Conclusions

Our findings have demonstrated that 20–40 µm of EGCG added to cultured HaCat cells is capable
of reducing the expression of pSTAT1 and downstream genes in the IFN-g pathway, including IRF-1,
HLA-DR, and HLA-B. These results confirm the importance of the IFN-g pathway in the pathogenesis
of AA, and inhibiting this signaling pathway could be an efficient therapeutic target. This has already
been shown to be the case with JAK inhibitors such as ruxolitinib, tofacitinib, and baricitinib. However,
JAK inhibitors are relatively expensive and could present a range of significant side-effects. Therefore,
it would be interesting to run side-by-side assays with EGCG and JAK inhibitors in a more temporally
dynamic system such as the hair follicle. This could be followed by clinical trials, which would validate
the in vitro data. We also showed, in ex-vivo experiments that 20 µM added to PBMCs from AA
patients significantly reduced CD4+ C119 positive (Th1) cells as well as CD8+ NKG2D+ subset cells.
These findings reinforce the importance of the immunological aspect in the pathogenesis of AA and
could represent a significant step towards the development of this molecule in targeting these specific
subsets of lymphocytes.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/15/12/2882/
s1, Figure S1: The mean percentage (%) of viable cells in HaCat and Jurkat cell lines after treatment with different
concentrations of EGCG (10, 20, 40, 60 and 100 µM) for 48 h, Figure S2: Morphological features of HaCat cells
treated with EGCG, Figure S3: Morphological features of Jurkat cells treated with EGCG, Table S1: Summary of
cDNA synthesis protocol, Table S2: Primers used in the q-PCR reactions, Table S3: Thermal profile used in q-PCR
reaction, Table S4: Alopecia areata patients’ details.
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