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Abstract

In managing patients with coronavirus disease 2019 (COVID-19), early identification

of those at high risk and real-timemonitoring of disease progression to severe COVID-

19 is a major challenge. We aimed to identify potential early prognostic protein mark-

ers and to expand understanding of proteome dynamics during clinical progression of

the disease.Weperformed in-depth proteomeprofiling on 137 sera, longitudinally col-

lected from25patientswithCOVID-19 (non-severe patients,n=13; patientswhopro-

gressed to severe COVID-19, n = 12). We identified 11 potential biomarkers, includ-

ing the novel markers IGLV3-19 and BNC2, as early potential prognostic indicators of

severe COVID-19. These potential biomarkers are mainly involved in biological pro-

cesses associated with humoral immune response, interferon signalling, acute phase

response, lipid metabolism, and platelet degranulation. We further revealed that the

longitudinal changes of 40 proteins persistently increased or decreased as the dis-

ease progressed to severe COVID-19. These 40 potential biomarkers could effectively

reflect the clinical progression of the disease. Our findings provide some new insights

into host response to SARS-CoV-2 infection, which are valuable for understanding of

COVID-19 disease progression. This study also identified potential biomarkers that

could be further validated, which may support better predicting and monitoring pro-

gression to severe COVID-19.
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1 INTRODUCTION

A wide range of disease severity, ranging from asymptomatic to life-

threatening illness, has been observed in patientswith coronavirus dis-

ease 2019 (COVID-19) [1]. While the current estimate is that 81%

of COVID-19 patients have a mild or moderate disease course, some

patients who initially present with mild symptoms subsequently expe-

rience acute clinical deterioration within 1–2 weeks after symptom
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onset [1, 2]. Therefore, precise prognostication and early identification

of disease progression are needed to effectively manage patients who

are at high risk of clinical progression to severe COVID-19.

Several previous studies have reported clinical laboratory findings

including lactate dehydrogenase (LDH), C-reactive protein (CRP), albu-

min, D-dimer, lymphocytes, neutrophils, and platelets at admission as

parameters for progressive risk estimation [3–6]. Plasma levels of pro-

teins associated with cytokine storms and immune response includ-

ing interleukin (IL)-2, IL-6, IL-7, G-CSF, interferon (IFN)-γ inducible

protein 10, monocyte chemoattractant protein-1, macrophage inflam-

matory protein-1α, and tumour necrosis factor (TNF)-α have been

reported to be elevated in severe COVID-19 patients [2, 7, 8]. In

addition, mass spectrometry (MS)-based quantitative proteome pro-

filing has been performed in several recent studies, which reveal

characteristic molecular changes and biological processes in patients

infectedwith severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) and at high risk of clinical progression [9, 10]. These stud-

ies have reported that severe COVID-19 patients have altered abun-

dance of proteins involved in immune/inflammatory regulation (e.g.,

IL-6 and type 1 IFN), coagulation (e.g., fibrinogen and SERPINA10),

lipid metabolism, and acute phase response (e.g., CRP) [11, 12]. Fur-

ther proteome profiling may enable us to expand the understand-

ing of prognostic molecular signatures altered at initial assessment

or during the disease course in patients with a high risk of disease

progression.

In this study, we addressed two questions about prognostication

in COVID-19: (1) Which protein markers are differentially expressed

preceding clinical deterioration and are able to significantly predict

the high risk in patients who progressed to severe COVID-19 com-

pared to patients who had a non-severe disease course. (2) Which

differentially expressed protein (DEP) markers exhibit longitudinal

changes that effectively reflect clinical progression of the disease.

We performed longitudinal proteome profiling in serum samples of

COVID-19 patients at admission, and serially collected samples during

their hospital stay. We then applied pathway analysis to gain insight

into the relevant biological processes of altered protein expression.

The overall strategy in this study is shown in Figure 1.

2 MATERIALS AND METHODS

2.1 Patients and samples

A total of 137 serum samples (sampled at admission, n= 25; longitudi-

nally sampled during hospitalization, n = 112) were collected from 25

patients with laboratory-confirmed SARS-CoV-2 infection (Figure S1).

Each sampling time point is described in Table S1.

Patients were from two tertiary hospitals in South Korea (National

Medical Center and Seoul Medical Center). The patients’ clinical sta-

tus was assessed daily during hospitalization, and they were classified

into two groups, namely non-severe patients and patients who pro-

gressed to severe COVID-19, according to the 8-point ordinal scale

(defined in Table S2) as described byMessner et al. [12, 13]. This study

Significance Statement

The coronavirus disease 2019 (COVID-19) pandemic high-

lights the need for biomarkers to identify the patients at

high risk of severe COVID-19 early and to monitor the dis-

ease progression. In this study, we performed longitudinal

proteomic profiling on sera serially collected from patients

withCOVID-19. Findings fromthis study identified11poten-

tial early prognostic indicators, including the novel pro-

tein markers IGLV3-19 and BNC2. IGLV3-19 is a variable

domain of immunoglobulin light chains, which may provide

better understanding of the host immune response in severe

COVID-19. BNC2 might play a role in the upregulation of

interferon-stimulated genes in the interferon signalling path-

way.We further identified that the longitudinal changesof40

proteins persistently increased or decreased as the disease

progressed to severe COVID-19, which effectively reflect

the clinical progression of the disease. This study identified

potential biomarkers that could be further validated, which

may support better predicting andmonitoring progression to

severe COVID-19.

was approved by the institutional review board (IRB No. H-2004-153-

1118).

2.2 Sample preparation

The protein digestion process was optimized to 2 μL of serum as previ-

ously described, with some modifications [14]. Briefly, 23 μL of diges-
tion buffer [8 M urea, 10 mM Tris (2-carbocyethyl) phosphine, and

50mMchloroacetamide in 50mMammonium bicarbonate] was added

to 2 μL of serum. The mixture was incubated for 25 min at 60◦C for

simultaneous denaturation, reduction, and alkylation of proteins. After

cooling to room temperature, protein digestionwas performed at 37◦C

overnight using a trypsin/LysC mixture at a 100:1 protein-to-protease

ratio. The second digestion was performed at 37◦C for 2 h using

trypsin (enzyme-to-substrate ratio [w/w] of 1:1000). All resulting pep-

tides were acidified with 10% trifluoroacetic acid (TFA). The acidified

peptides were loaded onto a custom styrenedivinylbenzene reversed-

phase sulfonate (SDB-RPS)-StageTips, as described previously [14].

Following washing with 0.2% TFA, the peptides were eluted with 80%

acetonitrile containing 1% ammonia. The eluate was dehydrated in a

vacuum-centrifuge and stored at -80◦C.

2.3 Liquid chromatography-tandem mass
spectrometry (LC-MS/MS) and data analysis

All LC-MS/MS analyses were performed using Quadrupole Orbi-

trap mass spectrometers, Q-Exactive Plus (Thermo Fisher Scientific,
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F IGURE 1 Study workflow. In-depth proteome profiling was performed on 137 serum samples collected from 25 patients with COVID-19
(non-severe, n= 13; severe, n= 12). First, differentially expressed proteins (DEPs) between the two groups were identified. Then, the abundance
of each candidate protein at admission and the risk probability of progression to severe COVID-19were evaluated. Also, dynamics of DEPs in
patients with disease progression to severe COVID-19was assessed.

Waltham,MA,USA) coupled to anUltimate3000RSLCsystem (Dionex,

Sunnyvale, CA, USA) via a nano electrospray source, as described

with some modifications [15]. Peptide samples were separated on a 2-

column setup, with a trap column (75 μm I.D. × 2 cm, C18 3 μm, 100 Å)

and an analytical column (50 μm I.D.× 15 cm, C18 1.9 μm, 100Å). Prior

to sample injection, the dried peptide samples were redissolved in sol-

vent A (2% acetonitrile and 0.1% formic acid). After the samples were

loaded onto the nano LC, a 90-min gradient from 8% to 26% solvent

B (100% acetonitrile and 0.1% formic acid) was applied to all samples.

The spray voltage was 2.0 kV in the positive ionmode, and the temper-

ature of the heated capillary was set to 320◦C. The data-independent

acquisition (DIA) method consisted of a survey scan at 35,000 resolu-

tion from 400 to 1220 m/z (AGC target of 3 × 106 or 60 ms injection

time). Then, 19DIAwindowswere acquired at 35,000 resolutions with

an automatic gain control target of 3 × 106 and auto for injection time

[16]. The stepped collision energy was 10% at 27%.

2.4 Spectral library generation

To generate the spectral libraries for DIA, 24 data-dependent acqui-

sition (DDA) measurements of the immunodepleted plasma samples

were performed. DDA spectra were searched using the Maxquant

against Uniprot Human Database (December 2014, 88,657 entries)

and the iRT standard peptide sequence. A spectral library for DIA-MS

was generatedusing spectral library generation in SpectronautPulsarX

(Biognosys, Schlieren, Switzerland). In addition, we used Spectronaut

Pulsar’s protein identification algorithm for spectral library generation.

For the generation of Spectronaout Pulsar spectral libraries, DIA raw

data were directly loaded into Spectronaut Pulsar, and spectral library

generation was performed using the default settings

2.5 Data processing for DIA-MS

The DIA data of individual samples were analysed with Spectronaut

13 (Biognosys, Schlieren, Switzerland). First, the DIA raw files were

converted into an htrm format using the GTRMS Converter provided

by Spectronaut. The false discovery rate (FDR) was estimated with

the mProphet [17] approach and set to 1% at the peptide precursor

level and 1% at the protein level. The mass spectrometry proteomics

data have been deposited to the ProteomeXchangeConsortiumvia the

PRIDE [18] partner repository with the dataset identifier PXD023686.

The proteins were inferred by the software, and the quantification

information was acquired at the protein level by using the q-value

< 0.01 criteria, which was used for subsequent analyses. The relative

abundance of all proteins in all longitudinal samples were presented in

Table S3.

2.6 Quantification and statistical analysis

2.6.1 Differential expression analysis

Serum protein levels were estimated using the protein group quantity

calculated using Spectronaut software. Proteins with > 50% missing

ratios in a particular patient groupwere removed. Following log2 trans-

formation,missing valueswere imputed based on a normal distribution
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(width = 0.3, downshift = 1.8) to simulate signals of low-abundance

proteins. Fold change was calculated using the mean of a particular

patient group. DEPs between the two groups were identified using the

Mann-Whitney U test. The level of statistical significance was set as

adjusted p value < 0.05, and the FDR was corrected using Benjamini

andHochberg formultiple testing. Protein abundanceswere subjected

to z-normalization followed by hierarchical clustering with Pearson’s

correlation distance.

2.6.2 Pathway analysis

Canonical pathways, disease and functions, and protein networkswere

evaluated by Ingenuity Pathway Analysis (IPA, QIAGEN, Hilden, Ger-

many) based on the DEPs in the serum. The analytical algorithms

embedded in IPA uses lists of DEPs to predict biological processes and

pathways. Additionally, a treemapwas constructed, inwhich themajor

boxes represented categories of related biological functions or dis-

eases. The statistical significance of both the gene ontology (GO) clas-

sification and enrichment analysis was determined by Fisher’s exact

test. All statistical tests were two-sided, and p value<0.05was consid-

ered statistically significant.Wiki pathway andGObiological processes

were identified using the Enrichr online tool (http://amp.pharm.mssm.

edu/Enrichr/). The top ten enriched terms (and their p values) were

identified.

2.6.3 Statistical analysis

We evaluated the association between the level of each candidate pro-

tein marker (i.e., DEPs) at admission and estimated the risk of disease

progression using the Cox proportional hazard model. Hazard ratios

with 95% confidence intervals (CIs) were calculated using Cox propor-

tional hazard regression. The best cut-off value (BCV) of each candi-

date protein was determined using maximally selected log-rank statis-

tics, as previously described [19]. The time to clinical progression to

severe COVID-19 was plotted using Kaplan–Meier curves, and com-

pared with a log-rank test; p value < 0.05 was considered statistically

significant. We further explored the effect of longitudinal changes in

each candidate protein level on the risk of clinical progression using a

linear mixed-effects model; the level of statistical significance was set

as adjusted p value<0.05, FDRcorrected [20]. Analysiswas performed

using commercially available software (SPSS 19.0, Stata SE12.0, and

SAS version 9.4).

3 RESULTS

3.1 Clinical characteristics of patients

The demographics and clinical characteristics of the study patients are

summarized in Table 1 and Figure S2. The median age was 70 years

(interquartile range [IQR], 65 to 76 years), and 48.0% of the patients

were male. The median time from symptom onset to admission was 5

days (IQR, 4–9 days). All patients were followed up for >10 days after

admission. Among the total population, 13 (52.0%) patients whomain-

tained an ordinal scale ≤ 4 (category 3, n = 4; category 4, n = 9) were

classified into the non-severe group, and 12 (48.0%) patients with clin-

ical deterioration to ordinal scale >4 (category 5, n = 9; category 6, n

= 2; category 8, n = 1) were classified into the severe group. In the

non-severe group, 9 (69.2%) patients required supplemental oxygen

using either nasal prongs or mask; all the patients in the non-severe

group improved and were discharged. In the severe group, the median

time from admission to clinical deterioration requiring high-flow oxy-

gen was 5 days (IQR, 3.5- 7.5 days). Invasive mechanical ventilation

and renal replacement therapy were administered in 25.0% (n= 3) and

8.3% (n = 1) of patients in the severe group, respectively. One patient

(8.3%) died, and 11 (91.7%) patients were discharged with clinical

improvement.

3.2 DEPs in severe COVID-19 patient serum

Overall, 608 proteins were identified and quantified in the cross-

sectional samples. An average of 484 proteins were quantified in

the individual samples (Figure S3A). To identify the differences

within and between groups, protein profiles were generated by

drawing multi-scatter plots and calculating Pearson’s correlation

coefficients (PCCs; Figure S3B). Non-severe and severe groups

showed mean PCCs of 0.88 and 0.89, respectively. The average

PCC between the non-severe and severe groups was 0.87. Based

on serum protein expression levels of patients in the non-severe

and severe groups, two groups were separated by principal com-

ponent analysis (Figure S3C). After proteins were determined

to be quantified by at least 50% in either the non-severe or

severe group subjects, 513 proteins were subjected to statistical

analysis.

We found that 46 proteins were differentially expressed in

the serum, sampled immediately after patients had progressed

to severe COVID-19, in severe patients compared with that in

non-severe patients (Table 2, Figure 2A). Pathway analysis and GO

enrichment analysis revealed that the DEPs were mainly involved

in several biological processes associated with humoral immune

response (IGLV3-19, IGLC2, and IGHA2), IFN signalling (BNC2),

acute phase response (CRP, LBP, SERPINA3, SAA1, SAA2, ITIH4,

RBP4, TTR, albumin, and transferrin), inflammatory response

(angiotensinogen, HSP90AA1, transketolase), lipid metabolism

(APOA1, APOA2, APOA4, APOC1, APOM, and paraoxonase-1),

platelet degranulation (LEFTY2, AHSG, SEPP1, A2M, KNG1, PF4,

HRG, and SERPINA4), coagulation cascade (FIX, FX, SERPINA1,

and SERPING1), and cellular metabolic process (ALDOA, PIK3C2β,
MAN1A, MAN1C1, Gc-globulin, ITIH2, IGFALS, and PI16) (Figure 2B,

Figure S4).

http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/


5 of 12

TABLE 1 Demographics and clinical characteristics of COVID-19 patients

Total (N= 25) Non-severe (n= 13) Severe (n= 12)

Age – year (median, IQR) 70 (65–76) 71 (64–77) 69.5 (67.3–72)

Male sex – No. (%) 12 (48) 4 (30.8) 8 (66.7)

Time from symptom onset to admission 5 (4–9) 5 (4–14) 4 (4–8)

Eight-point score on ordinal scale – No (%)

3: hospitalized, not requiring supplemental oxygen 4 (16.0) 4 (30.8) 0 (0)

4: hospitalized, requiring low-flow oxygen by nasal prongs or facial mask 9 (36.0) 9 (69.2) 0 (0)

5: hospitalized, use of high-flow oxygen devices or non-invasive ventilation 9 (36.0) 0 (0) 9 (75.0)

6: hospitalized, intubation and invasivemechanical ventilation 2 (8.0) 0 (0) 2 (16.7)

7: hospitalized, invasivemechanical ventilation, and ECMO, RRT or both 0 (0) 0 (0) 0 (0)

8: death 1 (4.0) 0 (0) 1 (8.3)

Time from admission to severe disease 5 (3.5–7.5)

Symptoms

Fever 10 (40.0) 5 (38.5) 5 (41.7)

Chill 4 (16.0) 1 (7.7) 3 (25.0)

Cough 8 (32.0) 2 (15.4) 6 (50.0)

Sputum 6 (24.0) 2 (15.4) 4 (33.3)

Dyspnoea 3 (12.0) 1 (7.7) 2 (16.7)

Myalgia 6 (24.0) 2 (15.4) 4 (33.3)

Fatigue 1 (4.0) 1 (7.7) 0 (0)

Headache 2 (8.0) 1 (7.7) 1 (8.3)

Rhinorrhoea 1 (4.0) 1 (7.7) 0 (0)

Sore throat 4 (16.0) 2 (15.4) 2 (16.7)

Epigastric pain 1 (4.0) 0 (0) 1 (8.3)

Diarrheal 2 (8.0) 1 (7.7) 1 (8.3)

Indigestion 1 (4.0) 0 (0) 1 (8.3)

Olfactory and gustatory sensory dysfunction 2 (8.0) 1 (7.7) 1 (8.3)

Comorbidity

HTN 10 (40.0) 6 (46.2) 4 (33.3)

DM 6 (24.0) 4 (30.8) 2 (16.7)

Dyslipidaemia 4 (16.0) 2 (15.4) 2 (16.7)

Dementia 4 (16.0) 2 (15.4) 2 (16.7)

Parkinson’s disease 1 (4.0) 0 (0) 1 (8.3)

Treatment

Lopinavir-Ritonavir 8 (32.0) 4 (30.8) 4 (33.3)

Antibiotic agent 2 (8.0) 0 (0) 2 (16.7)

Glucocorticoid therapy 2 (8.0) 0 (0) 2 (16.7)

Oxygen by nasal prongs ormask 21 (84.0) 9 (69.2) 12 (100)

High flow oxygen or non-invasivemechanical ventilation 12 (48.0) 0 (0) 12 (100)

Invasivemechanical ventilation 3 (12.0) 0 (0) 3 (25.0)

Renal replacement therapy 1 (4.0) 0 (0) 1 (8.3)

ECMO 0 (0) 0 (0) 0 (0)

Outcomes at discharge

Improved 24 (96.0) 13 (100) 11 (91.7)

Died 1 (4.0) 0 (0) 1 (8.3)

Abbreviations: IQR, interquartile range; ECMO, extracorporeal membrane oxygenation; RRT, renal replacement therapy; HTN, hypertension; DM, diabetes

mellitus.
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TABLE 2 Differentially expressed proteins between non-severe and severe COVID-19 patient groups

Protein Gene FC p value adjusted p value

A0A075B6J8 IGLV3-19 1.3167 0.00146 0.02345

A0A075B6K9 IGLC2 1.0179 0.00045 0.01361

A0A087× 1L7 LEFTY2 −0.6119 0.00013 0.01004

B1APH0 BNC2 −0.5972 0.00176 0.02512

D6RAR4 HGFAC −0.6465 0.00509 0.04836

D6REX5 SEPP1 −0.4608 0.00361 0.03784

D6RF35 GC −0.6678 0.00146 0.02345

K7ERI9 APOC1 −1.2537 0.00121 0.023

O95445 APOM −0.6069 0.00303 0.0331

P00740 F9 0.6716 0.00509 0.04836

P00742 F10 0.3891 0.00176 0.02512

P01009 SERPINA1 0.9094 0.001 0.01971

P01011 SERPINA3 1.286 0.00024 0.01255

P01019 AGT 0.5587 0.00254 0.031

P01023 A2M −0.7402 0.00361 0.03784

P01042 KNG1 −0.5741 0.00037 0.01255

P01877 IGHA2 0.9939 0.00254 0.031

P02647 APOA1 −0.7496 0.00016 0.01004

P02741 CRP 3.1016 0.00146 0.02345

P02753 RBP4 −1.615 0.00016 0.01004

P02765 AHSG −1.0288 0.00008 0.01004

P02766 TTR −1.232 0.00055 0.01417

P02768 ALB −0.9485 0.00082 0.01687

P02776 PF4 −1.7738 0.00037 0.01255

P02787 TF −0.9503 0.00013 0.01004

P04075 ALDOA 1.6074 0.00254 0.031

P04196 HRG −0.9778 0.00146 0.02345

P05155 SERPING1 0.4239 0.00303 0.0331

P06727 APOA4 −1.2004 0.00303 0.0331

P07900 HSP90AA1 1.173 0.00509 0.04836

P0DJI8 SAA1 3.8954 0.00176 0.02512

P0DJI9 SAA2 4.1052 0.00254 0.031

P18428 LBP 0.9799 0.00146 0.02345

P19823 ITIH2 −0.5939 0.00067 0.01574

P27169 PON1 −0.6905 0.00037 0.01255

P29401 TKT 1.3681 0.0043 0.04407

P29622 SERPINA4 −1.0806 0.00212 0.02936

P33908 MAN1A1 1.3383 0.00254 0.031

P35858 IGFALS −0.7291 0.00082 0.01687

Q14624 ITIH4 2.4059 0.00067 0.01574

Q5SWA0 PIK3C2B 2.0339 0.00055 0.01417

Q5T7N2 L1TD1 −0.6234 0.00303 0.0331

Q6UXB8 PI16 −1.4981 0.00176 0.02512

Q92954 PRG4 1.1984 0.00037 0.01255

(Continues)
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TABLE 2 (Continued)

Protein Gene FC p value adjusted p value

Q9NR34 MAN1C1 7.7997 0.00508 0.04836

V9GYM3 APOA2 −0.9625 0.00004 0.01004

Abbreviation: FC, fold-change (Log2 fold changewas calculated.)

Samples obtained immediately after patients progressed to severe COVID-19 (i.e., high-flowO2 start) for the severe COVID-19 group and samples at admis-

sion for non-severe COVID-19 groupwere assessed.

F IGURE 2 (A) Volcano plot analysis of differentially expressed proteins (DEPs) between two groups. The expression difference in protein
between severe groups and non-severe groups is plotted on the x-axis, and false discovery rate – adjusted p value is plotted on the y-axis (-log10
scale). Upregulated and downregulated proteins in the severe group are represented red and blue, respectively. (B) Gene ontology enrichment
analysis. Heatmap of 46 proteins that are differentially abundant in severe COVID-19. Protein levels are presented on a low to high scale (blue –
white – red).

3.3 Early prognostic biomarkers for progression
to severe COVID-19

Werevealed that severalDEPs (IGLV3-19, BNC2,CRP, LBP, RBP4, TTR,

APOC1, APOA2, KNG1, PF4, and SERPINA4) were candidate predic-

tors of progression to severe COVID-19. Notably, IGLV3-19, a vari-

able domain of immunoglobulin light chains, and BNC2, an activator of

genes in the IFN signalling pathway [21], are novel candidate markers

that have not yet been reported in SARS-CoV-2 infection.

Figure 3 shows the significant linear correlation between the abun-

dance of each protein at admission and the risk probability of progres-

sion to severeCOVID-19. The levels of IGLV3-19,CRP, LBP, and the lev-

els of BNC2, RBP4, TTR, APOC1, APOA2, KNG1, PF4, and SERPINA4

at admission were positively and negatively correlated with the risk of

clinical deterioration to severeCOVID-19, respectively (p<0.05, Table

S4).

Next, theBCVof each candidate proteinwasdetermined, and cumu-

lative progression rates to severe COVID-19 were compared between

the patients with high and low serum protein levels (Figure 4). Patients

in the high-IGLV3-19, high-CRP, and high-LBP groups showed signifi-

cantly higher progression rates, respectively, while patients in the low-

BNC2, low-RBP4, low-TTR, low-APOC1, low-APOA2, low-KNG1, low-

PF4, and low-SERPINA4 groups showed significantly higher progres-

sion rates (log-rank p< 0.05).

3.4 Proteome dynamics during disease
progression to severe COVID-19

To further investigate the dynamics of DEPs in patients with disease

progression to severe COVID-19, we examined longitudinal changes in

serum DEPs sampled at sequential time points (median, 7 time points;
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F IGURE 3 Estimated probability of disease progression to severe COVID-19, according to serum level of each protein. The risk probability
was estimated using a Cox proportional hazard regressionmodel. Data sampled at the time of admission for both severe and non-severe groups
were assessed. HR, hazard ratio; CI, confidence interval.

F IGURE 4 Kaplan-Meier estimates of cumulative clinical progression to severe COVID-19. Cumulative progression estimates to severe
COVID-19 are present in patients with high serum levels (coloured in blue) and in patients with low serum levels (coloured in red). The best cut-off
value of each protein was determined usingmaximally selected log-rank statistics. Data sampled at the time of admission for both severe and
non-severe groups were assessed. HR, hazard ratio; CI, confidence interval.
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TABLE 3 Linearmixed effectmodel to identify which longitudinal changes of candidate proteinmarkerswere predictive of disease progression

Proteins Non-severe COVID-19 Severe COVID-19 Non-severe vs. severe

B SE p value B SE p value FDR adjusted p value

IGLC2 −0.003 0.004 0.522 0.077 0.033 0.023 0.026

LEFTY2 −0.001 0.002 0.793 −0.086 0.017 0.000 <0.001

BNC2 0.001 0.003 0.801 −0.047 0.020 0.017 0.023

HGFAC 0.003 0.003 0.253 −0.081 0.022 0.000 <0.001

SEPP1 −0.002 0.002 0.379 −0.041 0.017 0.019 0.033

GC 0.000 0.002 0.963 −0.064 0.016 0.000 <0.001

APOC1 0.002 0.003 0.513 −0.068 0.023 0.004 0.006

APOM 0.002 0.002 0.331 −0.051 0.016 0.002 0.003

F9 0.003 0.003 0.275 0.103 0.021 0.000 <0.001

F10 −0.004 0.002 0.008 0.062 0.012 0.000 <0.001

SERPINA1 −0.009 0.003 0.004 0.099 0.023 0.000 <0.001

SERPINA3 −0.007 0.004 0.051 0.175 0.027 0.000 <0.001

AGT −0.008 0.003 0.004 0.104 0.020 0.000 <0.001

A2M 0.009 0.002 0.000 −0.056 0.014 0.000 <0.001

KNG1 −0.005 0.002 0.004 −0.036 0.013 0.006 0.026

APOA1 0.001 0.002 0.653 −0.093 0.017 0.000 <0.001

CRP −0.027 0.015 0.064 0.254 0.108 0.021 0.016

RBP4 0.011 0.004 0.011 −0.091 0.032 0.005 0.003

AHSG 0.004 0.003 0.156 −0.136 0.022 0.000 <0.001

TTR 0.011 0.004 0.011 −0.081 0.032 0.013 0.008

ALB 0.005 0.003 0.133 −0.129 0.026 0.000 <0.001

TF 0.003 0.003 0.237 −0.110 0.019 0.000 <0.001

HRG 0.012 0.004 0.002 −0.072 0.028 0.011 0.005

SERPING1 0.000 0.002 0.821 0.066 0.016 0.000 <0.001

APOA4 −0.002 0.004 0.594 −0.082 0.033 0.014 0.025

SAA1 −0.025 0.016 0.106 0.243 0.116 0.038 0.030

SAA2 −0.035 0.017 0.035 0.230 0.123 0.065 0.041

LBP −0.017 0.004 0.000 0.059 0.033 0.076 0.030

ITIH2 0.002 0.002 0.424 −0.076 0.014 0.000 <0.001

PON1 0.006 0.002 0.011 −0.082 0.017 0.000 <0.001

TKT −0.005 0.006 0.399 0.151 0.046 0.001 0.002

SERPINA4 0.010 0.004 0.022 −0.084 0.032 0.009 0.006

MAN1A1 −0.008 0.006 0.133 0.145 0.042 0.001 0.001

IGFALS −0.001 0.003 0.606 −0.087 0.019 0.000 <0.001

ITIH4 −0.007 0.008 0.404 0.251 0.060 0.000 <0.001

PIK3C2B −0.007 0.007 0.291 0.105 0.050 0.038 0.034

L1TD1 0.005 0.002 0.026 −0.080 0.017 0.000 <0.001

PRG4 −0.003 0.005 0.614 0.156 0.041 0.000 <0.001

MAN1C1 0.049 0.025 0.050 0.688 0.184 0.000 0.001

APOA2 0.002 0.003 0.547 −0.115 0.020 0.000 <0.001

IGLV3-19 0.007 0.008 0.364 0.033 0.058 0.568 0.695

IGHA2 −0.006 0.002 0.000 0.011 0.012 0.366 0.178

PF4 −0.012 0.006 0.054 −0.096 0.045 0.036 0.077

(Continues)
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TABLE 3 (Continued)

Proteins Non-severe COVID-19 Severe COVID-19 Non-severe vs. severe

B SE p value B SE p value FDR adjusted p value

ALDOA −0.003 0.008 0.727 0.022 0.059 0.713 0.707

HSP90AA1 0.009 0.007 0.196 0.079 0.053 0.142 0.211

PI16 0.019 0.010 0.045 0.001 0.071 0.994 0.808

Abbreviations: B, β-estimate; SE, standard error; FDR, false discovery rate.

IQR, 6–11 time points) from each patient during hospitalization (Fig-

ure S1, Table S1). The longitudinal changes in 40 DEPs were signifi-

cantly different between non-severe patients and patients who were

progressing to severe COVID-19 (adjusted p < 0.05; Table 3, Figure

S5). The abundances of CRP, SAA1, SAA2, SERPINA3, ITIH4, FIX, FX,

SERPINA1, SERPING1, IGLC2, AGT, TKT, MAN1A1, PIK3C2B, PRG4,

and MAN1C1 increased as disease progressed (p < 0.05); the level

of LBP tended to increase. The abundance of RBP4, TTR, ALB, TF,

LEFTY2, AHSG, SEPP1, A2M, KNG1, HRG, SERPINA4, BNC2, APOA1,

APOA2, APOA4, APOC1, APOM, PON1, HGFAC, GC, ITIH2, IGHALS,

and L1TD1 persistently decreased as the disease progressed to severe

COVID-19 (p< 0.05).

4 DISCUSSION

Here, we performed proteome profiling using serum samples from

patients with COVID-19 at admission and serially collected more dur-

ing hospitalization. We aimed to identify potential early prognostic

protein markers that could stratify high-risk patients prior to disease

progression. We then further explored DEPs, which exhibit longitudi-

nal changes that effectively reflect the clinical progression of the dis-

ease.

We found that IGLV3-19 and BNC2 could be potentially important

prognostic factor for severe COVID-19. We observed increased abun-

dance of IGLV3-19 at admission in patients who finally progressed

to severe COVID-19; however, we did not find evidence of paired

abundance in other immunoglobulin segments (i.e., IGHV families) in

this study. Further studies of serum from larger cohorts of patients

are required to more precisely understand immunoglobulin expres-

sion in severe COVID-19. Nevertheless, the increased abundance of

IGLV3-19 in severeCOVID-19 is a characteristic immune response that

can be detected in advance of disease progression. This finding may

help direct the development of vaccines as well as therapeutic strate-

gies [22]. BNC2 might play a role in the upregulation of interferon-

stimulated genes (ISGs) in the IFN signalling pathway [21]. There is

a reportedly impaired IFN type 1 response with low levels of IFN-1

and ISGs associated with persistent blood viral load in severe COVID-

19 patients [23, 24]. We speculate that dysregulation of BNC2 might

affect IFN type 1 response and reflect a high risk for progression to

severe COVID-19.

Of interest, which has not been reported yet, MAN1A1 and

MAN1C1 persistently increased in the severe group subjects, and was

significantly associated with the risk of disease progression. These

are Golgi alpha-1,2-mannosidases, which are primarily involved in N-

glycosylation that covalently adds glycan residues to the asparagine

of proteins. This post-translational modification is increased in cer-

tain pathological conditions [25]. We speculate that MAN1A1 and

MAN1C1 may reflect glycoproteomic changes in the host immune

process in a patient with SARS-CoV-2 infection, which allows for

stratification of the severity of inflammatory reactions in COVID-19

patients. Understanding significant changes in these proteins might

provide insights for therapeutic strategies in COVID-19. Inhibited N-

glycosylation of angiotensin I-converting enzyme 2 (ACE2) reportedly

disrupts membrane fusion between SARS-CoV and host endosomes

[26, 27]. In this regard, patients infected with SARS-CoV-2 might ben-

efit from the use of inhibitors of N-glycosylation (e.g., α-glucosidase
inhibitors), although further experimental studies are needed to con-

firm this.

Shen et al. reported that proteins, including multiple lipoproteins

(APOC1, APOM), acute phase proteins (SAA1, SAA2, SAA4, CRP, SER-

PINA3), and proteins involved in platelet degranulation (PPBP, PF4),

differentiate between severe and non-severe patients. Messner et al.

reported 27 proteins involved in inflammation including IL-6 signalling

(TNF, IFN-γ, ITIH4, HP, LRG1, LGALS3BP), coagulation (fibrinogen,

coagulation factors, SERPINA10), acute phase response (CRP, LBP,

ALB, SAA1, SAA2), and complement pathway (C1R, C1S, C8A, CFB,

CFI, CFH) are differentially expressed according to disease sever-

ity. In this study, we verified that a number of proteins belonging to

the acute phase response, lipid metabolism, and platelet degranula-

tion were differently expressed between the groups of non-severe

and severe patients [11, 12]. In contrast, we could not verify differen-

tial abundance of proteins belonging to the complement system. We

further identified potential biomarkers differentially expressed pre-

ceding clinical deterioration in severe group and described longitudi-

nal dynamics of the potential biomarkers during COVID-19 disease

progression.

Acute phase proteins such as CRP and LBP initiate the host innate

immune response to viral infection. LBP transfers lipopolysaccha-

rides (LPS) to CD14, which subsequently bind to the toll-like recep-

tor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) complex. The

CD14-LPS-MD2-TLR4 complex initiates the signalling cascade of pro-

inflammatory cytokines such as IL-6, IL-8, and TNF-a [28]. The inter-

actions of LBP and pro-inflammatory cytokines in viral infections have

been previously documented [12, 29]. The hepatic synthesis of RBP4

and TTR generally decreases during acute inflammatory states, and
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although the underlying pathomechanisms still remain to be clarified,

a reduction in serum RBP4 and TTR has been reported as a predictor

of poor clinical outcome in other diseases such as sepsis and critical ill

patients [30, 31].

Dysregulation of multiple apolipoproteins (e.g., APOA1, APOA2,

APOC1, and APOM) and suppressed platelet degranulation in the

serum of patients with severe COVID-19 have been previously

reported [11, 12, 32], which is in accordance with the findings

of the present study. Currently, it is unclear whether SARS-CoV-2

infection and the pathogenesis of severe COVID-19 directly alter

platelet activity [33]. However, considering that platelets directly rec-

ognize pathogens and release antimicrobial mediators by degranu-

lation in viral infections, dysregulation of platelet degranulation in

SARS-CoV-2 infection implies a possible impaired immune response

in severe COVID-19 patients [34]. Our proteomic analysis further

elucidates the predictive role of initial and serial measurement of

these protein abundances over clinical outcomes in patients with

COVID-19.

One of the limitations of our study is that our findings have not yet

been externally validated. However, we performed proteomic analy-

sis of sequential time points from each patient, which enabled us to

identify reliable DEPs that were consistently differentially expressed

in severe disease status, at initial assessment, and during hospitaliza-

tion. Our results should be validated in an independent patient cohort.

In addition, the number of included patients was small (n= 25). Future

larger prospective studies are warranted to validate these potential

biomarkers.

In summary, this study investigated the proteomics dynamics

through longitudinal proteomic profiling on serum samples from

patients with COVID-19, and demonstrates proteins significantly

changed in severe versus non-severe disease. Our findings may

give some new insights into host response to SARS-CoV-2 infec-

tion, which are valuable for understanding of disease progression

to severe COVID-19. Our data could be integrated with additional

data in the near future to develop protein biomarkers, which might

enable better predicting and monitoring progression to severe

COVID-19.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are openly available

in ProteomeXchange Consortium via the PRIDE at https://www.ebi.ac.

uk/pride/archive, reference number PXD023686.

ORCID

Jee-Soo Lee https://orcid.org/0000-0002-6633-4631

DohyunHan https://orcid.org/0000-0002-0841-1598

REFERENCES

1. Weiss, P., &Murdoch, D. R. (2020). Clinical course andmortality risk of

severe COVID-19. Lancet, 395, 1014–1015.

2. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu,

J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li,

H., Liu, M., . . . Cao, B. (2020). Clinical features of patients infected with

2019 novel coronavirus inWuhan, China. Lancet, 395, 497–506.
3. Wu, S., Du, Z., Shen, S., Zhang, B., Yang, H., Li, X., Cui, W., Cheng, F., &

Huang, J. (2020). Identification and validation of a novel clinical signa-

ture to predict the prognosis in confirmed COVID-19 patients. Clinical
Infectious Diseases, 71(12), 3154–3162.

4. Khartabil, T. A., Russcher, H., van der Ven, A., & de Rijke, Y. B. (2020).

A summary of the diagnostic and prognostic value of hemocytometry

markers in COVID-19 patients. Critical Reviews in Clinical Laboratory
Sciences, 57, 415–431.

5. Li,Q., Cao, Y., Chen, L.,Wu,D., Yu, J.,Wang,H., He,W., Chen, L., Dong, F.,

Chen,W., Chen,W., Li, L., Ran,Q., Liu,Q., Ren,W., Gao, F., Chen, Z., Gale,

R. P., & Hu, Y. (2020). Hematological features of persons with COVID-

19. Leukemia, 34, 2163–2172.
6. Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.-Q., Wang, Q.,

& Miao, H. (2020). Lymphopenia predicts disease severity of COVID-

19: A descriptive and predictive study. Signal Transduction and Tar-
geted Therapy, 5, 33.

7. Whetton, A. D., Preston, G. W., Abubeker, S., & Geifman, N. (2020).

Proteomics and informatics for understanding phases and identify-

ing biomarkers in COVID-19 disease. Journal of Proteome Research, 19,
4219–4232.

8. Mehta, P.,Mcauley,D. F., Brown,M., Sanchez, E., Tattersall, R. S., &Man-

son, J. J. (2020). COVID-19: Consider cytokine storm syndromes and

immunosuppression. Lancet, 395, 1033–1034.
9. Wendt, R., Kalbitz, S., Lübbert, C., Kellner, N., Macholz, M., Schroth,

S., Ermisch, J., Latosisnka, A., Arnold, B., Mischak, H., Hartmut Beige,

J., & Metzger, J. (2020). Urinary proteomics associates with COVID-

19 severity: Pilot proof-of-principle data and design of a multicentric

diagnostic study. Proteomics, 2000202.
10. Jankowski, J. (2020). Proteomic biomarkers to guide stratification for

Covid-19 treatment: Exemplifying a path forward toward implementa-

tion? Proteomics, 2000229.
11. Shen, B., Yi, X., Sun, Y., Bi, X., Du, J., Zhang, C., Quan, S., Zhang, F., Sun,

R., Qian, L., Ge,W., Liu,W., Liang, S., Chen, H., Zhang, Y., Li, J., Xu, J., He,

Z., Chen, B., . . . Guo, T. (2020). Proteomic andmetabolomic characteri-

zation of COVID-19 patient sera. Cell, 182, 59-72.e15.
12. Messner, C. B., Demichev, V., Wendisch, D., Michalick, L., et al.

(2020). Ultra-high-throughput clinical proteomics reveals classifiers of

COVID-19 infection. Cell Systems, 11, 11–24 e14.
13. Almeida, A., Faustino, M. A. F., & Neves, M. (2020). Antimicrobial pho-

todynamic therapy in the control of COVID-19. Antibiotics (Basel), 9.
14. Rhee, S. J., Han, D., Lee, Y., Kim, H., Lee, J., Lee, K., Shin, H., Kim, H., Lee,

T. Y., Kim,M., Kim, S. H., Ahn, Y.M., Kwon, J. S., &Ha, K. (2020). Compar-

ison of serum protein profiles between major depressive disorder and

bipolar disorder. BMC Psychiatry [Electronic Resource], 20, 145.
15. Jeon, H. S., Lee, S. M., Jung, Y. M., Oh, S., Park, J. K., Lee, E. B., Park,

C.-W., Park, J. S., Han, D., & Jun, J. K. (2020). Proteomic biomarkers in

mid-trimester amniotic fluid associated with adverse pregnancy out-

comes in patients with systemic lupus erythematosus. Plos One, 15,
e0235838.

16. Kim, Y.-S., Han, D., Kim, J., Kim, D.W., Kim, Y.-M., Mo, J.-H., Choi, H.-G.,

Park, J.-W., & Shin, H.-W. (2019). In-depth, proteomic analysis of nasal

secretions from patients with chronic rhinosinusitis and nasal polyps.

Allergy, Asthma & Immunology Research, 11, 691–708.
17. Reiter, L., Rinner, O., Picotti, P., Hüttenhain, R., Beck, M., Brusniak, M.-

Y., Hengartner, M. O., & Aebersold, R. (2011). mProphet: Automated

data processing and statistical validation for large-scale SRM experi-

ments.Nature Methods, 8, 430–435.
18. Perez-Riverol, Y., Csordas, A., Bai, J., Bernal-Llinares, M., Hewapathi-

rana, S., Kundu, D. J., Inuganti, A., Griss, J., Mayer, G., Eisenacher, M.,

Pérez, E., Uszkoreit, J., Pfeuffer, J., Sachsenberg, T., Yılmaz, Ş., Tiwary,
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