
OPEN

EXPERT REVIEW

Molecular underpinnings of prefrontal cortex development
in rodents provide insights into the etiology of
neurodevelopmental disorders
D Schubert1, GJM Martens2 and SM Kolk2

The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain
areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The
development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and
requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these
processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen
in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal
development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial
prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the
available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with
experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental
disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular
mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is,
intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide
clues for the development of novel therapies.
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THE PREFRONTAL CORTEX IN NEURODEVELOPMENTAL
DISORDERS
Neurodevelopmental disorders affect a large percentage of the
population worldwide. Although the available drugs can alleviate
some of the symptoms associated with these disorders, they are
not curative and adverse drug reactions are often observed. In
addition, many neurodevelopmental disorder-associated symp-
toms, especially cognitive symptoms, still cannot be treated
effectively. To improve the prognosis of a given neurodevelop-
mental disorder, the effectiveness of existing therapies and the
potential for finding new treatment strategies, detailed knowl-
edge of the development and pathophysiology of the disorders is
mandatory.1,2 Neurodevelopmental disorders such as intellectual
disability (ID), autism spectrum disorders (ASDs), attention deficit
(hyperactivity) disorder (AD(H)D) and schizophrenia share parti-
cular cytoarchitectonical, connectional and functional features
suggesting a similar neurodevelopmental origin. Unfortunately,
for the most part, detailed molecular studies of developmental
events within brain areas that are involved in the etiology of these
neurodevelopmental disorders are still lacking.
A wealth of data indicates that the prefrontal cortex (PFC)

contributes to the cognitive deficits or endophenotypes of

many, if not all, neurodevelopmental disorders.3–12 As a conglom-
erate of individually unique subareas, the PFC has a key role in the
execution of higher-order cognitive functions, for example,
language comprehension and cognitive functions involved in
decision making such as planning and reasoning.13–16 In this
respect, the different subareas within the PFC mediate various
processes including response inhibition, working memory, atten-
tion or autonomic control.17–20 Furthermore, the medial regions of
the PFC, the mPFC, such as the infralimbic, prelimbic and
cingulated areas, have a role in the cognitive deficits of many
neurodevelopmental disorders.7,11

The main neurodevelopmental disorders—ID, ASDs, AD(H)D
and schizophrenia—have a complex etiology involving a large
number of genes and environmental factors that also affect
prefrontal brain regions, including those of the mPFC. Although
multiple genes have been found to be associated with each of
these disorders, the actual function and involvement of individual
genes in the developmental aspects of mPFC formation in
particular are largely unknown. Abnormalities in the expression
of these genes often lead to impaired or deviant functioning of
several brain structures, including the mPFC, affecting behavior as
previously shown in animal studies.21,22
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In the following, we will give an overview of the main neuro-
developmental disorders with a particular focus on the defects in
the development of the mPFC, bearing in mind that areas other
than the mPFC may also contribute to the etiology of the
disorders.

ID
The diagnostic category mental retardation groups a number of
syndromes with severe ID that are associated with chromosomal
abnormalities such as Down Syndrome (trisomy of chromosome 21),
Prader–Willi and Angelman Syndromes, Williams–Beuren Syndrome,
Smith–Magenis Syndrome, DiGeorge Syndrome and monosomy of
chromosome 1p36.1.23–26 Other ID syndromes show mild-to-mode-
rate phenotypes and are associated with mutations, small insertions/
deletions or copy number variations affecting a single gene, for
example, fragile X syndrome, caused by a mutation in the FMR1
gene27,28 and Kleefstra syndrome, caused by a functional loss of the
EHMT1 gene.29 Most ID syndromes are associated with develop-
mental deficits in general, including distorted development of the
mPFC.23,24,26,30 In this respect, during the development of the mPFC
of ID patients, molecular/cellular defects have been shown to occur
in (a) the proliferation of neuronal progenitor cells,31,32 (b)
migration of cortical neurons33–37 and (c) synaptogenesis.32,38,39

ASDs
The ASDs include autism, Asperger’s syndrome and ‘pervasive
developmental disorder not otherwise specified’ Diagnostic and
Statistical Manual of Mental Disorders-5th edition (DSM-V). They
constitute a group of wide-ranging neurodevelopmental disorders
that are characterized by variable impairments in three core
symptom domains, that is, reciprocal social interaction, (verbal and
nonverbal) communication, and restricted, repetitive and stereo-
typed patterns of behavior, interests and activities.40–43 Although
many of these behavioral impairments are driven by deficits in
basal ganglia and amygdala functioning, cognitive dysfunctions
such as memory deficits and deficits in social interaction and
perception are integrated by the mPFC.44 The neurodevelop-
mental basis underlying the defects in language and speech, which
are often part of the diagnosis in ASDs relates to abnormalities in
fronto-striatal functioning.45–49 Regarding the development of the
mPFC of ASD patients, molecular/cellular defects have been
reported to occur in (a) the proliferation of neuronal progenitor
cells50,51 resulting in macrocephalic and minicolumn pathology in
several brain areas including the PFC,3,40,42,52–54 (b) migration and
differentiation of GABA ergic parvalbumin+ (PV+) interneurons
toward the PFC,36,55,56 (c) axon guidance, as there seems to be a
disconnection of long-distance axonal pathways57,58 and (d)
synaptogenesis, particularly of GABAergic synapses.59–61 Deficits
in integration and early information processing can be explained
by hyperconnectivity combined with slower synapses.62 Further-
more, there is evidence for amplified activation and density of
microglia within the PFC of ASD patients.57,63,64

AD(H)D
Inattention, hyperactivity/impulsivity and motivational/emotional
dysregulation are the core symptom domains in AD(H)D. In AD(H)D
patients, the mPFC-directed cognitive functions are affected and
frequently of early onset.65–67 A delay in cortical maturation
specifically in the most prefrontal areas and its connections to
other brain areas has often been observed68 and there is
increasing evidence that glutamate signaling is affected.69

During development, the PFC of patients with AD(H)D shows
molecular/cellular defects in (a) the white matter, suggesting axon
guidance deficits70–72 (b) dopaminergic and noradrenergic
connectivity with the cerebellum and striatum65,67,73–76 and (c)

synaptogenesis influencing the electrophysiological properties
and functioning of PFC neurons.77–79

Schizophrenia
Schizophrenia is thought to affect mainly (social) cognition, but it
usually is also associated with chronic problems of behavioral and
emotional regulation.80 Schizophrenia is characterized by a
breakdown of thought processes manifested as delusions and
hallucinations (positive symptoms) and by poor emotional
responsiveness, and disorganized thinking and speech (negative
symptoms). People with schizophrenia are likely to have co-
morbidities such as major depression and anxiety disorders.
Furthermore, working and long-term memory, attention, execu-
tive functioning and speed of processing are often affected.80 All
of these symptoms can at least to some extent be linked to
(impaired) PFC functioning.5,12,81–84 During development of the
mPFC in schizophrenia patients, molecular/cellular defects may
occur in the (a) proliferation of neuronal progenitor cells, as
reflected by the observed severely decreased gray-matter
volume,85 as well as of GABAergic PV+ interneurons,86,87 (b)
postnatal pruning of dendritic trees and synapse loss,88–91 (c)
general connectivity of various neurotransmitter systems such as
the glutamate, GABA and dopamine systems together with a
reduced connectivity with other cortical areas.92–99

RODENT MODELS OF NEURODEVELOPMENTAL DISORDERS
Before one can start to develop better and more target-specific
therapies for patients with neurodevelopmental disorders, it
is necessary to first unravel elementary processes of brain
development in adequate animal models and to understand
subsequent developmental processes in those areas associated
with the endophenotypes of neurodevelopmental disorders. In
this way, fundamental hypotheses can be created and tested in
relation to the etiology of these disorders. Such parallel
approaches are crucial to eventually design optimal treatment
strategies.
As mentioned before, although the PFC is often referred to as a

single brain region, many subdivisions into distinct areas can be
made, each of which possesses its own specific cytoarchitecture,
cytochemistry, connectivity and functional properties. Defining
these areas across species suffers from the fact that large
interspecies differences exist in the layering per area, fueling the
debate on whether or not rodents possess a region equivalent to
the human PFC as they lack a granular zone in this area.100,101

However, it should be noted that the formation of the general
laminar pattern in the PFC shows a relation with phylogenesis: in
‘higher’ mammalian species, such as primates and humans, PFC
regions can be granular, that is, they possess a granular layer IV, as
well as an agranular layer. The ‘lower’ the species, the smaller the
proportion of granular PFC regions (for reviews, see refs 100,101).
Thus the concept of homologous structures with similar functions
may apply.
In this review, we will focus on the rodent mPFC and its

structure–function relationships with connected brain areas in the
context of neurodevelopmental disorders.102,103 One example of a
well-defined rodent model for neurodevelopmental disorders is
the apomorphine-susceptible and apomorphine-unsusceptible
Wistar rat. The behavioral impairments seen in the
apomorphine-susceptible rats resemble features of schizophre-
nia.104–106 At least part of this phenotype can be attributed to the
differences in the mesocorticolimbic projections.107

Furthermore, mouse models are ideally suited to study targeted
molecular alterations.102,108–114 In this way, genetic variants
identified through association studies can be tested for their
biological function and correlated with cognitive endophenotypes
of human neurodevelopmental disorders. However, the traditional
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techniques of targeted mutation used in these kinds of model
systems are systemic in nature and often result in inducing
compensation mechanisms. Cre-Lox and knock-in systems still
affect a large part of the brain, but can offer cell-type selective and
temporally controlled strategies to achieve targeted mutations
at different pre- and postnatal ages.115 Although in utero
electroporation-mediated gene transfer spatially restrict gene
repression or genetic rescues to early developmental time-points
(app. E10-E17), virally mediated gene transfer can be performed
pre- as well as postnatally.116 Furthermore, intersectional genetics
(Flpe/Cre) to selectively mutate genes of interest in overlapping
areas between a Cre and a Flpe allele (for example, Dlx5 Flpe and a
region-specific Cre to selectively target GABAergic interneurons in
a region of interest) increases the spatial selectivity of such
approaches. Using these techniques, it is possible to knock down
or rescue a particular gene in a specific part of the brain (for
example, PFC) and at a specific time during brain development.
By employing various behavioral tasks, it is now possible to

specifically test endophenotypes associated with mPFC function in
rodent models, such as working memory, conditioned associative
learning, attentional set shifting and reversal learning.117–122

Consequently, by combining the targeted mutation with specific
behavioral tests and instead of having to study a particular disease
as a whole, one can now molecularly unravel the individual cogni-
tive endophenotypes.21,22 A further advantage of such an
approach is that a causal inference can be made between the
expression of a particular gene in a specific brain locus and one or
more cognitive (endo)phenotypes, which is not yet possible in
humans.

DEVELOPMENTAL ASPECTS OF PFC FORMATION
The PFC represents the functionally most advanced brain area
with the longest period of maturation. This maturation includes
proliferation and migration of neurons, growth of dendrites, the
formation of neural micro- and macro-circuits through efferent/
afferent axonal projections, and the fine-tuning of synaptic
contacts and neuronal density steered by experience. This
maturation process starts with an initial phase of cell division
within an intrinsically specified PFC region, in which specific
transcription factors (TFs) have a timing-critical role (Figure 1).
Developmental events such as induction, migration and axon
guidance are under the control of extrinsic cues and sculpt the
identity of frontal areas. Appropriate cognitive behavior is fine-
tuned over time by activity-dependent processes including
sensory stimuli and social interactions, which in turn leads to
pruning and cell death of unused connections.123 As a result,
intricate convergence of connections with various other brain
areas occurs, eventually creating the unique identity of the PFC
and the subareas it encompasses (Figure 1). Here, the initial focus
will be on the early developmental events of the (fore)brain as a
whole and the molecules that are relevant during this phase.
Although little is known about the early developmental char-
acteristics of the PFC, many early principles and main mechanisms
of forebrain compartmentalization and maturation are also
applicable to PFC development. Important to keep in mind is
the influence of external stimuli (for example, stress, drugs and
hormones) that, if excessive, can lead to an altered development
of the PFC and its connected areas.123 Thus, the knowledge about
the genes that are involved in the structural and functional
development of the (fore)brain and in particular the PFC is
important for a better understanding of the molecular mechan-
isms underlying (disturbed) cognitive functions. Eventually, this
knowledge may enable us to therapeutically intervene when
this ‘developmental balance’ is shifted toward neuropsychiatric
disorder.

Induction of (pre)frontal boundaries
The developmental progression of the forebrain starts with
regional expansion through division of neuronal progenitor cells
in proliferative zones lining the embryonic ventricles of the brain.
The most anterior part of the neural tube develops into three
primary vesicles even before the posterior section of the tube has
formed: the prosencephalon (forebrain), mesencephalon (mid-
brain) and rhombencephalon (hindbrain).124 After closure, the
neural tube is characterized by a sequence of swellings and
constrictions along the anteroposterior axis, some of which
subsequently develop into strict boundaries.125

Except for the specific boundary compartment, the zona
limitans intrathalamica (ZLI), no unique set of boundary markers
has been identified for regions of the forebrain and most of the
telencephalon develops in an unsegmented way.125 Anterior of
the midbrain–hindbrain border (MHB) or isthmus, the diencepha-
lon consists of three neuromeres (p1–p3) according to the so-
called prosomeric model.125–127 The more anterior prosomeres
(p4–p6) subdivide the secondary prosencephalon (hypothalamus
and telencephalon).128 The boundaries that are created function
to arrange and stabilize local signaling centers or ‘organizers’
important for the early patterning of the embryonic brain (Figures

Figure 1. Bird’s eye view of developmental events required for
prefrontal cortex (PFC) formation. The identity of the PFC is sculpted
over time by intrinsic developmental mechanisms such as expan-
sion by proliferation and regional specification by the differential
expression of intrinsic factors (e.g., transcription factors), indicated in
blue. These intrinsic factors can control genes (transcriptional
control) that affect other developmental events such as the
expression and release of soluble morphogens, migration of
neurons or guidance molecules that direct axons from other brain
areas towards the PFC and vice versa to establish appropriate
connectivity. These extrinsic factors are depicted in red. Pruning of
appropriate connections and neuron death are under the control of
external stimuli (green).
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2a and b). Gradually, gradients of soluble morphogens and growth
factors (Fgfs, BMPs, SHH and Wnts)129,130 are secreted from
signaling centers and regulate the graded expression
of certain intrinsic TFs, a process that is called induction131

(Figures 2a and b).

Fgfs, especially Fgf8, Fgf17 and Fgf18 from the rostral
patterning center (also called anterior neural ridge) provide, apart
from their role in other areas, positional information on the
presumptive prefrontal region along the rostro-caudal axis of the
forebrain.132,133 The dorsal patterning center or cortical hem

Figure 2. Molecular stages in the development of the PFC. (a) Schematic representation of the frontal view of a young (E11.5) mouse forebrain
showing inductive influences (morphogens such as Fgfs, Wnts, SHH and BMPs; stage I). (b) Sagittal schematic views. These morphogens (stage
I) have an effect on regional specification through intrinsic expression of transcription factors (stage II). This combinatorial code will have its
effect on the cell-type specification of the major neurotransmitter systems (stage III). The neurotransmitter systems will connect to the PFC,
shaping it and establishing the respective neural networks (stage IV). ANR, anterior neural ridge; DA, dopaminergic; DI, diencephalon; MES,
mesencephalon; MET, metencephalon; MHB, mid-hindbrain border; NA, noradrenergic; PFC, prefrontal cortex; RPC, rostral patterning center;
SHH, sonic hedgehog; Tel, telencephalon; VSC, ventral signaling center; ZL, zona limitans; 5-HT, serotonergic.
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secretes Bmp4/Wnt3A, which has a role in medial and dorsal
pallium patterning,134–136 but in combination with SHH also steers
prefrontal formation (Figures 2a and b). SHH is expressed by the
ventral signaling center and regulates Fgf8 expression through the
transcriptional repressor Gli3.137–140 Absence of Fgf17 leads to a
reduced PFC size and abnormal social behavior.141,142 Thus, Bmp,
Wnt and Fgf proteins all work coordinately to pattern the most
rostral telencephalon.139,143 Interference with each of the three
Fgf receptor subtypes results in reduced numbers of either
excitatory or inhibitory neurons, specifically in the prefrontal area
and often resulting in altered behavior.144–149

Regional identity of the PFC through intrinsic patterning
The gradients of morphogens and signaling molecules from the
early patterning centers impart positional information influencing
the expression of intrinsic TFs (Figure 2b). These have a crucial role
in the regionalization of the forebrain and correlate with
morphologic boundaries, the so-called regional specification
underlying the spatio-temporal control of postnatal arealiza-
tion.131,150–152 The regional identity that is created by the
expression of TFs includes the final cell-type specification.153 The
inductive signals provided by morphogens and signaling mole-
cules regulate the combinatorial expression of TFs and other
regulatory factors, resulting in the generation of specific neuronal
subtypes154,155 (Figure 2a and b).
The interaction between extrinsic growth factors and intrinsic

TFs during the early developmental events evolves through rostral
patterning by the factors Fgf8 and Fgf17 through the Fgf
receptors. This Fgf-signaling promotes the expression of the TFs
Foxg1, Six3, Sp8, Pax6, Erm (etv5), Er81 (etv1), Nkx2.1 and Pea3,
and represses the expression of Coup-tf1 and Emx2 more
caudally.131,133,156 Although it is most likely the expression of a
combination of multiple TFs that underlies the identity of an area,
there are a few individual TFs that are specifically linked to the
development of the most rostral part of the cortex. The expression
of the TFs Pax6 and Emx2, for example, is known to have a role in
cortical identity in general.131,157,158 Yet, very few TFs are
specifically expressed in and linked to early PFC development.
During the course of development, distinct neuronal cell types

will express a variety of proteins that are involved in migration,
targeting (for example, axon guidance) and specific neurotrans-
mitter release. This set of proteins is unique for each cell type,
thereby regulating the formation of functional areas.159 The
expression of the respective genes (extrinsic genes) is under the
control of a distinct combinatorial code of TFs generating
neuronal diversity160(Figure 1 and Figure 2). Other TFs such as
Rest4 and Nurr1 display increased expression in the PFC and are
involved in various aspects of cognitive behavior.161,162 Although
an abundance of genome-wide expression data shows that
specific TFs are expressed in later stages of PFC development,
their downstream targets and functional relevance are largely
unknown.163–166 In fact, the existing data are now congruent with
a model in which each neuronal cell type within the PFC (but also
other areas) most likely uses an exclusive code of intrinsic genes to
control the expression of extrinsic genes. This code is unique to
each particular cell type essential for the sequential steps in
development. The next level of complexity starts off when
extrinsic mechanisms such as migration and afferent input begin
to have a role in the development of the prefrontal areas.

Proliferation and migration of PFC neurons
The PFC, like other cortical areas, expands by generating new
neurons through (a) symmetric divisions of radial glia cells in the
(sub)ventricular zone lining the ventricles.167,168 During this
process, reduction of the extrinsic morphogen Fgf8 results in less
proliferation and more apoptosis, which ultimately changes the
identity of the cortex.132,169,170 In particular Fgf has a determining

role in the production of excitatory glutamatergic pyramidal
neurons in the most anterior part of the cortex with deletion of
the gene resulting in a reduced number of excitatory cortical
neurons.171 Many TFs controlling the cell cycle, including cyclinD1,
drive prefrontal expansion.39 Some newborn progenitors or
intermediate progenitor cells expressing Tbr2 migrate to the
subventricular zone to generate neurons. Lack of Tbr2 expression
results in reduced cortical surface and thickness.172–175 It is
furthermore widely accepted that classical neurotransmitters such
as dopamine and serotonin have an early role in controlling the
neuron numbers within the PFC.176–178

The differential expression of TFs but also of adhesion and axon
guidance molecules reflects a signage map for migrating neurons.
The expression patterns are graded along the anterior–posterior
and medial–lateral axes of the embryonic brain instructing
neurons to establish functionally distinct lamina. During embry-
ogenesis, most brain areas deploy radial migration in multiple
waves as their major route to establish lamination within the
structure.167,179,180 Radial glia cells, with their cell body within the
ventricular zone, send out their glial processes toward the pial
surface where they attach to the basal membrane. Newborn
neurons that become (excitatory) projection neurons use the glial
scaffold to migrate to their final place in the brain by using either
somal translocation or locomotion.167,180,181 The ventricular zone
generates the deeper layer neurons, including the subplate, layer
VI and subsequently layer V projection neurons. Additionally,
Cajal–Retzius neurons are generated within the cortical hem and
to a lesser extent at other sites in the subpallium and septum.
These layer I neurons express Reelin, a large secreted glycoprotein
intricately involved in the inside-out laminar patterning of cortical
neurons.182,183 At later stages, the subventricular zone gives birth
to neurons which migrate radially into the cortical plate past the
deep layer neurons and form layers IV, III and II of the PFC, creating
an inside-out pattern. Most of the projection neurons (80%) use
glutamate as their neurotransmitter projecting to distant cortical
and subcortical targets. The basic molecular developmental
mechanisms that have been elucidated in rodent studies are in
principle similar to those in humans, even though the human
brain has gone through a series of additional evolutionary steps,
including size, shape and gyrification modifications.184–186

Migration of GABAergic interneurons towards the PFC
A small proportion of neurons, which includes the majority of
GABAergic (GAD65/67+) interneurons originating from the gang-
lionic eminences, migrate tangentially to the cortical plate,
then radially to reach their target lamina.187 The subpallial
interneurons migrate via a lengthy route towards the PFC using
directional cues to eventually position themselves between
pyramidal projection neurons on which they synapse.167,188

Medial ganglionic eminence-derived interneurons will generate
PV and somatostatin interneurons that populate all cortical
structures (as well as hippocampus, striatum, amygdala, etc).
These interneurons are specified in the medial ganglionic
eminence by the expression of Nkx2.1 and Lhx6 followed by
Sox6 expression as they start migrating. In contrast, caudal
ganglionic eminence-derived interneurons encompass all 5-HT3A-
expressing interneurons of various morphology and physiology.188

The homeobox TFs Dlx1 and Dlx2 mainly regulate the maturation
of GABAergic (inter)neurons within the ganglionic eminences,
having the TF Arx as a downstream target.133 However, the
combinatorial expression of TFs such as Olig2, Dlx5, Arx, Lhx6,
Cux2, NPAS1 and MafB define the various subpopulations of
interneurons within the subpallium that end up in the (prefrontal)
cortex.188,189 As development progresses, interneurons within the
(prefrontal) cortex start to express transporters (GAT-1 and -3),
VGAT and components of GABAergic synapses190 making them
highly adaptive to the maturing PFC.
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Axon guidance, target selection and synapse formation of PFC
neurons
The assembly of neuronal circuits during embryonic development
relies upon the guidance of growing axons to their synaptic
targets. To help them find their synaptic partners, developing
axons are tipped with a highly motile sensory structure, the
growth cone. Growth cones are instructed to follow predeter-
mined trajectories by heterogeneously distributed guidance
molecules in the extracellular environment. Binding of axon
guidance molecules to receptor complexes on the growth cone
surface initiates intracellular signaling events, which modulate
growth cone morphology and directionality through local
modifications of the cytoskeleton. Axon guidance molecules can
act as attractants or repellents, that is, either directing growth
cones toward a specific structure or preventing them from
entering inappropriate regions. Furthermore, these cues exist as
membrane-associated molecules acting at short ranges or as
soluble agents with long-distance effects.191–194 The responses of
growing axons to particular cues, however, may change as they
grow toward their final targets.176 For example, Semaphorin 3F is
such a bidirectional guidance cue that, through binding with
Neuropilin-2, initially repels dopaminergic axons from the rostral
ventral tegmental area on their way to the mPFC, and later attracts
and orients them within the mPFC.176 When the axonal growth
cone has been guided to the proper target, synaptic contacts can
be formed that are mediated by adhesion molecules such as the
cadherins.195,196 Newly formed synaptic contacts change their
functional properties as development progresses and contribute
to the maturation and functioning of an area.197,198 Furthermore,

the immature afferent projections are refined via the same
guidance molecules in topography (pruning of branches),
convergence (less efferent projections onto one cell) as well as
postsynaptic compartment (less afferent dendritic innervation)
in specific brain areas.197–199 Changes occurring in pyramidal
morphology in terms of expansion of dendritic complexity are
specifically apparent in layer III.200 Furthermore, during the first
four postnatal weeks the local inhibitory interneuron networks in
the mPFC undergo an extensive process of maturation, both at the
level of intrinsic functional as well as network properties.201,202

Given that inhibitory network activity is thought to contribute to
the proper construction of cortical networks, the refinement of
synaptic connectivity in inhibitory and excitatory networks leads
to developmental plasticity and fine-tuning of complex behavior.

Topographic map formation in PFC connectivity: parcellation
versus lamination
As mentioned above, in rodents and other phylogenetically
‘higher’ species, the PFC is not one homogeneous cortical region
but is compartmentalized into a number of structurally and
functionally distinct prefrontal areas, each of which is thought
to possess characteristic input–output profiles. In general, the
rodent PFC can be subdivided into medial, lateral and ventral
sections. Within the medial portion, the anterior cingulate (Cg),
prelimbic (PL) and infralimbic (IL) cortices (Figure 3) and dorsal
peduncular cortex can be distinguished from dorsal to ventral.203

The lateral and ventral PFC consists of the orbitofrontal cortex
and the agranular insular cortices.204 The different areas of the
PFC are connected to various other brain regions through

Figure 3. Neurodevelopmental disorder-associated genes that are involved in mPFC development. Various genes are associated with
neurodevelopmental events in the mPFC (proliferation, migration, guidance targeting and connectivity) of which some can also be found in
association studies with the four major neurodevelopmental disorders ID, ASDs, AD(H)D, schizophrenia. The letter size in the ‘cloud’ of genes is
indicative of the frequency of the gene associated with the various neurodevelopmental disorders connected to that particular
neurodevelopmental event. Cg, cingulate cortex; CP, cortical plate; DN, dividing neuroblast; GC, growth cone; IL, infralimbic cortex; IN,
interneuron; IPC, intermediate progenitor; IZ, intermediate zone; MN, migrating neuron, PN, post-mitotic neuron; PrL, prelimbic cortex; PZ,
proliverative zone; RG, radial glia; (1) Commissural and corticocortical projection neurons, respectively; (2) subcerebral projection neurons to
basal ganglia, diencephalon, midbrain, hindbrain and spinal cord; (3) corticothalamic projection neurons to mediodorsal thalamic targets; (2)
and (3)= corticofugal.
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Table 1. Commonalities in gene association between PFC developmental events and the four major neurodevelopmental disorders

Gene Involvement in PFC development ID ASDs AD(H)D Schizophrenia

Induction of prefrontal boundaries
FGF17 Fgf17 is secreted by the the rostral

patterning center (RSC) and is involved
in the induction of prefrontal
boundaries.141,142,233

Fgf17 knockout mice display
deficits in specific social
interactions that have been
linked to ASDs.142

SHH Shh is secreted by the VSC and regulates
the expression of Fgf8, which is involved
in the induction of prefrontal
boundaries.137–139

Mutations in SHH cause
holoprosencephaly, a common
forebrain malformation
associated with craniofacial
anomalies and MR.234

Significantly higher levels of
serum SHH protein were found
in children with autism.235

A mutation in SHH was found
in two boys with ADHD.236

Proliferation and migration of PFC neurons
FGF2 Fgf2 has an important role in the

production of glutamatergic pyramidal
neurons in the (pre)frontal cortex.237

Fgf2 knockout mice show
hyperactivity.238

Serum FGF2 levels were found to
be increased in people with
schizophrenia.239

FGFR1 Fgfr1 is required for the proper
number of glutamatergic pyramidal
neurons in the frontal cortex.144

Dominant or recessive FGFR1
mutations are responsible for
Hartsfield syndrome.240

Dysfunctional Fgfr1 signalling
is associated with spontaneous
hyperactivity.144

FGFR1 levels are higher in
schizophrenia241 and th-fgfr1(tk-)
transgenic mice exhibit behavior
resembling human schizophrenia.242

FGFR2 Fgfr2 is involved in generating
excitatory glutamatergic neurons
in the mPFC.147

Mutations in FGFR2 cause
Crouzon’s or Apert syndrome,
which can be associated
with MR.243,244

Deletions of FGFR2 are
associated with ASD.245

Some Fgfr2 deficient mice
display hyperactive behavior.246

A SNP flanking the FGFR2 gene
is associated with schizophrenia.247

Migration of GABAergic interneurons into the PFC
DLX2 Dlx2 controls interneurons migration

toward frontal forebrain.248
Deletions of DLX2 are
associated with MR.249

DLX2 shows genetic
association with autism.250

GAD1 Gad1 regulates the migration of
GABA-ergic interneurons to
the PFC.251,252

Gad1 is an ASD susceptibility
gene.253–256

GAD1 expression is altered in
schizophrenia
patients and is considered a risk
gene.257–259 Review: ref 260.

Axon guidance, target selection and synapse formation of PFC neurons
ERBB4 Erbb4 regulates dendritic

spine formation and density of PV+
interneurons in the PFC.261–264

ERBB4 is associated
with ID.265

Numerous studies implicate ERBB4
as schizophrenia risk genes.266,267

For reviews, see refs 268,269.

EIF4E Eif4e has a role in synaptic function,
dendritic spine density and synaptic
plasticity of PFC neurons.61

EIF4E shows genetic association
with autism.270–272 Eif4e transgenic
mice display autism-like
behaviors.61,273

FMR1 Fmr1 functions in synaptogenesis
of dendritic spines of PFC
neurons.62,274–277

Mutations/deletions of FMR1
cause Fragile X Syndrome, most
common known hereditary cause
of MR/ID and autism.
Reviews: refs 28,30,278.

Mutations/deletions of FMR1
cause Fragile X Syndrome,
most common known hereditary
cause of MR/ID and autism.
Reviews: refs 279–281.

Human and animal models
carrying the FMR1 mutation
display ADHD symptoms.282–285

Reduced levels of FMR1 and
mutations of associated genes
in schizophrenia patients.286–288

GRID1 Grid1 has a role in synaptogenesis
of PFC neurons.289

Genetic association290 and Grid1
knockout mice show autism-like
behavior.289

GRID1 shows genetic association
with schizophrenia and gray-matter
reduction in patients.291,292

NRP2 Nrp2 is involved in regulating axon
guidance of PFC neurons.293

NRP2 mutations are associated
with autism.294,295

RELN Reln is involved in regulating spine
density and network formation.296

Disruption of RELN is
associated with MR.297

RELN shows genetic association
with autism. Reviews: refs 298–300.

RELN shows genetic association
with schizophrenia. Reviews:
refs 301–303.

MECP2 MeCP2 plays a critical role in the
regulation of GABAergic transmission
and cortical excitability of
PFC pyramidal.304

MECP2 is associated with
MR/ID and especially linked to
Rett syndrome. Reviews: refs 305,306.

MECP2 is genetically linked to
ASD.307,308 Review: ref 309.

De novo mutations of MECP2
found in schizophrenia patients.310,311
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highly organized projections controlling decision-directed
behavior.205–207

Input connectivity of the mPFC. In terms of the afferent
connectivity of the mPFC, a comprehensive and detailed
comparison of area-specific input connectivity is still lacking. The
mPFC is known to receive long ascending projections from the
ventral hippocampus,208,209 from cholinergic neurons of the basal
forebrain,210,211 from dopaminergic neurons of the rostral part of
the medial ventral tegmental area176,212,213 and from serotoner-
gic/cholinergic neurons of the brainstem along a highly defined
trajectory.214,215 Functionally, the connection with the ventral
hippocampus is thought to be of particular importance for the
functioning of the mPFC during cognitive tasks.216,217 The
cholinergic and dopaminergic systems are considered to mod-
ulate mPFC activity and attentional performance.218,219 Interest-
ingly, the dopaminergic projections from the ventral tegmental
area show strong laminar and cell-type specificity. They
form dense contacts exclusively with interneurons in layers
V and VI,176,213,220,221 while for example projections from limbic
and thalamic regions innervate both PV+ interneurons and
pyramidal cells throughout layers II–VI.222–224 Furthermore, con-
nections of the mPFC with both the basolateral amygdala209,225

and the striatum are implicated in motivated behavior.226,227

Interestingly, the long-range connections originating from the
basolateral amygdala have been shown to not only be layer- but
also cell-type specific. Neurons in the basolateral amygdala
preferentially target layer II pyramidal neurons in the mPFC, such
as PL, and amygdala, with which they can form reciprocal
connections.225,228

Output connectivity of the mPFC. As in other cortical areas, the
long-range efferent connections of the PFC are mediated by
excitatory projection neurons, that is, glutamatergic pyramidal
cells. Depending on the PFC area, the pyramidal cells project to
many structures such as the basal forebrain, olfactory and cortical
structures, amygdala, striatum, (hypo)thalamus and the brain-
stem.204,215,225,226,229 In addition, prefrontal pyramidal neurons
project to various subcortical areas thereby modulating dopami-
nergic, adrenergic, cholinergic and serotonergic projection sys-
tems.101,204 The targets of the projection neurons show distinct
layer specificity. Layer III pyramidal neurons connect the mPFC
mainly to other cortical areas, whereas layers V and VI pyramidal
cells project primarily to subcortical targets.230,231 Furthermore,
there is evidence for layer specificity of projections onto individual
subcompartments of single brain structures. In terms of the
nucleus accumbens, mPFC layer II pyramidal neurons preferen-
tially innervate the core region, whereas neurons of deep layers V
and VI innervate the core as well as the shell region.232

In contrast to the input connectivity, there is ample data
demonstrating that the output connectivity properties of the
mPFC are area dependent, which supports the notion that
prefrontal areas are involved in modulating various aspects of
cognitive behavior,203,204,229 not only in rodents but also in a
number of other species.220,229,230 The dorsomedial areas of the
PFC establish connections with the sensorimotor and association
cortex, which are lacking in the ventral parts of the PFC. The
ventral parts, however, establish relatively strong connections with
the amygdaloid complex and limbic association cortices. Further-
more, the IL has been shown to mainly project to autonomic/
visceral related sites, supporting its role in visceromotor activity,204

whereas the PL primarily innervates limbic sites that are thought
to affect cognition.

FUTURE TRANSLATIONAL AVENUES OF RESEARCH
In summary, substantial progress has been made in the past
decades toward understanding the etiology of neurodevelop-Ta
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mental disorders at the molecular, cellular and systems levels.
Nevertheless, we have only just begun to thoroughly study the
development of a conglomerate of specific brain areas that as
a group define the PFC and that are involved in the etiology
of these disorders. In this context, it is remarkable that the
exact molecular orchestration of the development of the PFC
is still largely unknown. What are the molecular mechanisms
that create a correctly parcellated and layered PFC? How are
the extensive and highly specific interactions between various
signaling pathways that are connecting the individual areas fine-
tuned and how can we manipulate these? We are also only
beginning to shed light on the large variety of neuronal cells
and their integration in prefrontal local and global networks,
let alone that we would know all the molecules that guide their
differentiation and projections.
To test targeted molecular variations, rodents have emerged as

an excellent model. Animal models and functional assays are
invaluable as it comes to decipher the exact functions of the large
number of genes that are involved in the various aspects of PFC
development, that is, induction of prefrontal boundaries, intrinsic
patterning of the PFC, proliferation and migration of (pyramidal)
PFC neurons, migration of GABAergic interneurons toward the
PFC, axon guidance, target selection and synapse formation of
PFC neurons, and PFC connectivity formation. Slowly, the view is
emerging that some of these genes are identical to the
susceptibility genes of neurodevelopmental disorders (Table 1).
However, up to now only a few of the genes could be directly
linked to one or more of the developmental events within the PFC
as well as one or more of the four major neurodevelopmental
disorders, that is, ID, ASDs, AD(H)D and/or schizophrenia.
Especially the availability of in utero electroporation-mediated

gene transfer and other genetic approaches and hence the
possibility to locally knock down or rescue particular genes will
hopefully enable us to unravel the exact orchestration of brain
areas such as those within the PFC in the near future. Such
knowledge will assist in developing early intervention approaches
by altering the susceptibility genes at a particular time and place,
such that we deviate from the predetermined developmental
path, even before the onset of the neurodevelopmental disorder
(s) in question. Considering that individual susceptibility genes of
neurodevelopmental disorders have often been found to be
associated with multiple disorders, we can assume that several
disorders share a common neurodevelopmental origin. It will be a
challenge to dissect the individual genetic (and possibly even
epigenetic) contributions to a disorder by using functional
studies combined with behavioral tasks. For example, gene-
environment interactions are crucial to distinguish between risk
and vulnerability.
It is to be expected that in the coming years many more genes

regulating developmental processes in the PFC and other brain
structures will be linked to neurodevelopmental disorders and vice
versa. Animal models, in which we can specifically alter gene
expression in the PFC, can be instrumental for the understanding
of the aetiopathological aspects of the disorder(s), as we can
monitor the early disturbances that will eventually lead to defects
in brain maturation and behavior. In order to move toward better
and more preventive treatment of the neurodevelopmental
disorders, bridges need to be built between disciplines such as
combining genetic analyses of patients suffering from neurode-
velopmental disorders with structural and functional brain
imaging and in-depth molecular in vitro and in vivo approaches
with cell and animal models. Exploring the molecular and cellular
aspects during the progression of the disease process in animal
models will clarify the pathological mechanisms, which in turn
may provide clues to develop novel treatments for these
disorders. The earlier during life and the more personalized the
treatment strategies are applied, the better, alleviating symptoms
at an early stage and reducing medical costs dramatically.
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