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Abstract

Reprogramming of tumor cell metabolism contributes to disease progression and resistance to 

therapy, but how this process is regulated on the molecular level is unclear. Here we report that 

Heat Shock Protein 90 (Hsp90)-directed protein folding in mitochondria controls central metabolic 

networks in tumor cells, including the electron transport chain, citric acid cycle, fatty acid 

oxidation, amino acid synthesis, and cellular redox status. Specifically, mitochondrial Hsp90, but 

not cytosolic Hsp90, binds and stabilizes the electron transport chain Complex II subunit succinate 

dehydrogenase-B, maintaining cellular respiration under low-nutrient conditions, and contributing 

to hypoxia-inducible factor-1α-mediated tumorigenesis in patients carrying succinate 
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dehydrogenase-B mutations. Thus, Hsp90-directed proteostasis in mitochondria regulates tumor 

cell metabolism, and may provide a tractable target for cancer therapy.

Reprogramming of tumor cell metabolism 1 is increasingly recognized as a multifaceted 

disease driver, enhancing biomass expansion 2, and promoting various mechanisms of 

oncogenic signaling 3. Although these processes have been mostly studied in the context of 

aerobic glycolysis, the so-called Warburg effect 3, there is evidence that mitochondria 

continue to play an important role in tumor metabolism 4,5, and organelle-driven oxidative 

phosphorylation has been associated with tumorigenic potential 6, drug resistance 7,8 and 

enhanced tumor cell survival 9. Harnessing these pathways may open new prospects for 

cancer therapy 10, but the regulators of mitochondrial homeostasis in tumors have remained 

largely elusive, and their potential suitability as drug candidates is unknown.

With a complex, multi-compartment topology, dependence on import of nuclear-encoded 

proteins, and production of protein-modifying reactive oxygen species (ROS), mitochondria 

must tightly control their protein folding environment 11. This is indispensable to maintain 

metabolic output 2, ensure organelle integrity 12, and prevent the consequences of an 

unfolded protein response, which may result in cell death 13. Buffering mitochondrial 

proteotoxic stress, especially in the protein-dense and energy-producing organelle matrix 14, 

relies on adaptive responses mediated by molecular chaperones and AAA proteases 15, and 

dysregulation of these mechanisms has been linked to human diseases, including 

neurodegeneration and cancer 14.

In this context, a pool of ATPase-directed molecular chaperones, including Heat Shock 

Protein-90 (Hsp90) 16 and its related homolog, TNF Receptor-Associate Protein-1 

(TRAP-1) 17 localize to the mitochondria, almost exclusively in tumor cells 18. The 

molecular requirements for the selective accumulation of these chaperones in tumor 

mitochondria have not been completely elucidated. However, there is evidence that both 

Hsp90 and TRAP-1 form overlapping complexes with mitochondrial proteins, including 

cyclophilin D (CypD), a component of the permeability transition pore, and control their 

folding 19. Accordingly, inhibition of Hsp90 and TRAP-1 chaperone activity selectively in 

mitochondria triggered acute organelle dysfunction 20, defective hexokinase II (HK-II)-

dependent 2 ATP production 21, and anticancer activity in preclinical tumor models, in vivo 19.

In this study, we examined the role of Hsp90-directed mitochondrial protein folding on 

cellular homeostasis. Using combined proteomics and metabolomics approaches, we found 

that mitochondrial Hsp90 and TRAP-1 are global regulators of tumor metabolic 

reprogramming, including oxidative phosphorylation, and are required for disease 

maintenance.

RESULTS

Identification of a mitochondrial Hsp90 proteome

We began this study by setting up a preliminary proteomics screen to identify regulators of 

mitochondrial protein homeostasis, or proteostasis, in tumors. For these experiments, we 

used non-cytotoxic concentrations of Gamitrinib (GA mitochondrial matrix inhibitor), a 
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mitochondrial-targeted, small molecule ATPase antagonist that inhibits the chaperone 

activity of both Hsp90 and TRAP-1 in tumors 20.

Treatment of glioblastoma LN229 cells with non-cytotoxic concentrations of Gamitrinib 21 

caused the accumulation of aggregated and misfolded proteins, characterized by resistance 

to detergent solubilization (Supplementary Fig. S1). Preliminary mass spectrometry analysis 

of selected bands showing higher intensities with Gamitrinib treatment identified 96 

mitochondrial proteins (Supplementary Data 1). Forty-four of these proteins based on 

spectral counts were elevated by more than 3-fold after Gamitrinib treatment, indicating a 

requirement of Hsp90 for their folding. Although gel-based comparison (Supplementary 

Figure S1) provides high detection sensitivity for specific bands, individual bands are not 

single proteins, and slight differences in band excision between control and Gamitrinib 

treatment can produce artificial differences. To minimize this concern, this experiment 

focused primarily on band differences at the 2% CHAPS condition, where protein 

complexity was the lowest, but not necessarily where the largest fold change occurred. To 

independently validate these initial results, we next performed unbiased proteomics studies 

using Stable Isotope Labeling by Amino Acids in Culture (SILAC) of control or Gamitrinib-

treated cells. Of the original 44 proteins of the mitochondrial Hsp90 proteome identified by 

1D mass spectrometry, 33 were independently confirmed for response to Gamitrinib in 

SILAC experiments (Fig. 1a). Of the remaining 11 proteins, 7 were below adequate 

detection levels for SILAC quantification, and 4 did not show significant changes.

These verified mitochondrial Hsp90-regulated proteins (Figure 1a and Supplementary Table 

S1) comprised transcription factors TFB1M and TFB2M involved in organelle gene 

expression 22, and glucose homeostasis 23, ribosomal proteins (MRPLs, MTG1, ERAL1) 

associated with RNA translation 24–26, regulators of purine biosynthesis and the methyl 

cycle (MTHFD2) 27, and effectors of oxidative phosphorylation 2, including SDHB, IDH3G, 

NDUFS3, PDHB, MDH2 28 (Fig. 1b). Mitochondrial proteins participating in redox status 

and detoxification pathways (PRDX6, POLDIP2, CYB5R1, ETHE1) 29–31 were also 

identified in the mitochondrial Hsp90 proteome (Fig. 1b).

Mitochondrial Hsp90 regulation of tumor metabolism

The impact of a mitochondrial Hsp90 proteome (Fig. 1b) on cellular homeostasis was next 

investigated. For these experiments, we quantified the level of 301 individual metabolites in 

prostate adenocarcinoma PC3 cells treated with non-cytotoxic concentrations of 

Gamitrinib 21 or, alternatively, silenced for expression of TRAP-1 by small interfering RNA 

(siRNA) 21. Both approaches produced global defects in tumor cell metabolism 

(Supplementary Data 2). Consistent with a requirement of Hsp90 for oxidative 

phosphorylation (Fig. 1b), Gamitrinib-treated cells exhibited aberrant accumulation of citric 

acid cycle metabolites, succinate, fumarate, and malate (Fig. 2a). This was associated with 

altered glutaminolysis (elevation in glutamine and α-ketoglutarate) (Supplementary Fig. S2) 

and deregulated fatty acid metabolism (Fig. 2b), leading to higher levels of palmitate and 

linoleate, increased long chain fatty acid transport into mitochondria (elevation of 

palmitoylcarnitine and stearoylcarnitine), and excess lipid oxidation (accumulation of the 

ketone body 3-hydroxybutyrate (Supplementary Fig. S3). Mitochondrial Hsp90-targeted 
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cells also showed increased AMP/ATP ratio (Supplementary Fig. S3), indicative of cellular 

starvation, and consistent with the loss of ATP production, phosphorylation of the energy 

sensor, AMP-activated kinase (AMPK), and inhibition of mammalian target of Rapamycin 

complex (mTORC1) observed in response to Gamitrinib 21.

Targeting mitochondrial Hsp90s impaired the catabolism of branched chain amino acids 

(BCAA), with accumulation of valine, isoleucine and leucine (Fig. 2c), and decreased levels 

of BCAA catabolites, isobutyryl-carnitine, succinylcarnitine, 2-methylbutyryl-carnitine, and 

isovaleryl-carnitine (Fig. 2c, Supplementary Fig. S4). This was associated with defects in 

redox status (Fig. 2d), cholesterol homeostasis (Fig. 2e), and purine nucleotide metabolism 

(Fig. 2f), resulting in higher levels of cholesterol metabolites associated with lipid 

peroxidation, ROS-dependent allantoin generation (Fig. 2f, Supplementary Fig. S5), and 

increased oxidized glutathione, cysteine-glutathione disulfide, and the glutathione catabolic 

product, 5-oxoproline (Supplementary Fig. S6). Increased ROS production under these 

conditions may result from dysfunctional mitochondrial metabolism (see above), and/or 

increased nitric oxide generation from arginine, a possibility suggested by the accumulation 

of citrulline under these conditions (Fig. 2g, Supplementary Fig. S7).

Overall, Gamitrinib treatment produced more extensive changes in the tumor metabolome, 

compared to siRNA silencing of TRAP-1 (Fig. 2 and Supplementary Figs. S2–S7). This may 

reflect incomplete TRAP-1 knockdown by siRNA, or, alternatively, compensatory 

mechanisms provided by mitochondrial Hsp90, which is inhibited by Gamitrinib, but not by 

TRAP-1 knockdown. As a control, treatment of PC3 cells with 17-allylamino 17-

demethoxygeldanamycin (17-AAG), which inhibits Hsp90 in the cytosol, but not 

mitochondria 20, or transfection of a control, non-targeting siRNA, had minimal effects on 

metabolic pathways (Supplementary Figs. S2–7). In previous experiments, addition of the 

triphenylphosphonium “mitochondriotropic” moiety, alone or in the presence of 17-AAG, 

had no effect on mitochondrial function 20.

Mechanism of mitochondrial Hsp90 control of tumor metabolism

To elucidate how mitochondrial Hsp90s regulate tumor bioenergetics, we next focused on 

SDHB, the iron-sulfur subunit of ETC Complex II 32, which required Hsp90s for proper 

folding (Fig. 1a, b, Supplementary Tables S1, S2), and functional activity (Supplementary 

Fig. S2). Treatment of tumor cells with Gamitrinib caused insolubility of Complex II over a 

range of detergent concentrations (Fig. 3a and Supplementary Fig. S8a). In contrast, 

mitochondrial proteins comprising other ETC Complexes (I, IV, III and V) were minimally 

affected (Fig. 3a). Immune complexes precipitated from mitochondrial fractions of tumor 

cells with two independent antibodies to SDHB, but not control IgG, contained TRAP-1, in 

vivo (Supplementary Fig. S8b). In addition, immunoprecipitated SDHB associated with 

recombinant TRAP-1, in vitro (Supplementary Fig. S8c), demonstrating that these two 

proteins interact in tumor mitochondria. Suggestive of a chaperone-”client protein” 

recognition 33, this interaction was required to preserve SDHB stability, as Gamitrinib 

treatment (Fig. 3b), or siRNA silencing of TRAP-1 (Supplementary Fig. S8d) caused SDHB 

degradation in tumor cells (Fig. 3c).
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We next asked whether a TRAP-1-SDHB complex was important during cellular stress. In 

control experiments, exposure of tumor cells to concentrations >50 μM of the oxidative 

agent, hydrogen peroxide (H2O2), reduced SDHB levels (Fig. 3d). siRNA silencing of 

TRAP-1 exacerbated this response and induced nearly complete loss of SDHB expression at 

lower H2O2 concentrations (Fig. 3d). As a control, the expression of the flavoprotein subunit 

of Complex II, SDHA 28, was not affected (Fig. 3d). Functionally, treatment of tumor cells 

with Gamitrinib inhibited Complex II activity in a concentration-dependent manner, whereas 

17-AAG had no effect (Fig. 3e). Reciprocally, addition of recombinant TRAP-1 to SDHB 

immuno-affinity isolated from mitochondrial extracts enhanced Complex II activity in a 

concentration-dependent manner, in vitro (Fig. 3f).

Mitochondrial Hsp90 regulation of bioenergetics stress

The results above have suggested that Hsp90-directed protein folding preserves the stability 

and function of SDHB in tumor cells. To determine whether this mechanism regulates 

oxidative phosphorylation, we next quantified the respiration rates of tumor cells in real 

time. At the same concentrations that induce SDHB misfolding (Fig. 3a), and impaired 

mitochondrial metabolism (Figs. 1, 2), Gamitrinib inhibited the oxygen consumption rate 

(OCR) in prostate PC3 cancer (Fig. 3g, h, Supplementary Fig. S9a), or glioblastoma LN229 

(Supplementary Fig. S9b–d) cells, in a concentration-dependent manner. 17-AAG had no 

effect on OCR (Fig. 3g, h, Supplementary Fig. 9). siRNA knockdown of TRAP-1 in PC3 

(Fig. 3i, j, Supplementary Fig. S10a), or LN229 (Supplementary Fig. S10b–d) cells, partially 

attenuated the inhibition of OCR mediated by Gamitrinib, compared to control transfectants. 

In contrast, transfection of tumor cells with non-targeting siRNA had no effect on OCR, 

with or without Gamitrinib (Fig. 3i, j, Supplementary Fig. S10a–d). The partial reduction in 

the respiratory capacity and SDHB inhibition produced by Gamitrinib when added after 

siRNA silencing of TRAP-1, as compared to the near complete inhibition observed when 

Gamitrinib is added without prior siRNA to TRAP-1, may reflect a compensatory protective 

response by the mitochondria as a result of the extended partial TRAP-1 inhibition produced 

by siRNA knockdown of TRAP-1, potentially involving organelle Hsp90.

Most tumors undergo metabolic reprogramming, and utilize aerobic glycolysis as their main 

energy source 3. Therefore, we asked whether oxidative phosphorylation enabled by Hsp90-

directed protein folding was important for tumor maintenance. Tumor cells transfected with 

control siRNA and maintained in abundant nutrients (10 mM glucose) exhibited normal 

cellular respiration (Fig. 4a, b, Supplementary Fig. S10e). This response was increased at 

lower glucose concentrations (1 mM), suggestive of a compensatory mechanism that 

elevates ATP output by oxidative phosphorylation during nutrient deprivation (Fig. 4a, b, 

Supplementary Fig. S10e). Under these experimental conditions, siRNA knockdown of 

TRAP-1 abolished the compensatory increase in OCR at limiting glucose concentrations (1 

mM), whereas cellular respiration in 10 mM glucose was minimally affected (Fig. 4a, b, 

Supplementary Fig. S10e).

In reciprocal experiments, we transfected a control plasmid or TRAP-1 cDNA in normal 

NIH3T3 fibroblasts (Fig. 4c), which have low endogenous levels of mitochondrial Hsp90 

and TRAP-1 18. NIH3T3 fibroblasts transfected with control cDNA exhibited reduced ATP 
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production (Fig. 4c), and phosphorylation of AMPK (Fig. 4d) at limiting glucose 

concentrations, consistent with cellular starvation. In contrast, transfection of TRAP-1 

restored ATP production (Fig. 4c), and reduced AMPK phosphorylation (Fig. 4d) at low 

glucose concentrations.

Role of mitochondrial Hsp90s in SDH-mutant tumors

These experiments suggest that Hsp90 and TRAP-1 control multiple mitochondrial 

pathways of bioenergetics, and their role in oxidative phosphorylation may support energy 

production under conditions of nutrient deprivation. To test the implications of this model 

for tumor cell survival, we next targeted ETC Complex II function using pharmacologic 

inhibitors. Treatment of tumor cells with the Complex II inhibitor, TTFA, but not 3-NPA, 

increased the expression of hypoxia-inducible factor-1α (HIF-1α) (Fig. 5a), an oncogenic 

transcription factor implicated in adaptive responses to cellular stress 34. Inhibition of 

mitochondrial Hsp90s with Gamitrinib (Fig. 5b), or siRNA silencing of TRAP-1 (Fig. 5c), 

was insufficient, alone, to modulate HIF-1α levels, whereas both treatments strongly 

enhanced TTFA induction of HIF-1α in tumor cells (Fig. 5b, c). In parallel experiments, 

tumor cells exposed to hypoxia exhibited increased recruitment of Hsp90 to mitochondria, 

compared to cytosol (Fig. 5d, e), and this response was reversed by HIF-1α silencing by 

siRNA (Fig. 5f, g). The mitochondrial pool of HK-II was also increased under hypoxic 

conditions (Fig. 5d, e), and this response was also abolished by siRNA knockdown of 

HIF-1α (Fig. 5f, g). In contrast, normoxic conditions (Fig. 5d, e), or transfection of tumor 

cells with non-targeting siRNA (Fig. 5f, g) had no effect.

Mutations in Complex II 35, including SDHB 36, have been linked to hereditary or sporadic 

pheochromocytoma (PCC) 37, and paraganglioma (PGL) 38, potentially through a 

mechanism of HIF-1α-dependent tumorigenesis 39. Consistent with HIF-1α-dependent 

accumulation of Hsp90 to mitochondria after Complex II inhibition (Fig. 5e, g), TRAP-1 

was strongly expressed in PCC/PGL samples carrying SDHB and SDHD mutations, 

compared to tumors with mutations in RET, NF1, VHL, or of unknown genotype (Fig. 5h, i). 

Functionally, PCC/PGL tumors with Complex II mutations and high levels of TRAP-1 (Fig. 

5j) were more sensitive to Gamitrinib-mediated killing, in vitro (Fig. 5j), suggesting a 

compensatory pro-survival role of mitochondrial Hsp90s in transformed cells with defective 

oxidative phosphorylation 39.

DISCUSSION

In this study, we have identified mitochondrial Hsp90s 18 as global regulators of tumor cell 

metabolism, including oxidative phosphorylation and redox networks. This pathway hinges 

on chaperone-directed protein folding in mitochondria 15, and affects a discrete Hsp90/

TRAP-1 18 proteome intercalated in multiple, fundamental pathways of cellular 

homeostasis. This mechanism may be ideally suited to buffer the risk of proteotoxic stress in 

transformed cells with high biosynthetic needs 19, preserve organelle integrity against 

CypD-dependent apoptosis 20, and maintain multiple sources of energy production, 

including HK-II-dependent glycolysis 21, and oxidative phosphorylation (this study), 

especially under stress conditions of hypoxia and nutrient deprivation.
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The considerable interest in aerobic glycolysis 3 as a central feature of tumor metabolic 

reprogramming 1, together with the signaling role of oncogenes in these responses 40, have 

brought into question the function of mitochondrial bioenergetics, and in particular oxidative 

phosphorylation, in tumor maintenance 28. However, recent studies have suggested that 

mitochondrial oxidative phosphorylation continues to remain critical for tumor cells 6, 

favoring resistance to therapy 7,8, and promoting cell survival 9. The data presented here 

provide a mechanistic framework in support of these observations, and identify Hsp90/

TRAP-1-directed protein folding in mitochondria 18 as a key requirement of oxidative 

phosphorylation in tumors. This involved the formation of physical complex(es) between 

Hsp90/TRAP-1 and the iron-sulfur subunit of mitochondrial ETC Complex II, SDHB 32, 

preserving its folding, stability and enzymatic function under oxidative stress. Functionally, 

Hsp90/TRAP-1 regulation of SDHB maintained energy production under conditions of low 

nutrients and hypoxia, which are hallmarks of tumor growth, in vivo 41, and dampened 

biochemical signals of cellular starvation that are typically associated with tumor 

suppression 42.

SDHB 32 has attracted attention as a gene mutated in certain human neuroendocrine 

tumors 36. The molecular requirements of how these mutations contribute to malignancy are 

still being worked out 36, but one consequence of pharmacologic or genetic inactivation of 

SDHB observed here was an increased recruitment of Hsp90 to mitochondria 18. This 

pathway required HIF-1α, which is deregulated in SDHB-mutant tumors, and may 

potentially contribute to disease maintenance 39. The increased accumulation of 

mitochondrial Hsp90s under these conditions may help compensate for the impaired 

oxidative phosphorylation resulting from defective SDHB function 36, enhancing organelle 

integrity against CypD-mediated permeability transition 18 and energy production via HK-

II-directed glycolysis 21. Consistent with this model, SDHB-mutant tumor cells were more 

sensitive to Gamitrinib-mediated killing than other neuroendocrine malignancies, suggesting 

that Hsp90-directed protein folding in mitochondria provides an adaptive and potentially 

“addictive” survival factor for these cells.

There is now intense interest in pursuing aberrant tumor cell metabolism for cancer 

therapeutics 10. However, inhibitors that can safely target these pathways in tumors, as 

opposed to normal tissues, especially with respect to oxidative phosphorylation 7,8, have not 

been clearly identified 43. As a mitochondrial-directed Hsp90 inhibitor 20, Gamitrinib may 

be ideally suited to function as a general antagonist of tumor cell metabolism. Supported by 

the differential targeting of tumor, as opposed to normal mitochondria 18, and a favorable 

safety profile in preclinical models 20, Gamitrinib inhibition of mitochondrial Hsp90s may 

simultaneously disable metabolic and survival adaptive networks in genetically 

heterogeneous tumors.

METHODS

Antibodies and reagents

The following antibodies to succinate dehydrogenase complex subunit B (SDHB, 1:500, 

Abcam), succinate dehydrogenase complex subunit A (SDHA, 1:3000, Abcam), hexokinase-

II (HK-II, 1:1000, Cell Signaling), Cox-IV (1:1000, Cell Signaling), Hypoxia-Inducible 
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Factor-1α (HIF1α, 1:500, Cell Signaling), Hsp90 (1:1000, BD Biosciences), Thr172-

phosphorylated AMPKα (1:1000, Cell Signaling), AMPKα (1:1000, Cell Signaling), 

TRAP-1 (1:1000, BD Biosciences), and β-actin (1:5000, Sigma-Aldrich) were used. A total 

oxidative phosphorylation antibody cocktail (1:500, Mitoscience) directed against the 20-kD 

subunit of Complex I (20 kD), cytochrome C oxidase subunit II of Complex IV (22 kD), 

SDHB subunit of Complex II (30 kD), core 2 of complex III (~50 kD), and F1α (ATP 

synthase) of Complex V (~60 kD) was used. The complete chemical synthesis, HPLC 

profile, and mass spectrometry of mitochondrial-targeted small molecule Hsp90 antagonist, 

Gamitrinib (GA mitochondrial matrix inhibitors) has been reported 20. The Gamitrinib 

variant containing triphenylphosphonium as a mitochondrial-targeting moiety 20 was used in 

this study. Non-mitochondrially directed Hsp90 inhibitor, 17-allylamino-

demethoxygeldanamycin (17-AAG) was obtained from LC-Laboratories. Oligomycin, 

carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), antimycin A, 3-

nitropropionic acid (3-NPA) and thenoyltrifluoroacetone (TTFA) were obtained from 

Sigma-Aldrich.

Transfections

For gene knockdown experiments, tumor cells were transfected using control, non-targeting 

small interfering RNA (siRNA) pool (Dharmacon, cat. no. D-001810) or specific ON-Target 

SMARTpool siRNAs to TRAP-1 (Dharmacon, cat. no. L-010104), or HIF1α (Dharmacon, 

cat. no. L-004018). The various siRNAs were transfected at 10–30 nM using Oligofectamine 

(Invitrogen). Transfection of plasmid DNA was carried out with Lipofectamine (Invitrogen), 

as described 20.

Subcellular fractionation

Mitochondrial fractions were isolated from Gamitrinib-treated LN229 cells (0–20 μM for 5 

h) using an ApoAlert™ cell fractionation kit (CLONTECH), as described 20. Briefly, LN229 

cells or PC3 cells were mechanically disrupted by 70 strokes with a Dounce homogenizer in 

isolation buffer containing 1 mM DTT plus protease inhibitor cocktail. Cell debris was 

removed by centrifugation at 700 g for 10 min. The supernatant was further centrifuged at 

10,000 g for 25 min, and supernatants or mitochondrial pellets were processed for further 

analysis.

Mitochondrial protein folding

Mitochondrial fractions were isolated from vehicle- or Gamitrinib-treated LN229 cells (5 

μM for 12 h), and suspended in equal volume of mitochondrial fractionation buffer 

containing increasing concentrations of CHAPS (0, 0.05, 0.1, 0.2, 0.5, 1 or 2%). Samples 

were incubated for 20 min on ice and detergent-insoluble protein aggregates were recovered 

by centrifugation (20,000 g) for 20 min. Pelleted proteins were separated by SDS-gel 

electrophoresis and visualized by silver staining (Sigma Aldrich).

Proteomics studies

To identify mitochondrial proteins that require organelle Hsp90s for proper folding and/or 

activity (mitochondrial Hsp90 proteome), individual silver-stained bands isolated from 
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mitochondrial fractions of vehicle or Gamitrinib-treated LN229 cells were analyzed by 1D 

MS (see Supplementary Methods). As an independent experimental approach, global 

proteomics analysis of vehicle or Gamitrinib-treated LN229 cells was carried out by Stable 

Isotope Labeling by Amino acids in Culture (SILAC) technology (see Supplementary 

Methods). Changes in the expression of 301 metabolites were determined by Ultrahigh 

performance liquid chromatography/Mass Spectroscopy (UPLC/MS/MS) and Gas 

chromatography/Mass Spectroscopy (GC/MS) in PC3 cells treated with vehicle or 

Gamitrinib (2.5, 5 μM), non-mitochondrial targeted 17-AAG (5 μM), or alternatively, 

transfected with control non-targeting or TRAP-1-directed siRNA (see Supplementary 

Methods).

Purification of TRAP-1 Proteins

NIH3T3 cells were transfected with human TRAP1-Myc plasmid cDNA. After 48 h, cells 

were washed with PBS and lysed in PBS containing 1% TX-100 plus phosphatase inhibitor 

cocktail (Roche). Lysates were centrifuged at 14,000 × g for 10 min at 4°C, and c-Myc-

tagged TRAP-1 proteins were isolated by immunoprecipitation with an antibody to c-Myc 

coupled to agarose beads (Sigma-Aldrich). Samples were then washed five times with lysis 

buffer, and TRAP-1-myc was eluted from the immune complex with 100 μg/ml c-Myc 

peptide (Sigma-Aldrich) in PBS. To eliminate free c-Myc peptide and further enrich eluted 

TRAP-1-containing material, samples were purified with centrifugal filter (30K, Millipore).

SDH activity assay

Tumor cells were analyzed for SDH complex activity as reduction of the dye 2,6-

diclorophenolindophenol (DCPIP), which recycles the substrate ubiquinone using Complex 

II enzyme activity. Briefly, mitochondria isolated from PC3 or LN229 cells were lysed in 

enzyme assay buffer containing 1% n-dodecyl-β-D-maltopyranoside plus protease inhibitors 

(Roche) for 1 h at 4°C under constant agitation. After centrifugation at 15,000 g for 20 min 

at 4°C, supernatants were loaded on anti-Complex II antibody-coated 96-well plates, and 

incubated with increasing concentrations of recombinant TRAP-1 for 2 h. Enzyme activity 

was determined from SDH-dependent reduction of DCPIP, and quantified as changes in 

absorbance at 600 nm for 3 h at 2 min intervals using a plate reader (Beckman Coulter).

Cellular respiration

Oxygen consumption rates (OCR) were assayed using the Extracellular Flux System 24 

Instrument (Seahorse Bioscience, Billerica, MD). PC3 or LN229 cells were grown in 

standard media and after trypsinization and re-suspension in growth media, 25,000 cells 

were plated in each well of a Seahorse XF24 cell culture plate (100 μl volume). After 4-h 

incubation to allow the cells to adhere to the plate, an additional 150 μl of media was added 

to each well, and the cells were grown for 24 h at 37°C with 5% CO2. The media was then 

exchanged with unbuffered DMEM XF assay media (Seahorse Bioscience) supplemented 

with 2 mM glutaMAX, 1 mM sodium pyruvate and 5 mM glucose (pH 7.4 at 37°C), and 

equilibrated for 30 min at 37°C and ~0.04 % CO2 before the experiment. Cellular oxygen 

consumption was monitored in basal condition (before any addition) and after addition of 

oligomycin (1.25 μM), carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) (0.4 
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μM), and antimycin (1.8 μM), all dissolved in DMSO. The three drugs were injected into the 

XF24 sequentially, and the oxygen consumption rates measured using the extra-cellular flux 

analyzer with three cycles of mixing (150 seconds), waiting (120 seconds), and measuring 

(210 seconds). This cycle was repeated following each injection 44. To test the effect of 

mitochondrial Hsp90s on cellular respiration, PC3 or LN229 cells were treated with non-

cytotoxic concentrations of Gamitrinib (0–10 μM) or 17-AAG (2.5–5 μM) and continuously 

analyzed for OCR changes. Alternatively, cells were transfected with control or TRAP-1-

directed siRNA and analyzed after 24–36 h.

Patient samples

All experiments involving patient-derived material were approved by the Tufts Medical 

Center Institutional Review Board following informed consent. A series of genetically 

characterized PCC/PGL with documented mutations of major susceptibility genes (n=10, 

SDHB; 6 SDHD; 4 VHL; 3 RET; 2 NF1), apparently sporadic PCC/PGL (n=22) and normal 

human adrenal medulla was examined in this study. All of the tumors with VHL, RET or 

NF1 mutations were intra-adrenal, while 10/13 with SDHB, 3/6 with SDHD, and 10/25 with 

no known mutations were extra-adrenal. Two of the extra-adrenal tumors with SDHD 

mutations were in the head or neck and the remainder retroperitoneal. For four of the tumors 

with SDHB mutations, tissue was available only from metastatic sites. One SDHB-mutated 

tumor was an adrenal bed recurrence of a primary malignancy that had given rise to 

metastases. All of the other specimens were primary tumors.

Statistical analysis

Data were analyzed using the two-sided unpaired t tests using a GraphPad software package 

(Prism 4.0) for Windows. Data are expressed as mean±SD or mean±SEM of multiple 

independent experiments. A p value of <0.05 was considered as statistically significant. For 

pair-wise comparisons in metabolite screening studies, the Welch’s t-tests, Wilcoxon’s rank 

sum tests or ANOVA were performed. For classification studies, random forest analyses 

were performed. Statistical analyses are performed with the program “R” http://cran.r-

project.org/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mitochondrial Hsp90 proteome
(a) LN229 cells were treated with vehicle (Control) or non-cytotoxic concentrations of 

mitochondrial-targeted Hsp90 inhibitor, Gamitrinib, and detergent-insoluble mitochondrial 

proteins were identified by 1-D Mass Spectrometry (spectral counts), or, alternatively, by 

SILAC technology. The heat map quantifies changes in protein solubility (>3-fold cutoff) 

between the treatments assessed using the two independent proteomics approaches. (b) 

Schematic representation of the mitochondrial Hsp90 proteome. Proteins are annotated with 

functions based on literature search and information from Ingenuity software, which was 

also used to determine known direct protein-protein interactions. All proteins are color 

coded to reflect the magnitude of difference in detection between treated and untreated 

(untr) samples. Proteins marked in ‘red’ exhibited a >3-fold change difference after 

Gamitrinib treatment compared to control, and were independently confirmed by both 1-D 

Mass Spectrometry and SILAC technology.
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Figure 2. Mitochondrial Hsp90 control of tumor cell metabolism
PC3 cells were transfected with control non-targeting siRNA or TRAP-1-directed siRNA, 

or, alternatively, treated with non-cytotoxic concentrations of 17-AAG (5 μM) or Gamitrinib 

(2.5–5 μM), and analyzed for changes in expression of 301 individual metabolites by Mass 

Spectrometry. The complete summary of metabolic changes induced by targeting 

mitochondrial Hsp90s is presented in Supplementary Data 2. The experiment was carried 

out once with 5 independent replicates per condition tested. The metabolic pathways 

affected under these conditions are depicted as follows: (a) Citric acid cycle; (b) Fatty acid 

oxidation; (c) Branched chain amino acid catabolism; (d) Redox status; (e) Cholesterol 

metabolism; (f) Purine nucleotide metabolism; and (g) Arginine metabolism. Significant 

(p<0.05) changes in metabolite levels within each group (Ctrl vs. TRAP-1 siRNA or vehicle 

vs. Gamitrinib) are indicated in red (increase) or green (decrease) using Welch’s two-

sample t-test (n=5).
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Figure 3. Mitochondrial Hsp90 regulation of cellular respiration
(a) PC3 cells were treated with vehicle or Gamitrinib (Gam), solubilized in the indicated 

increasing concentrations of detergent (NP-40), and insoluble proteins were analyzed by 

Western blotting with an antibody cocktail to the OXPHOS complex. (b, c) PC3 cells were 

treated with Gamitrinib (b) or transfected with control non-targeting siRNA (Ctrl) or 

TRAP-1-directed siRNA (c), and analyzed by Western blotting. None, untreated. (d) PC3 

cells were transfected as in (c), treated with the indicated increasing concentrations of H2O2 

(μM), and analyzed by Western blotting. (e) PC3 cells were treated with the indicated 

concentrations of Gamitrinib (Gam, μM) or 17-AAG (10 μM) and analyzed for SDHB 

activity at the indicated time intervals. NT, not treated. (f) Endogenous Complex II (SDH) 

was immunoprecipitated from PC3 cells, and analyzed for SDHB activity in the presence of 

increasing concentrations of recombinant TRAP-1 (μM). Data for panels (e, f) are from 

representative experiments out of at least two independent determinations. (g) PC3 cells 

were treated with 17-AAG (5 μM) or the indicated increasing concentrations of Gamitrinib 

(Gam, μM) and the oxygen consumption rate (OCR) was measured in real time under basal 

condition and in response to the indicated inhibitors. Arrows indicate the time of drug 

addition: D, Gamitrinib (Gam) or 17-AAG; O, oligomicyin (1.25 μM); F, FCCP (0.4 μM); 

A, antimycin (1.8 μM). (h) The OCR was normalized by the number of cells, and the extra-

mitochondrial respiration after addition of antimycin was subtracted as background. * 

p<0.05; ** p<0.01 vs control sample at each state (two-sided unpaired t test). (i) PC3 cells 

were transfected with control (Ctrl) siRNA or TRAP-1-directed siRNA, treated with 
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Gamitrinib (Gam, μM) or 17-AAG and analyzed for OCR as in (g). (j). Quantification of 

OCR ratio between: b/o, basal condition (before any addition) and after oligomycin addition; 

f/o, after FCCP and oligomycin addition; f/b, after FCCP addition and basal condition in 

PC3 cells transfected with control siRNA (Ctrl) or TRAP-1-directed siRNA. * p<0.05; ** 

p<0.01 (two-sided unpaired t test). For all OCR experiments, data are representative of two 

independent experiments carried out in triplicate, mean±sd
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Figure 4. Mitochondrial Hsp90 regulation of stress bioenergetics
(a) PC3 cells were transfected with control, non-targeting siRNA (Ctrl) or TRAP-1-directed 

siRNA and maintained in 1 or 10 mM glucose (Glc) for 3 h before analysis of OCR. Arrows 

indicate the time of drug addition: O, oligomicyin (1.25 μM); F, FCCP (0.4 μM); A, 

antimycin (1.8 μM). (b) OCR in a was quantified in siRNA-transfected cells in different 

glucose (Glc) concentrations. Data for panels (a, b) data are representative of two 

independent experiments carried out in triplicate, mean±sd. * p<0.05; ** p<0.01 vs control 

sample at each state (two-sided unpaired t test). (c) Normal NIH3T3 fibroblasts were 

transfected with control vector or TRAP-1 cDNA and analyzed by Western blotting (left) or 

ATP production in the presence (+) or absence (−) of glucose (Glc, 25 mM) (right). *, 

p=0.03 (two-sided unpaired t test). (d) NIH3T3 fibroblasts were transfected as in (c), 

incubated with the indicated concentrations of glucose (Glc, mM), and analyzed by Western 

blotting. p, phosphorylated.
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Figure 5. TRAP-1-SDHB complex regulates HIF-1α-directed tumorigenesis
(a) The indicated tumor cell types (LN229 or PC3 cells) were treated with the various 

concentrations (mM) of the SDHB inhibitors, TTFA or 3-NPA and analyzed by Western 

blotting. (b) PC3 cells were treated with increasing concentrations of Gamitrinib (Gam, 0, 

2.5, 5 μM) in the absence (−) or presence (+) of TTFA (0.3 mM) and analyzed by Western 

blotting. (c) LN229 cells were transfected with control siRNA (Ctrl) or TRAP-1-directed 

siRNA and analyzed by Western blotting in the presence of the indicated increasing 

concentrations of TTFA. (d, e) PC3 cells were maintained under conditions of hypoxia (H, 

0.5% O2, 5% CO2, 94% N2 for 24 h) or normoxia (N), and analyzed by Western blotting in 

total cell extracts (TCE) (d), or fractionated cytosolic (Cyto) or mitochondrial (Mito) 

extracts (e). VDAC or β-tubulin was used as a mitochondrial or cytosolic marker, 

respectively. (f) PC3 cells were transfected with control siRNA (Ctrl) or HIF-1α-directed 

siRNA, maintained in normoxia (N) or hypoxia (H) conditions, and analyzed by Western 

blotting. (g) PC3 cells were transfected and treated as in (f), and isolated cytosolic (Cyto) or 

mitochondrial (Mito) fractions were analyzed by Western blotting. COX-IV was used as a 

mitochondrial marker. (h) Patient-derived tissue samples of PCC/PGL were analyzed by 

Western blotting. The mutational status of each tumor is indicated. Ex-Adr, extra-adrenal 

localization. (i) A tissue sample of extra-adrenal PGL with SDHD mutation, showing a 
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typical nest-like (“Zellballen”) growth pattern was stained with hematoxylin/eosin (H&E, 

top) or TRAP-1 (bottom), by immunohistochemistry. Scale bar, 50 μm. (j) Quantification of 

immunohistochemical expression of TRAP-1 in PCC/PGL cases with the indicated 

mutational status (top). Cells from the various tumor samples were maintained in culture and 

analyzed for killing by Gamitrinib (10 μM for two weeks) (bottom) measured by counts of 

tyrosine hydroxylase-positive cells counted in an area defined by a randomly placed 22×22 

mm square coverslips in 35 mm round culture dishes. Each point represents a single tumor. 

Paired samples of the same tumor were available in 12 instances and are indicated by 

matching numbers. Data are from a representative experiment.
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