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ABSTRACT: We propose a Bayesian statistical model for
analyzing coherent anti-Stokes Raman scattering (CARS) spectra.
Our quantitative analysis includes statistical estimation of
constituent line-shape parameters, the underlying Raman signal,
the error-corrected CARS spectrum, and the measured CARS
spectrum. As such, this work enables extensive uncertainty
quantification in the context of CARS spectroscopy. Furthermore,
we present an unsupervised method for improving spectral
resolution of Raman-like spectra requiring little to no a priori
information. Finally, the recently proposed wavelet prism method
for correcting the experimental artifacts in CARS is enhanced by using interpolation techniques for wavelets. The method is
validated using CARS spectra of adenosine mono-, di-, and triphosphate in water, as well as equimolar aqueous solutions of D-
fructose, D-glucose, and their disaccharide combination sucrose.

■ INTRODUCTION

Coherent anti-Stokes Raman scattering (CARS) spectroscopy
offers a unique microscopic tool in biophysics, biology, and
materials research.1−14 In addition to being ideally suited for
qualitatively label-free microscopy,2,3,6 the multiplex approach
of CARS can also provide complete (position-dependent)
vibrational spectra. In principle, this would allow a quantitative,
local analysis of chemical composition.1,11,13,15−18 However, a
CARS measurement does not directly provide any quantitative
information. Sophisticated analytical methods are therefore
required in order to extract this information from the
spectroscopic measurements.
An observed CARS spectrum arises from a coherent

addition of both resonant contributions from different
vibrational modes and a constant, nonresonant (NR) back-
ground contribution. This results in a complex line shape,
where the positions, amplitudes, and line widths of each
vibrational mode are generally hidden. This is particularly true
for condensed-phase samples, where the vibrational spectra are
highly congested with strongly overlapping vibrational
modes.19 At a minimum, quantitative analysis requires
extracting the Raman line shapes from CARS spectra. This
can be done by using a suitable phase retrieval method19,20 on
the normalized CARS spectrum. However, the technology is
still limited in terms of comparable and quantitative analysis
methods, which remain active and ongoing topics of
research.18,19,21,22 Moreover, the analysis is complicated by

experimental errors encountered in obtaining a normalized
CARS line-shape spectrum, which leads to an erroneous,
nonadditive, and nonconstant background component to the
NR background due to the reference CARS intensity not
arising from a purely nonresonant third-order susceptibility or
due to broadband laser behavior inside the sample.21,22 If it
remains uncorrected, this artifact in the NR background can
prevent any quantitative information from being obtained from
a CARS measurement. Recently, a procedure based on the
wavelet prism decomposition algorithm was proposed to
address this issue.22

Sequential Monte Carlo (SMC) methods have been
successfully applied in a wide variety of contexts, including
motion tracking,23,24 satellite image analysis,25 medical
applications,26 and geophysics.27 In spectroscopy, Bayesian
methods such as SMC have recently been gaining significant
attention from the research community. Bayesian statistical
inference has been applied to electrochemical impedance,28

double electron−electron resonance,29 time-resolved analysis
of gamma-ray bursts,30 and the estimation of elastic and
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crystallographic features by resonance ultrasound spectrosco-
py31 to name a few. In particular, a hierarchical Bayesian
approach combining modeling of individual line shapes with a
continuous background model, with estimation done via SMC
methods, has been introduced for Raman spectroscopy.32

The contributions of this study are 3-fold. We introduce a
method for correcting experimental artifacts in raw CARS
measurements, extending further the existing method based on
wavelet prism decomposition.22 Second, we propose a line-
narrowing method with improved properties compared to the
line shape optimized maximum entropy linear prediction
(LOMEP) method.33,34 Our method utilizes linear prediction,
as in LOMEP, but in contrast circumvents the need of
assuming a single a priori common line shape for all spectral
lines. This constitutes a major improvement over the LOMEP
method. Third and foremost, Bayesian inference is introduced
to CARS spectrum analysis, extending previously available
analysis methods. We formulate a Bayesian inference model
that is capable of estimating predictive distributions of the
underlying Raman signal, the error-corrected CARS spectrum,
and the measurement CARS spectrum. This is enabled by
parametric modeling of Voigt line shapes, along with a
continuous, wavelet-based model for experimental artifacts.
In what follows, we introduce the Bayesian statistical model

for CARS. The Raman signal of the CARS spectrum is
modeled using a linear combination of Voigt line shapes. Using
the Hilbert transform, we construct the modulus of the
resonant part of the CARS spectrum. A nonresonant part,
estimated from the data,22 is added to obtain an error-free
CARS spectrum, which is finally modulated with a slowly
varying error function. Next, we describe the numerical
algorithms used for statistical inference and line narrowing,
along with our Bayesian prior distributions. We then present
experimental details along with obtained results for the means
of the constituent line shapes and the predictive intervals for
the resonant Raman signal, modulating error function, error-
corrected CARS spectrum, and the measurement CARS
spectrum. Lastly, the key aspects of the study are briefly
remarked upon, thereby concluding the paper.

■ METHODS

Statistical Model. We model CARS spectral measure-
ments with an additive error model given as

θν ν ν≔ = + ϵy y f p( ) ( ; , ) ( )k k k k (1)

where yk denotes a measurement that has been discretized with
spectral sampling resolution h > 0 at a wavenumber location νk
= kh with ∈ +k , f(νk; p, θ) is the CARS spectrum model with
parameter p controlling the baseline and parameters θ for the
Voigt l ine shape, and with measurement error

ν σϵ ∼ ϵ( ) (0, )k
2 with known variance. For the spectrum,

we use a parameter-wise separable model

θ θν ε ν ν=f p p S( ; , ) ( ; ) ( ; )m (2)

where p is the interpolated discrete wavelet transform (DWT)
detail level, εm(ν; p) is the modulating error function, and S(ν;
θ) is the error-corrected CARS signal, similar to the
representation used in ref 22. The signal S can further be
represented as
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where the exponential part corresponds to the non-Raman part
with AJ practically constant (see ref 22 for details), is the
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where * denotes convolution. N stands for the number of line
shapes, with each line shape having θn ≔ (an, νn, σn, γn)

T

parameters standing for the amplitude, location, scale of the
Gaussian shape, and scale of the Lorentzian shape, respectively.
Thus, we have 4N parameters in total for our model of S(ν; θ).
Instead of the wavelet prism method,22 we model the

modulating error function as

∑ε ν ν β ν= + −
=⌈ + ⌉

⌈ ⌉p D Dlog( ( ; )) ( ) (1 ) ( )
j p

J

j pm
1 (5)

where p ∈ [1, J], and β = p − ⌊p⌋, i.e., as an interpolation
between the discrete wavelet reconstruction levels Dj to have a
continuous model for the background in contrast to the
wavelet prism method where only the discrete wavelet
reconstruction levels are used. With the above, we can have
an unnormalized posterior formulated as

θ θ θπ π| ∝ |p p py y( , ) ( , ) ( , )0 (6)

where ≔ ··· ∈ y yy ( , , )K
T K

1 is the vector of observations

given via eq 1, θ ∈ + N4 is the parameter vector (θ1, ..., θN)
T for

the N Voigt peaks, θ| py( , ) represents the likelihood
distribution of the forward model, and π0(p, θ) denotes prior
distributions for some or all of the model parameters p and θ.
As such, the total number of parameters in the model is 4N +
1. The solution of (6) is unavailable in closed form, but
following ref 32, we can use Monte Carlo methods to obtain
samples from this distribution, as described in the following
section.

Sequential Monte Carlo. Sequential Monte Carlo (SMC)
methods, also known as particle filtering and smoothing, are
widely used in statistical signal processing.35 These algorithms
provide a general procedure for sampling from Bayesian
posterior distributions.36,37 SMC methods utilize a collection
of weighted particles, initialized from a prior distribution,
which are ultimately transformed to represent a posterior
distribution under investigation. The methodology used in this
study is similar to the one used in ref 22, where they use
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sequential likelihood tempering37 to fit a model of surface-
enhanced Raman spectra to measurements.
Assuming additive Gaussian measurement errors ϵ(νk) as in

eq 1, the likelihood of the model f(νk; p, θ) fitting
measurement data y can be formulated as

∏θ θν σ| ∼
=

ϵp y f py( , ) ( ; ( ; , ), )
k

K

k k
1

2

(7)

and the posterior distribution for step t of the sequential
likelihood tempering is given by

θ θ θπ π| ∝ | κp p py y( , ) ( , ) ( , )t( )
0

t( )

(8)

where the superscript (t) denotes the iteration or “time” step
of the algorithm and κ(t), κ(t−1) < κ(t) < κ(t+1) < ··· ≤ 1 with κ(0)

= 0, being a parameter controlling the degree of tempering of
the likelihood, with the initial state being equal to the prior
distribution while increasingly tempering the total likelihood
toward the complete Bayes’ theorem. The tempering
parameter κ(t) can be defined simply as an strictly increasing
sequence so that κ(t) ∈ [0, 1] or as done in ref 32, the
parameter can be determined adaptively according to a given
learning rate η such that the relative reduction in the ESS
between iterations is approximately η.
Using Q particles, with Q being the number of parameter

values used to approximate the posterior distribution,
individual weights of each particle at initial step t = 0 are set
as equally important, so wq

(0) = 1/Q. The weights are then
updated at each step t according to
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and then normalized so that ∑q=1
Q wq

(t) = 1. However, updating
the particle weights gradually impoverishes the sample
distribution. This degradation is measured by the effective
sample size (ESS)
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To counteract this, the particles are resampled according to a
chosen resampling algorithm when the ESS has fallen below a
set threshold Qmin. The particle weights are then reset as wq

(t) =
1/Q. Some duplication of the particles is inevitably introduced
due to the resampling procedure. To remove these duplicates,
each particle is additionally updated using Markov chain
Monte Carlo (MCMC) targeting the invariant distribution
given by the tempered posterior defined in eq 8 at the current
iteration or “time” step t. The pseudocode of our SMC
algorithm is presented in Algorithm 1.
Line Narrowing. We employ a line-narrowing method to

obtain an initial estimation of peak locations νn, amplitudes an,
and number of line shapes N. This is a preprocessing step for
the statistical estimation method described in the previous
section. A spectrum with Lorentzian line shapes can be
approximately modeled as
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where ṼN(νk, θ̃) denotes a spectrum measured at location νk
with parameters θ̃ ≔ (an, νn, γn)

T, γ is a single, constant
parameter for the line width, and δ(ν − νn) is the Dirac delta
function.
Our starting point is the LOMEP method,33,34 where the

constant γ approximation is used. With suitably chosen γ, we
have
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where denotes the Fourier transform, tk the Fourier domain
variable, and xLP(tk; γm, NFIR) is the linearly predicted time
signal. In LOMEP, the linear prediction is done using finite
impulse response filtering with filter length NFIR − 1.33,34 The
major limitation of LOMEP is the heuristic choice of γ.
Additionally, the q-curve optimization method fails when the
number of line shapes N increases. Despite these drawbacks,
the potential of the linear prediction scheme is nevertheless
attractive for its ability to substantially sharpen the line shapes
when it is successful.
As an alternative to the approximation model in eq 11, we

propose a linear combination of M similarly constructed
convolutions
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using a set of width parameters γm in contrast to fixed γ. Then,
the approximation of the Dirac delta functions is

∑

ν γ γ

δ ν ν

= { }

≈ −

−

=

D N x t N

a

( , , ) ( ; , )

( )

k m k m

n

N

n k n

A FIR
1

LP FIR

1 (14)

The squared sum of residuals for a single convolution, denoted
here by d(γm, NFIR), can be given as
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θγ ν ν γ ν γ= ̃ ̃ − *d N V L D N( , ) ( , ) ( ; 0, ) ( , , )m N k k m k mFIR A FIR 2
2

(15)

We additionally define a constrained squared sum of residuals
as
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where 1DA > 0 = 1, if DA > 0 and 0 otherwise, and cn is a
normalization constant so that the area under the spectrum is
conserved:
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With dC(γm, NFIR), we truncate any negative parts of DA(νk, γm,
NFIR) and distort the truncated spectrum according to the
normalization constant cn depending on how much signal
energy is present on the negative parts. By Parseval’s theorem,
and by using an orthonormal wavelet basis, the energy of a
signal g(ν) can be represented as

∫ ∑ ∑ ∑ν κ= +
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where a and b are the scaling function and wavelet coefficients
obtained using DWT. Given a signal with sharp features, the
energy of the signal should be concentrated on the wavelet
coefficients bj and, a measure of this concentration of wavelet
coefficient energy (we) can be defined as
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With the above formulations, we propose Algorithm 2: Define
a set of width parameters γm, for example, inferred from
computational chemistry. Similarly, define an upper bound for
the impulse response parameter NFIR. Then, compute DA(νk,
γm, NFIR) using linear prediction for all parameter combina-
tions of γm and NFIR and residuals d and dC along with the
wavelet energy concentrations Cwe.
Using the filtering criterion fc = d + dC, narrow down the set

of possible solutions by sorting them according to fc and Cwe.
Take a percentage pwe of the wavelet energy sorted solutions,
including the largest energy concentrations. Similarly, take a
percentage pfc of the filtering criterion sorted solutions,
including the smallest filtering criteria. Thus, an intersection
of these sets should include solutions with mostly positive and
sharp line shapes. Sort this intersection set of size M̃ according
to d. Finally, estimate eq 13 by choosing M so that the sum of
residuals dM is minimized:
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As needed, smooth the obtained line-narrowed spectrum
with a smoothing function.

Priors. We obtained priors by manually correcting for the
experimental artifacts modeled by eq 5 and simultaneously
applying phase retrieval19,20,38,39 and computation of the
resonant imaginary component of the CARS spectrum until
a reasonable Raman signal was observed. The line-narrowing
algorithm was applied on the manually estimated Raman
signal, producing a line-narrowed spectrum from which
individual line shapes could be identified. We follow ref 32
in setting informative priors for the line shape locations νk as
normal distributions

π ν μ σ∼ ν ν( ) ( , )n0
2

n n (21)

where μνn and σνn
2 are estimated for each line shape V(ν, θn) by

numerically integrating perceived individual line shapes in the
line-narrowed spectrum to estimate the means μνn and

variances σνn
2 . The line-narrowing algorithm utilizes multiple

Lorentzian line shapes with differing scale parameters γm,
thereby giving access to an informative prior for γn. As in ref
32, we set a common prior for each γn as a log-normal
distribution:

π γ μ σ∼ γ γ(log( )) ( , )n0 log( ) log( )
2

(22)

where the estimates for the mean and variance, μlog(γ) and
σlog(γ)
2 , are obtained from the parameters contained in the
intersection set of size M̃. Priors for the Gaussian shape
parameters σn are obtained by scaling π0(log(γn)) by

2 log(2) . This would correspond to using identical priors
for the full-width-at-half-maximum of both the Gaussian and
Lorentzian line shapes. For the amplitudes, we can obtain an
estimate for the areas straight-forwardly by the same numerical
integration used to estimate the priors for the locations, as
described above. We set a fairly wide prior for the amplitude by
setting them as

π μ
μ
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where the mean μan is the numerically integrated area of each
line shape. A prior for the background parameter p is set as a
uniform prior:

π ∼p p p( ) ( , )0 min max (24)
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An estimate for the noise level σϵ
2 was also obtained using the

line-narrowing algorithm. The algorithm fits a smooth
representation of the Raman spectrum to the manually
corrected data according to eq 20. This smooth representation
of the Raman signal is then transformed to the measurement
space by eq 3 and then by eq 2. The resulting residuals
between the transformed smooth Raman signal and the
measured CARS spectrum were used as an estimate for the
noise variance σϵ

2. Detailed descriptions of priors specific for
each experimental data set of fructose, glucose, sucrose, and
adenosine phosphate can be found in the Supporting
Information.

■ EXPERIMENTAL DETAILS
Samples. The sugar samples used in the multiplex CARS

spectroscopy were equimolar aqueous solutions of D-fructose,
D-glucose, and their disaccharide combination, sucrose (α-D-
glucopyranosyl-(1→2)-β-D-fructofuranoside). For sample
preparation, the sugar samples were dissolved in buffer
solutions (50 mM HEPES, pH = 7) at equal molar
concentrations of 500 mM.16 The adenosine phosphate sample
was an equimolar mixture of AMP, ADP and ATP in water for
a total concentration of 500 mM.19 The adenine ring
vibrations40 are found at identical frequencies for either for
AMP, ADP, or ATP around 1350 cm−1. The phosphate
vibrations between 900 and 1100 cm−1 can be used to
discriminate between the different nucleotides.15 The
triphosphate group of ATP shows a strong resonance at
1123 cm−1, whereas the monophosphate resonance of AMP is
found at 979 cm−1. For ADP a broadened resonance is found
in between at 1100 cm−1.
Multiplex CARS Spectroscopy. All CARS spectra used to

validate our methodology were recorded using a multiplex
CARS spectrometer, the detailed description of which can be
found elsewhere.1,15 In brief, a 10 ps and an 80 fs mode-locked
Ti:sapphire lasers were electronically synchronized and used to
provide the narrowband pump/probe and broadband Stokes
laser pulses in the multiplex CARS process. The center
wavelengths of the pump/probe and Stokes pulses were 710
nm. The Stokes laser was tunable between 750 and 950 nm.
The sugar spectra were probed within a wavenumber range
from 700 to 1250 cm−1, and the AMP/ADP/ATP spectrum
within a range from 900 to 1700 cm−1. The linear and parallel
polarized pump/probe and Stokes beams were made collinear
and focused with an achromatic lens into a tandem cuvette.
The latter could be translated perpendicular to the optical axis
to perform measurements in either of its two compartments,
providing a multiplex CARS spectrum of the sample and of a
nonresonant reference under near-identical experimental
conditions. Typical average powers used at the sample were
95 mW (75 mW, in case of AMT/ADP/ATP) and 25 mW
(105 mW) for the pump/probe and Stokes laser, respectively.
The anti-Stokes signal was collected and collimated by a
second achromatic lens in the forward-scattering geometry,
spectrally filtered by short-pass and notch filters, and focused
into a spectrometer equipped with a CCD camera. The
acquisition time per CARS spectrum was 200 ms for sugar
spectra and 800 ms for the AMP/ADP/ATP spectrum.
Computational Details. The SMC algorithm was

computed using Q = 2000 particles with the resampling
threshold set to Qmin = 1000 and the learning parameter set as
η = 0.9. Resampling was done, as in ref 32, via residual
resampling.41 Target MCMC acceptance rate was set to 0.23

and the number of MCMC updates at each iteration was 200.
An AMD Ryzen 3950X processor was used with 27 CPU
threads utilized, with the SMC estimation taking 580, 522, 413,
and 688 s to produce the final posterior estimate of the
parameters for the fructose, glucose, sucrose, and phosphate
samples, respectively. For modeling the modulating error
function εm(ν; p), symlet 34 basis functions were used.
The line-narrowing algorithm was run with γm ∈ [1, 35]

linearly spaced using 33 points. The maximum number of
measurement points NFIR used was 150, meaning that NFIR =
{1, ..., 150}. The length of the extrapolated signal33,34 was set
to equal the number of measurement points in each spectrum.
The percentages pwe and pfc were set as 50% and 2.5%

respectively. To ensure that M̃ > 0, pfc was incrementally
increased by 2.5% until a minimum intersection set size M̃ ≥
50 was achieved. For computation of the wavelet energy
concentration Cwe symlet, eight basis functions were used.

■ RESULTS AND DISCUSSION

In what follows, 95% predictive intervals for the forward model
f(νk; p, θ), the modulating error function εm(ν; p), and the
error-corrected spectra S(ν; θ) are presented in Figures 1a, 2a,
3a, and 4a for the experimental spectra of fructose, glucose,
sucrose, and phosphate, respectively. Similarly, in Figures 1b,
2b, 3b, and 4b the 95% predictive interval for the Raman signal
represented by VN(ν, θ) is presented along with the means for
each constituent line shape V(ν, θn). To illustrate how the
priors were estimated, the manually corrected Raman signal

Figure 1. (a) Obtained 95% predictive intervals for yk, f, S, and εm
shown in blue, red, yellow, and purple respectively for a CARS
measurement of a fructose sample. (b) Obtained 95% predictive
intervals for VN(νk; θ) and means of each individual line shape V(νk;
θn) for the fructose sample.
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and the result obtained via the proposed line narrowing
method are shown in Figure 5. Additionally, the obtained
posterior distributions for θ, alongside their respective prior
distributions, are presented in the Supporting Information.
The inference model proposed here was found to adequately

model the CARS measurements along with perceived noise
levels in the spectra. For future work, it would be interesting to
include heteroscedasticity in the model instead of assuming a
constant measurement error variance. Comparing the
estimated predictive intervals of the obtained Raman signal
showed clear correspondence to measured Raman intensities
of aqueous solutions for fructose and glucose.42 To validate the
potential of the line narrowing method, we considered the
number of line shapes identified for the aqueous solution of
sucrose to resemble the 18 line shapes reported for solid
sucrose.43 The estimated priors were considered not to restrict
the parameter posterior which can be observed in the posterior
distributions when seen alongside the respective priors,
especially so for the cases of fructose, sucrose, and adenosine
phosphate. The obtained Raman signals for fructose, glucose,
and sucrose are similar to results obtained ref 22, which further
supports the applicability of the methodology presented in this
study. As our method is immediately applicable to more
complex samples, such as solutions with multiple solutes,
applying the method to such samples provides further
interesting future work.
Obtaining informative priors can be approached in different

ways for chemically known samples, as was done in ref 32,
where the authors use results obtained by density functional
theory (DFT) software to derive estimates for the location

priors and existing studies on structural properties of a known
sample such as observed in refs 42 and 43. Naturally, any other
forms of information on the underlying line shapes could just
as well be used for the prior distributions. Here we have
considered estimating the priors purely from the data using a
line-narrowing algorithm, requiring minimal a priori informa-
tion on the sample under study. Although this information
would clearly be available in this case,42 there are many
potential applications of our method where much less is known
about the molecules in question. Additionally, the use of
maximum-entropy methods in improving spectral resolution
can cause individual line shapes to split.44,45 In our proposed
line-narrowing method, the averaging together of multiple,
resolution-enhanced spectra is postulated to possibly lessen the
effect of this undesired spectral line splitting.

■ CONCLUSION
A Bayesian inference model applicable to coherent anti-Stokes
Raman spectroscopy is proposed and numerically imple-
mented. This work extends the current methodology of
analyzing CARS spectra by introducing Bayesian inference in
the field, enabling uncertainty quantification of spectral
features. The statistical inference model is able to produce
posterior distributions for physically informative parameters,
line shape amplitudes, widths, and locations, for each
constituent line shape along with predictive distributions for
the estimated resonant Raman signal contained in the CARS
measurement spectrum, the error-corrected CARS measure-

Figure 2. (a) Obtained 95% predictive intervals for yk, f, S, and εm
shown in blue, red, yellow, and purple respectively for a CARS
measurement of a glucose sample. (b) Obtained 95% predictive
intervals for VN(νk; θ) and means of each individual line shape V(νk;
θn) for the glucose sample.

Figure 3. (a) Obtained 95% predictive intervals for yk, f, S, and εm
shown in blue, red, yellow, and purple respectively for a CARS
measurement of a sucrose sample. Some discrepancies between yk and
f can be seen around the boundaries. These areas of the data should
be ignored in the optimization. (b) Obtained 95% predictive intervals
for VN(νk; θ) and means of each individual line shape V(νk; θn) for
the sucrose sample.
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ments, and the CARS measurement spectrum, as well as
extending currently existing methodology for modeling
experimental artifacts present in CARS measurements. Addi-
tionally, we have developed a line-narrowing algorithm
requiring minimal a priori information on the underlying line
shapes, which is readily applicable to various spectral
measurements. We have successfully used this algorithm to
obtain informative priors purely from the measurement data
for the Bayesian inference model. The applicability of the
methods is demonstrated with experimental CARS spectra of
sucrose, fructose, glucose, and adenosine phosphate.
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