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Abstract

Predictive analytics using electronic health record (EHR) data have rapidly advanced over the last 

decade. While model performance metrics have improved considerably, best practices for 

implementing predictive models into clinical settings for point-of-care risk stratification are still 

evolving. Here, we conducted a systematic review of articles describing predictive models 

integrated into EHR systems and implemented in clinical practice. We conducted an exhaustive 

database search and extracted data encompassing multiple facets of implementation. We assessed 

study quality and level of evidence. We obtained an initial 3393 articles for screening, from which 

a final set of 44 articles was included for data extraction and analysis. The most common clinical 

domains of implemented predictive models were related to thrombotic disorders/anticoagulation 

(25%) and sepsis (16%). The majority of studies were conducted in inpatient academic settings. 

Implementation challenges included alert fatigue, lack of training, and increased work burden on 

the care team. Of 32 studies that reported effects on clinical outcomes, 22 (69%) demonstrated 

improvement after model implementation. Overall, EHR-based predictive models offer promising 

results for improving clinical outcomes, although several gaps in the literature remain, and most 

study designs were observational. Future studies using randomized controlled trials may help 

improve the generalizability of findings.
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1. Introduction

Predictive analytics is a rapidly expanding area of health care [1]. With widespread 

electronic health record (EHR) adoption [2–4], vast quantities of clinical data are available. 

EHR data have been employed to develop predictive models in a wide range of clinical 

applications, such as predicting major post-surgical complications [5–7], sepsis [8], 

readmission [9–11], heart failure [12], substance abuse [13], and death [9,14,15]. 

Computational advancements have enabled machine learning techniques to effectively use 

EHR data for medical diagnosis [16–18]. The stated promise of these predictive models is to 

improve identification and risk stratification of patients, thereby facilitating targeted 

interventions to improve patient outcomes. Embedding these models within EHR systems as 

components of clinical decision support (CDS) interventions may allow real-time risk 

prediction. As stated by Agrawal and colleagues [19], this “prediction technology” is core to 

the anticipated applications of artificial intelligence (AI) for improving health care.

However, the implementation of predictive models into EHR systems for clinical practice is 

not straightforward. This is an emerging area of investigation where best practices are not 

yet well established. Although CDS interventions have been employed in EHR systems for 

many years, the emergence of more advanced computational models, such as the use of 

machine learning approaches, presents some key challenges and unique considerations. 

Described in previously published frameworks, such as those by Shaw et al. [20] and He et 

al. [21], these include explainability and transparency of algorithms, computational 

resources, scalability, data standardization, and integration into clinical workflows as 

meaningful decision support.

Although these prior articles have outlined key implementation issues around EHR-based 

predictive models, they examined only a limited set of use cases. A systematic review by 

Goldstein et al. [17] examined risk prediction models utilizing EHR data, but focused on 

model development and validation rather than implementation in clinical settings. Another 

systematic review by Kruse et al. [18] regarding the challenges of opportunities of big data 

in health care also included discussion of predictive models, but its search encompassed 

articles only up to 2015. The rapid growth of this field in recent years offered us an 

opportunity to provide an updated review, with a focus on implementation issues.

Here, we engaged in a systematic review of EHR-based models that have been implemented 

in clinical practice using a rigorous search methodology. The objectives of our study were to 

review published peer-reviewed articles describing predictive models that have been 

implemented in real-world clinical practice, summarize their findings, and highlight lessons 

learned to further inform the literature regarding implementation of these emerging 

technologies in health care settings.

2. Materials and Methods

We utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) Statement for reporting our systematic review [22,23]. The PRISMA reporting 

checklist can be found in Supplementary Table S1.
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2.1. Eligibility Criteria

We limited our systematic review to peer-reviewed journal articles published in English 

between 1 January 2010 and 31 July 2019 with available full text. We chose 2010 as the start 

date given the passage of the Health Information Technology for Economic and Clinical 

Health (HITECH) Act in 2009 [24], which was aimed at promoting adoption and 

meaningful use of health information technology, including EHRs. Prior to the HITECH 

Act, EHR adoption was relatively limited and implementation of EHR-based predictive 

models was uncommon. Furthermore, we wanted to focus on predictive models 

implemented within the last decade to provide a more recent perspective.

Our primary eligibility criteria focused on identifying articles with the following: description 

of a model predicting a clinical outcome (e.g., not financial outcomes), use of EHR data for 

modeling, automated data extraction for modeling (e.g., not manual data entry or manual 

data calculation by providers), integration of the model into the EHR system, and 

implementation into clinical use. This last criterion was critical given the emphasis of our 

review on implementation, rather than on model development, training, or validation. We did 

not restrict studies to specific types of models—for instance, models using linear regression, 

logistic regression, random forests, and various neural network architectures were all 

eligible. However, our definition of “model” did require that there be some sort of 

mathematical calculation involving predictors based on EHR data. Therefore, CDS 

interventions with simply rule-based or criteria-based logic were not included. This allowed 

us to specifically focus on predictive analytics. To provide a broad overview of implemented 

EHR-based predictive models, we did not have any restrictions on clinical domains, patient 

populations, or study designs.

2.2. Information Sources and Searches

We conducted searches in the following six databases to reflect the interdisciplinary 

approach in predictive modeling: PubMed, Web of Science, Embase, Cochrane Library, 

CINAHL, and Business Source Complete. For our search strategy, we identified three 

primary concepts related to our study question: (1) electronic health records; (2) predictive 

models; and (3) implementation. For the first concept, we included terms related to 

electronic health records, electronic medical records, and computerized patient records. For 

the second concept, we included terms related to predictive models, algorithms, artificial 

intelligence, machine learning, informatics, risk prediction, statistical models, and clinical 

decision support. For the final concept, we included terms related to implementation, 

implementation science, and real-world or applied/practical trials. Within our searches, we 

employed structured vocabulary terms (if applicable to the given database), synonyms, and 

free-text title/abstract searches. We included filters for English-language and full-text 

articles only that were published within the specified date range. We included truncation and 

wildcards to allow the search to include articles with minor spelling variations to the 

indicated search terms. The search strategy was iteratively refined with the assistance of a 

university librarian with extensive experience in systematic review methodology. To 

illustrate, the detailed PubMed search strategy which includes all search terms can be found 

in Appendix A. In addition to database searches, we also identified potential articles via 
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reviews of bibliographies in articles identified from the database searches, expert 

recommendations, and manual/hand searching.

2.3. Study Selection

The articles resulting from all search methods described above were collated and screened. 

First, we removed any duplicates and any articles that had been retracted. The remaining 

articles underwent title/abstract review by two independent reviewers (T.C.L. and N.U.S.). 

Discrepancies were resolved by a third reviewer (S.L.B.) to generate a list of articles for full-

text review. Four reviewers (T.C.L., N.U.S., A.H., and S.L.B.) conducted full-text article 

review, each beginning with an initial review of a portion of the studies for eligibility. 

Studies marked as not meeting eligibility criteria were reviewed by two reviewers (S.L.B. 

and T.C.L.) for confirmation. This generated the final set of full-text articles for data 

extraction and inclusion for qualitative analysis.

2.4. Data Collection and Quality Assessment

Full-text articles were divided among four reviewers (T.C.L., N.U.S., A.H., and S.L.B.) for 

data extraction. A spreadsheet was used to standardize data collection. The following items 

were extracted: publication year, first author’s name, title, journal, location of study (city, 

state, country), health system setting (inpatient/outpatient, academic/community, number of 

clinical sites), clinical outcome for predictive model, study design (e.g., randomized trial, 

pre–post analysis), patient population, control/comparison group (if applicable), study 

period (dates), sample size, EHR vendor, intended users of model (e.g., physicians, nurses, 

care coordinators), method of modeling (e.g., regression-based methods vs. non-regression 

based methods that tend to be more computationally intensive such as random forests, 

gradient-boosted trees, or neural networks), custom model developed by study authors or 

“off-the-shelf” model from EHR vendor or other source, method of risk score presentation to 

end users (e.g., dashboard, alert or best practice advisory; interruptive vs. non-interruptive), 

mention of alert fatigue, stand-alone intervention vs. component of broader intervention, 

measured effect(s) of predictive model, study quality rating, overall change in clinical 

outcomes, and key insights regarding model implementation. The risk of bias in individual 

studies was guided by the Downs and Black checklist [25], which reviewers referred to 

when making quality assessments. Due to the heterogeneity of clinical domains and studies 

included in the review, qualitative summaries of quality assessments were made in lieu of 

quantitative comparisons. Risk of bias across studies was mitigated via searching multiple 

databases, which increased the number of available records and expanded the search across 

multiple disciplines.

2.5. Synthesis and Analysis of Results

Because the review included studies regarding a range of different clinical outcomes, we did 

not calculate quantitative summary measures such as risk ratios or conduct meta-analyses. 

We performed a qualitative synthesis of the included studies. All reviewers convened as a 

group to identify key findings based on the previously described data extraction. Each 

reviewer then returned to their assigned full-text articles to identify and categorize relevant 

articles by key themes (e.g., abbreviated study design, custom model vs. “off-the-shelf” 

model, interruptive vs. non-interruptive vs. not reported alerts, mention of alert fatigue, and 
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overall change in outcome). Each reviewer was then assigned a random sample of articles 

reviewed by others to verify coding. Any discrepancies were resolved by consensus from the 

entire group of reviewers.

3. Results

3.1. Study Selection

Based on our aforementioned search strategies, we obtained an initial set of 3393 articles for 

screening. Distribution of articles bye database is depicted in Supplementary Figure S1. We 

conducted a title/abstract review and excluded studies based on the established eligibility 

criteria, resulting in 80 articles for full-text review. After full-text review, a final set of 44 

articles was included for data extraction and qualitative analysis. Figure 1 depicts a detailed 

PRISMA flow diagram describing study selection.

We excluded articles during title/abstract review and during full-text review for a myriad of 

reasons. We excluded studies that were only conference or meeting abstracts without full-

text journal articles available. Our intended focus was on implementation, so we excluded 

studies focused solely on model development (even if there was an external validation 

cohort) if there was no evidence of real-world clinical implementation. We excluded studies 

describing prescribing error notifications, dosing guides/recommendations, and studies 

focused on antimicrobial stewardship, as these generally used rule-based or criteria-based 

logic, whereas we were interested in predictive models requiring some extent of 

mathematical computation of risk. We also excluded studies focused on computerized 

physician order entry (CPOE) using order sets without risk prediction, studies describing a 

model prototype but no implementation, studies describing work related to health IT 

infrastructure but not a specific model, studies involving external software applications (e.g., 

mobile health devices) or web-based tools that did not have any links back into EHR 

systems, studies involving manual data collection and calculation, studies describing tools to 

assist with guideline adherence but without any risk calculation, studies involving tools 

based on rule- or criteria-based logic without any modeling or calculation, studies outlining 

rationale and design of proposed clinical trials but without actual results reporting, studies 

describing alerts of recently placed similar orders or of general reminders but without 

modeling or risk prediction, and studies asking physicians to manually document their 

personal risk assessment instead of a prediction based on EHR data modeling. In addition, 

we were focused on medical settings for humans, so we excluded studies from dental and 

veterinary settings.

3.2. Study Characteristics: Study Settings, Study Design, and Clinical Domains

Table 1 provides an overview of the studies that were included in the review. The most 

common clinical domains for predictive models embedded ln EHRs and implemented in 

clinical practice were models related to thrombotic disorders/anticoagulation (11/44 studies, 

25.0%) and sepsis (7/44,15.9%) (Figure 2). Other domains included kidney injury, 

ventilation injury, delirium, readmissions, and deterioration/death. Tire remaining studies 

(grouped together as “other” in Figure 2) consisted of miscellaneous clinical entities, such as 

Lee et al. Page 5

Informatics (MDPI). Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



back pain, pressure ulcers, hypertension, perioperative risk, and triage time, among others. 

The majority (36/44, 81.8%) of studies were conducted in the United States.

The majority (28/44, 63.6%) of studies were centered on inpatient populations, while 16/44 

(36.4%) studies concerned clinical predictions in outpatient settings. Additionally, 21 

(47.8%) studies were conducted in an academic setting, 7 (15.9%) studies were conducted in 

a community setting, and 3 (6.8%) studies were conducted in a mix of both academic and 

community settings. The remaining 13 (29.5%) studies did not report a study setting that 

could be clearly classified as “academic” or “community”.

3.3. Predictive Models

Of the 44 studies, 30 (68.2%) utilized custom models, defined as a model developed by the 

authors or a previously validated model modified by authors to meet site-specific 

implementation needs, while 14 (31.8%) studies utilized “off-the-shelf” models, defined as a 

model previously developed and validated and implemented without site-specific 

modifications. Out of the 30 studies describing custom models, 17 (56.7%) were based on 

regression modeling, while 3 (10%) were developed using machine learning or deep 

learning. The remaining 10/30 studies (33.3%) did not report specific modeling methods.

3.4. Integration into EHR Clinical Decision Support Tools and Implementation Challenges

We categorized studies based on whether interruptive alerts or non-interruptive alerts (e.g., 

dashboards) were used during implementation to present risk scores or results of the 

predictive models to end users. Half of the studies (22/44, 50.0%) reported using non-

interruptive alerts at intervention sites (22/44,50%), while 18/44 studies (40.9%) 

incorporated interruptive alerts. Four (9.1%) studies either did not report the risk score 

presentation to end users or were unable to be classified as interruptive or non-interruptive 

(Figure 3).

One common theme we observed was the mention of alert fatigue, defined as an inadequate 

response to a clinical decision support alert due to the frequency and increased burden on 

health care providers [70]. Alert fatigue was discussed in 14 of the 44 studies (31.8%). Of 

these 14 studies in which alert fatigue was mentioned, 11 (78.6%) utilized interruptive alerts, 

defined as alerts that either required action to dismiss the alert or alerts that significantly 

diverted the provider’s attention (e.g., text paging, calls). Three (21.4%) utilized non-

interruptive alerts, defined as passive displays and notifications (e.g., sidebars, dashboards, 

or floating windows) that did not require specific action or divert the provider’s attention. 

However, six of these studies mentioned alert fatigue briefly but did not elaborate with any 

significant detail. We selected the remaining eight of these studies to further examine the 

specific description of risk score presentation and extracted representative quotations to gain 

insight on the role of alert fatigue in predictive model implementation (Table 2).

Other than alert fatigue, other implementation challenges were also noted. Several studies 

reported intrinsic challenges, which we defined as issues that arose from model design and 

development. These challenges include limitations in the predictive model’s user 

functionality, overconsumption of resources, and requiring access to costly data [36,47,53]. 

Arts et al. also cited non-interruptive risk score presentation as a reason for low usage, thus 
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affecting the performance of the predictive model [47]. Other studies noted that some 

barriers of implementation may be linked to the preliminary development of predictive 

models, such as in mapping the correct EHR fields for the desired data elements [55].

Several studies also reported extrinsic challenges, which we defined as issues that were 

introduced in the clinical setting (e.g., disruption of workflow). Issues such as lack of 

training or lack of familiarity by rotating trainees, increased work burden on the care team, 

and the introduction of extra work discouraged use of several predictive models [28,43,55]. 

One predictive model that risk stratified Pediatric Appendicitis Scores (PAS) was deemed 

irrelevant, as clinicians believed that PAS guidelines could be easily memorized and thus did 

not require decision support [43]. Another extrinsic challenge included “evolving clinical 

profiles,” as described by Hao et al. [39] in the performance of a 30 day readmission risk 

assessment tool.

Of note, Khoong et al. [68] illustrated a theory-based strategy to encourage provider uptake 

of predictive models. The capability, opportunity, motivation, behavior framework (COM-B) 

asserts that capability, opportunity, and motivation are essential conditions that impact 

behavior. In their study, Khoong et al. [68] addressed implementation barriers by educating 

providers about the model (capability barriers), fitting the model to physician workflow by 

streamlining patient education and orders (opportunity barrier), and providing incentives and 

reminders to encourage use of the model (motivation barrier).

3.5. Impacts on Clinical Outcomes

We evaluated the included studies for results describing whether the implementation of a 

predictive model yielded improved clinical outcomes. Of the 44 studies evaluated, 12/44 

(27.3%) did not include an evaluation of clinical outcomes. Often, these focused on 

performance metrics (e.g., positive predictive value, negative predictive value) of the model 

itself rather than on effects on clinical outcomes. For example, Moon et al. [59] reported 

high levels of predictive validity for an automated delirium risk assessment system; however, 

the authors did not report changes in clinically diagnosed delirium. Other studies that did not 

evaluate clinical outcomes showed changes in other clinical aspects such as improved time 

savings [55].

Twenty-two (50.0%) studies evaluated clinical outcomes and showed an improvement in 

clinical outcomes, while 10 (22.7%) evaluated clinical outcomes and showed no 

improvement or change (Figure 4). Clinical outcomes were not evaluated in 12 (27.3%) 

studies. Similar to studies that did not evaluate clinical outcomes at all, studies that showed 

no improvements in clinical outcomes often reported secondary benefits. For instance, Oh et 

al. [35] reported no changes in the incidence of delirium with an automatic delirium 

prediction system; however, a significant decrease in number and duration of analgesic 

narcotic therapies was observed. Other studies reported partial improvement; however, these 

studies often did not have a direct improvement on the specified clinical outcome [30,34].

We also examined the effect of model source (i.e., custom versus “off-the-shelf” model) on 

clinical outcomes. Overall, there was a trend of custom predictive models being associated 

with greater likelihood of improved clinical outcomes. Eleven of the studies that 
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implemented custom models and one of the studies that implemented “off-the-shelf” models 

did not report the effects of model implementation on clinical outcomes. Of the 19 studies 

that implemented custom models and evaluated clinical outcomes, 16 (84.2%) studies 

showed an improvement in clinical outcomes while 3 (15.8%) studies reported no 

improvement in outcomes. Of the 13 studies that implemented “off-the-shelf” models and 

evaluated clinical outcomes, 6 (46.2%) showed an improvement in clinical outcomes, while 

7 (53.8%) reported no improvement in outcomes (Table 3).

Additionally, we classified the included studies by intended end users of the model. Several 

studies did not report evaluation of effects of model implementation on clinical outcomes 

(six studies with physicians as primary intended users, three studies with nurses as primary 

intended users, and three studies where intended users were other health care workers). Of 

the 22 studies that evaluated clinical outcomes when physicians were the primary intended 

users of the model, 15 (68.2%) showed an improvement in clinical outcomes. Of the eight 

studies that evaluated clinical outcomes when only nurses were the intended users of the 

model, five studies (62.5%) reported improved outcomes after model implementation (Table 

4). Therefore, there did not appear to be substantial differences in effect on clinical 

outcomes based on types of end users intended for the model.

3.6. Quality Assessment

The greatest proportion of studies were pre–post studies (19/44, 43.2%), followed by 

prospective cohort or validation studies (12/44, 27.3%). Studies with higher levels of 

evidence such as randomized controlled trials (5/44, 11.4%) comprised the minority of 

studies. Qualitative assessments guided by criteria detailed in the Downs and Black checklist 

[25] revealed that the study quality ranged widely from “limited” to “strong” ratings, with 

the majority demonstrating sufficient internal validity. However, because pre–post studies 

can be affected by general temporal trends, and observational study designs are less 

generalizable (i.e., less external validity), and furthermore most studies lacked control 

groups, we rated the overall quality of evidence from the included studies as low to moderate 

strength. The risk of bias across studies was reduced by searching multiple databases and 

using diverse and exhaustive search terms. Although publication and reporting bias may still 

exist, the use of multiple databases and exhaustive search terms increased the number of 

available records and expanded the search across multiple disciplines. In addition, only half 

of the included studies reported improvements in clinical outcomes, which suggests there is 

likely not a strong publication bias toward representing only positive findings.

4. Discussion

4.1. Summary of Evidence and Key Findings

In this systematic review, we observed several trends in the current literature published about 

the clinical implementation of predictive models embedded in EHR systems. Although 

predictive modeling has surged in the last decade, there is a paucity of research describing 

the integration of predictive models into EHR systems and implementation of those models 

into clinical usage in real-world settings.
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To emphasize our focus on clinical implementation, we analyzed several factors of 

predictive models to examine their effect on clinical outcome. For instance, our results 

suggest that implementing custom models was more likely to improve clinical outcomes 

than implementing “off-the-shelf” models without site-specific customization. Some authors 

attributed the success of their model to the custom fit for their specific institution and input 

and engagement from in-house providers in the creation of the model [38]. However, the 

contrast between custom models and “off-the-shelf” models in improving clinical outcomes 

may be due to custom models being developed and validated in response to specific clinical 

issues. While some studies implementing “off-the-shelf” models reported success in 

improving patient outcomes, such as time to antibiotic administration and hospital length of 

stay [56], other studies suggested that plugging in a previously validated model without 

custom modifications, such as the CHADS2VASC score, exacerbated common 

implementation challenges due to lack of custom fit for the institution [47]. These findings 

support prior studies that have expressed the importance of local validation and 

customization, not just for predictive models but for EHR and health information technology 

(IT) systems more broadly [20,71,72].

End user education and training and workflow integration were also common themes. This 

finding supports the important role of the end user in several previously published 

frameworks concerning the implementation of emerging technologies in predictive analytics 

and artificial intelligence [20,73,74]. Institutional investment in training is critical, as quality 

of training has been shown to significantly influence users’ satisfaction with EHRs and 

health IT systems [75]. Similarly, the included studies frequently emphasized workflow 

considerations, such as the discussion by Fossum et al. [28] on the additional burden 

imposed by CDS on nurses burdened with an already high workload. One key concern was 

workflow interruption, with alert fatigue being a key issue highlighted by several studies 

(detailed in Table 2). Alert fatigue is a pervasive issue in providing effective CDS, and future 

studies will need to examine potentially new ways of information presentation to mitigate 

alert fatigue and the risk of clinicians ignoring potentially important information arising 

from predictive models.

Besides elements centered on end users such as training, workflow integration, and alert 

fatigue, other considerations for implementation concerned higher-level organizational 

issues. For example, a heart failure readmissions model described by Amarasingham [33] 

was not activated on weekends or holidays, instead focusing on weekdays when follow-up 

interventions for high-risk patients could be coordinated by a heart failure case manager. 

This illustrates the need for adequate personnel/staffing beyond patient-facing clinicians 

alone to implement some of the relevant interventions downstream from the model. Several 

studies [66,68] also cited the importance of adhering to organizational preferences, 

achieving buy-in from health system leadership, and designating “on-the-ground” 

champions to facilitate adoption. These concepts emphasize the importance of considering 

predictive models within the context of health systems more broadly during implementation.

Overall, a significant portion of studies was comprised of study designs with low to 

moderate levels of evidence (e.g., pre–post studies), while study designs with high levels of 

evidence (e.g., randomized controlled trials) comprised the minority. The prevalence of pre–
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post studies may be due to the natural progression of development and validation studies to 

pre–post intervention studies, often leveraging data generated during routine clinical care. 

Additionally, there may be a lack of high-evidence level study designs due to the recent 

adoption of predictive models into EHR over the last decade. The lack of randomized 

controlled trials reflects the need for high quality studies to ensure that predictive models 

can effectively transition from development and validation to clinical implementation.

4.2. Gaps in the Literature and Opportunities for Future Investigation

This systematic review highlighted several gaps in existing literature that can serve as 

opportunities for future investigation.

First, clinical domains with a high disease burden in inpatient settings (e.g., sepsis, 

thrombotic disorders, readmissions) were the most well represented, while outpatient 

conditions were relatively underrepresented. One reason may be that outpatient models 

found during the search process often satisfied partial criteria, but not the full eligibility 

criteria (e.g., predictive models that were developed but not yet available or implemented in 

the EHR). This may derive from the longer periods of time associated with outpatient 

clinical outcomes compared to the time-limited nature of inpatient encounters, such that 

outcome ascertainment for outpatient clinical domains may be better represented in the 

future as more time elapses. Another reason may be the greater quantity of data available 

from inpatient settings due to higher frequency of assessments (e.g., multiple vital sign 

measurements, laboratory values, etc. in a single day), while outpatient data are more limited 

per visit and take a longer period of time to accumulate. Models predicting clinical outcomes 

in the outpatient settings are critically important given that outpatient conditions impose the 

greatest disease burden, and because the vast majority of health care is delivered in 

outpatient settings.

Second, over a quarter of the included studies did not assess clinical outcomes. Several 

authors indicated that studies are ongoing, with results pertaining to clinical outcomes still 

pending following implementation. Evaluating clinical impact would be the next natural step 

for these studies, which highlights the relative recency of implementing predictive models 

into the EHR.

Third, among the predictive models included in this review, very few used computational 

methods more advanced than linear or logistic regression to develop the model. Although the 

use of machine learning in the development and validation of predictive models is gaining 

traction in the field of biomedical informatics, there is still a gap in evaluation of these 

models in terms of clinical implementation and outcomes. Almost a third of studies that 

evaluated clinical outcomes showed no improvements, thus warranting a closer examination 

of barriers to implementation and/or adoption.

4.3. Limitations

Due to the heterogeneous clinical domains and patient populations, we did not conduct a 

meta-analysis for the included studies, and thus we were unable to quantitatively assess 

effects on specific clinical domains across studies. In addition, our results cannot be 
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generalized to studies outside of our eligibility criteria (e.g., predictive models outside of 

EHR systems).

This review also did not report on the logistic aspects of predictive model implementation 

that were outside the scope of this review. For instance, we did not include formal evaluation 

of implementation costs. Costs were mentioned in only 4 (9.0%) of the included articles, in 

several cases only briefly without rigorous economic evaluations. The limited number of 

studies available in the database Business Source Complete suggests this is not a well-

studied area. Our search strategy was also limited to only English language articles and thus 

may not have captured implementations in non-English speaking countries.

While conducting this review, we had expected to find a larger number of predictive models 

based on machine learning and artificial intelligence. However, after implementing our 

inclusion and exclusion criteria, there were very few predictive models using these advanced 

computational methods that had been implemented in real clinical settings. This may be due 

to the relatively recent development of machine learning-based models and thus would 

require several more years to produce trends in clinical outcomes following implementation.

5. Conclusions

Within the last decade, predictive models in EHR systems have become more common in 

response to a growing amount of available data. In this systematic review, we focused on 

whether the rise in development and validation of predictive models has led to effective 

clinical implementation and improved patient outcomes. We have highlighted several key 

findings related to implementation of predictive models and identified several promising 

areas for future investigation. The low to moderate levels of evidence represented in the 

current studies highlight an opportunity for future randomized control trials and cohort 

studies to improve generalizability. Through this systematic review, we hope to provide 

guiding trends and themes to direct future studies towards establishing best practices for 

implementing EHR-based predictive models.
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Appendix A Detailed PubMed Search Strategy

(((((((((((((((((((electronic data processing[MeSH Terms]) OR health plan 

implementation[MeSH Terms]) OR implementation science[MeSH Terms]) OR pragmatic 

clinical trials as topic[MeSH Terms]) OR implementation*[Title/Abstract]) OR pragmatic 
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clinical trial*[Title/Abstract]) OR pragmatic trial*[Title/Abstract]) OR randomized clinical 

trial*[Title/Abstract]) OR real world[Title/Abstract]) OR real-world[Title/Abstract]) OR real 

time[Title/Abstract]) OR real-time[Title/Abstract]) OR applied clinical trial*[Title/

Abstract]) OR practical clinical trial*[Title/Abstract]) OR bedside technology[Title/

Abstract]) OR bedside comput*[Title/Abstract]) OR prototype*[Title/Abstract])) AND 

(((((((((((((((((((((((((((((((((((((((((((((((algorithm[MeSH Terms]) OR artificial 

intelligence[MeSH Terms]) OR cluster analysis[MeSH Terms]) OR deep learning[MeSH 

Terms]) OR logistic model[MeSH Terms]) OR machine learning[MeSH Terms]) OR 

unsupervised machine learning[MeSH Terms]) OR supervised machine learning[MeSH 

Terms]) OR clinical decision support systems[MeSH Terms]) OR decision support systems, 

clinical[MeSH Terms]) OR algorithm*[Title/Abstract]) OR artificial intelligence*[Title/

Abstract]) OR deep learning*[Title/Abstract]) OR logistic model*[Title/Abstract]) OR 

machine learning*[Title/Abstract]) OR clinical decision support*[Title/Abstract]) OR 

medical decision support*[Title/Abstract]) OR adaptive health system*[Title/Abstract]) OR 

risk prediction*[Title/Abstract]) OR learning health system*[Title/Abstract]) OR digital 

phenotyp*[Title/Abstract]) OR outcome prediction*[Title/Abstract]) OR phenotyping 

algorithm*[Title/Abstract]) OR prediction model*[Title/Abstract]) OR predictive 

model*[Title/Abstract]) OR risk flag*[Title/Abstract]) OR risk score*[Title/Abstract]) OR 

risk stratif*[Title/Abstract]) OR risk assessment[Title/Abstract]) OR risk classif*[Title/

Abstract]) OR semi-supervised learning[Title/Abstract]) OR statistical model*[Title/

Abstract]) OR probabilistic model*[Title/Abstract]) OR predictive value of tests[Title/

Abstract]) OR probabilistic learning[Title/Abstract]) OR probability learning[Title/

Abstract])OR neural network*[Title/Abstract])OR clinical prediction rule*[Title/Abstract]) 

OR clinical prediction tool*[Title/Abstract]) OR clinical prediction score*[Title/Abstract]) 

OR machine intelligence[Title/Abstract]) OR AI[Title/Abstract]) OR prognostic tool*[Title/

Abstract]) OR prediction algorithm*[Title/Abstract]) OR predictive algorithm*[Title/

Abstract]))) AND (((((((((((((((electronic health record[MeSH Terms]) OR computerized 

medical record[MeSH Terms]) OR computerized medical record system[MeSH Terms]) OR 

medical order entry systems[MeSH Terms]) OR electronic health record*[Title/Abstract]) 

OR computerized medical record*[Title/Abstract]) OR electronic medical record*[Title/

Abstract]) OR digital medical record*[Title/Abstract]) OR digitized medical record*[Title/

Abstract]) OR digital health[Title/Abstract]) OR computerized patient record*[Title/

Abstract]) OR electronic patient record*[Title/Abstract]) OR automated patient 

record*[Title/Abstract]) OR digital patient record*[Title/Abstract]) OR digitized patient 

record*[Title/Abstract])
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Figure 1. 
PRISMA flow diagram describing the study selection process.
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Figure 2. 
Distribution of studies regarding implementation of EHR-based predictive models based on 

primary clinical outcome.
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Figure 3. 
Distribution of risk score presentation from predictive models within electronic health record 

(EHR) systems when classified as interruptive or non-interruptive.
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Figure 4. 
Distribution of studies regarding effects on clinical outcomes after implementation of EHR-

based predictive models.
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Table 1.

Overview of included studies pertaining to predictive models embedded in electronic health record (EHR) 

systems implemented in clinical settings.

Author Year Location Study Design Sample Size Clinical Outcome(s)

Maynard et al. [26] 2010 California, USA Retrospective cohort 748 Venous thromboembolism

Novis et al. [27] 2010 Illinois, USA Pre–post 400 Deep vein thrombosis

Fossum et al. [28] 2011 Norway Quasi-experimental * 971 Pressure ulcers, malnutrition

Herasevich et al. [29] 2011 Minnesota, USA Pre–post 1159 Ventilator-induced lung injury

Nelson et al. [30] 2011 Michigan, USA Pre–post 33,460 Sepsis

Umscheid et al. [31] 2012 Pennsylvania, USA Pre–post 223,062 Venous thromboembolism

Baillie et al. [32] 2013 Pennsylvania, USA Pre–post 120,396 Readmission

Amarasingham et al. [33] 2013 Texas, USA Pre–post 1726 Readmission

Litvin et al. [34] 2013 South Carolina, USA Prospective cohort 38,983 Chronic kidney disease

Oh et al. [35] 2014 South Korea Pre–post 1111 Delirium

Resetar et al. [36] 2014 Missouri, USA Prospective cohort 3691 Ventilator-associated events

Amland et al. [37] 2015 Missouri, USA Pre–post 45,046 Venous thromboembolism

Faerber et al. [38] 2015 New Hampshire, USA Pre–post 297 Mortality

Hao et al. [39] 2015 Maine, USA Prospective cohort 118,951 Readmission

Kharbanda et al. [40] 2015 Minnesota, USA Prospective cohort 735 Hypertension

Lustig et al. [41] 2015 Canada Prospective cohort 580 Venous thromboembolism

Umscheid et al. [42] 2015 Pennsylvania, USA Pre–post 15,526 Sepsis, deterioration

Depinet et al. [43] 2016 Ohio, USA Pre–post 1886 Appendicitis

Narayanan et al. [44] 2016 California, USA Pre–post 103 Sepsis

Vinson et al. [45] 2016 California, USA Pre–post 893 Pulmonary embolism

Aakre et al. [46] 2017 Minnesota and Florida, 
USA Prospective cohort 242 Sepsis

Arts et al. [47] 2017 Netherlands Randomized controlled 
trial 781 Stroke

Bookman et al. [48] 2017 Colorado, USA Pre–post 120 Use of imaging

Jin et al. [49] 2017 South Korea Case-control 1231 Pressure injury

Samal et al. [50] 2017 Massachusetts, USA Prospective cohort 569,533 Kidney failure

Shimabukuro et al. [51] 2017 California, USA Case-control 67 Sepsis

Chaturvedi et al. [52] 2018 Florida, USA Prospective cohort 309 Anticoagulant therapy

Cherkin et al. [53] 2018 Washington, USA Randomized controlled 
trial 4709 Physical function and pain

Ebinger et al. [54] 2018 Minnesota, USA Prospective cohort 549 Complications, mortality, 
length of stay, and cost

Hebert et al. [55] 2018 Ohio, USA Prospective cohort 129 Ventilator-associated events

Jung et al. [56] 2018 Ohio, USA Pre–post 232 Sepsis, mortality

Kang et al. [57] 2018 South Korea Case-control 8621 Medical errors

Karlsson et al. [58] 2018 Sweden Randomized controlled 
trial 444,347 Anticoagulant therapy

Moon et al. [59] 2018 South Korea Retrospective cohort 4303 Delirium

Ridgway et al. [60] 2018 Illinois, USA Prospective cohort 180 HIV

Informatics (MDPI). Author manuscript; available in PMC 2020 December 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 23

Author Year Location Study Design Sample Size Clinical Outcome(s)

Turrentine et al. [61] 2018 Virginia, USA Pre–post 1864 Venous thromboembolism

Villa et al. [62] 2018 California, USA Pre–post 33,032 Triage time

Vinson et al. [63] 2018 California, USA Pre–post 881 Pulmonary embolism

Bedoya et al. [64] 2019 North Carolina, USA Retrospective cohort 85,322 Deterioration

Brennan et al. [65] 2019 Florida, USA Quasi-experimental * 20 Preoperative risk assessment

Ekstrom et al. [66] 2019 California and Upper
Midwest, USA Prospective cohort Not stated Appendicitis

Giannini et al. [67] 2019 Pennsylvania, USA Randomized controlled 
trial 54,464 Sepsis

Khoong et al. [68] 2019 California, USA Randomized controlled 
trial 524 Chronic kidney disease

Ogunwole et al. [69] 2019 Texas, USA Pre–post 204 Readmission, Heart failure

*
Quasi-experimental study design refers to other non-randomized clinical trials that did not qualify as pre–post studies.

Informatics (MDPI). Author manuscript; available in PMC 2020 December 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lee et al. Page 24

Table 2.

Classification and method of risk score presentation of studies that discussed alert fatigue in relation to 

implementation of predictive models within electronic health record systems.

Author
Interruptive 

vs. Non-
Interruptive

Description of Risk 
Score Presentation Quotation Regarding Alert Fatigue

Arts et al. [47] Non-
Interruptive

Floating notification 
window

“Too many alerts will tend to result in all alerts being ignored, a phenomenon 
known as ‘alert fatigue.’ Given the possible adverse effects of ‘alert fatigue’ 

and interruption, we considered the optimal interface to be one which 
minimized these effects.”

Bedoya et al. [64] Interruptive

Best practice advisory 
(BPA) triggered 

requiring response 
from care nurse

“The majority of BPAs were ignored by care nurses. Furthermore, because 
nurses were ignoring the BPA, the logic in the background would cause the 

BPA to repeatedly fire on the same patient. This in turn created a large 
quantity of alerts that required no intervention by clinicians and led to alert 

fatigue in frontline nursing staff. Anecdotal feedback from nurses confirmed 
the constant burden of alerts repeatedly firing on individual patients. 

Furthermore, alert fatigue begets more alert fatigue and the downstream 
consequences of alert fatigue can include missed alerts, delay in treatment or 
diagnosis, or impaired decision-making when responding to future alerts.”

Depinet et al. [43] Interruptive
Alert, data collection 
screen and feedback 

interface

“The firing of the CDS tool each time there was a chief complaint related to 
appendicitis may have led to alert fatigue. Overall, more work is needed to 

introduce a culture of standardized care in which such a decision support tool 
could work optimally.”

Herasevich et al. 
[29] Interruptive Bedside alert via text 

paging

“Because the majority of patients are treated with appropriate ventilator 
settings, unnecessary interruptions with new alert paradigms could have a 

detrimental effect on performance. It is therefore critical to incorporate 
contextual smiddle rules within decision support systems to prevent false 

positive alerts. Interruptions are often seen as distracting or sometimes 
devastating elements that need to be minimized or eliminated.”

Jin et al. [49] Non-
Interruptive

Display on nursing 
record screen

“Most computerized risk assessment tools require that nurses measure each 
score for each item in the scale. Thus, risk assessment scores are obtained 

only if all item scores are entered into the EHR system. Hence, as reported in 
a previous study, nurses have experienced work overload and fatigue and 

expressed their preference to use the paper charts. In addition, nurses felt a lot 
of time pressure.”

Kharbanda et al. 
[40] Interruptive Alert and dashboard 

display

“Four of eight (50 percent) rooming staff respondents reported that alerts to 
remeasure a BP [blood pressure] ‘sometimes’ interfered with their workflow, 

and the remaining responded that the alerts ‘rarely interfered.’”

Oh et al. [35] Non-
Interruptive

Pop-up window 
displayed on primary 

electronic medical 
record screen

“Most of the nurses did not recognize the urgent need for delirium care and 
did not consider it part of their regular routine. Therefore, nurses considered 

the additional care indicated by the system as extra work.”

Shimabukuro et 
al. [51] Interruptive Alert via phone call 

to charge nurse
“Systems that use these scores deliver many false alarms, which could impact 

a clinician’s willingness to use the sepsis classification tool.”
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Table 3.

Distribution of studies regarding source of predictive model and improvement in clinical outcomes after 

implementation. Only studies that reported evaluations of effects of model implementation on clinical 

outcomes are included in the table.

Custom Model (n = 19) “Off-the-Shelf” Model (n = 13)

Improved clinical outcomes 16 (84.2%) 6 (46.2%)

No improvements in outcomes 3 (15.8%) 7 (53.8%)
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Table 4.

Distribution of studies regarding intended users of EHR-based predictive models and improvement in clinical 

outcomes after implementation. Only studies that reported evaluations of effects of model implementation on 

clinical outcomes are included in the table.

Physicians as Primary Intended 
Users (n = 22)

Nurses as Primary Intended 
Users (n = 8) Other Intended Users

1
 (n = 2)

Improved clinical outcomes 15 (68.2%) 5 (62.5%) 2 (100%)

No improvements in 
outcomes 7 (31.8%) 3 (37.5%) 0 (0%)

1
Other intended users include all cases where physicians and/or nurses were not the intended primary end users, including but not limited to 

respiratory therapists, rapid response coordinators, counselors, or unreported users.
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