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Abstract

The detection of the singleton attractors is of great significance for the systematic study of

genetic regulatory network. In this paper, we design an algorithm to compute the singleton

attractors and pre-images of the strong-inhibition Boolean networks which is a biophysically

plausible gene model. Our algorithm can not only identify accurately the singleton attractors,

but also find easily the pre-images of the network. Based on extensive computational experi-

ments, we show that the computational time of the algorithm is proportional to the number of

the singleton attractors, which indicates the algorithm has much advantage in finding the

singleton attractors for the networks with high average degree and less inhibitory interac-

tions. Our algorithm may shed light on understanding the function and structure of the

strong-inhibition Boolean networks.

Introduction

Revealing how a genetic regulatory network is organized for its function is one of the main

topics in system biology [1–3]. With the contribution of experimental physiologists, many pre-

cise details of gene interactions as well as their functions have been revealed [3]. Based on the

experimental data, different kinds of mathematical models have been developed, such as mas-

ter equations [4], Monte-Carlo method [5, 6], stochastic model [7, 8], ordinary differential

equations (ODE) [9–13], Boolean network method [14–16] and other mathematical models

[17]. Among all the models, the Boolean network is a simple but powerful mathematical

model. It was originally introduced by Kauffman [14] and has been quickly developed into

many different types, including the general Boolean network model [15], the AND/OR Bool-

ean network model [16], and the strong-inhibition Boolean network model [18], and so on. In

the general Boolean network model, the most details of the network are taken into account. It

can perfectly yield insight to global behavior of the network, however, it is difficult to analysis

the general Boolean network due to the complexity of large genetic regulatory network. Fur-

ther, a much simpler AND/OR Boolean network model where many details of the network are
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neglected is presented. Recently, a strong-inhibition Boolean network model which is a bio-

physically plausible gene model has been obtained from the transition of the general Boolean

network model, as the inhibitory interactions often dominate the activations in some impor-

tant genomic regulations [18]. The model has been successfully used to reveal the backbone

motif structure of the cell-cycle network and reconstruct the network structure from evolution

data [18–20], since the model has more details of the network, and a simple rule which is

similar to the AND/OR Boolean network model. It is very suitable to be applied to study the

genetic regulatory network.

To capture the biological meaning of the genetic regulatory network, it is very necessary to

identify the stable states of the dynamic system, such as the cyclic attractor and the singleton

attractor. Two different attractors correspond to different functional states of the network. As

an example, the cyclic and singleton attractor correspond to cell growth and differentiated

states (or apoptosis) in the cell-cycle network, respectively [21]. It is noteworthy that the iden-

tification of the attractors is of great importance and is very useful in many applications, such

as the treatment of human cancers [22, 23], genetic engineering [24] and validate hypotheses

on the transcription processes [25]. In order to identify all attractors of the genetic regulatory

network, so far several methods have been proposed, including the methods relying on binary

decision diagrams [26, 27], constraint programming [28], feedback vertex sets [29, 30], linear

mapping [31]. Moreover, many of these methods have been developed to be more general and

effective [32–34].

In particular, the identification of the singleton attractor is especially important for reveal-

ing the function of the genetic regulatory network [30]. To find the singleton attractors of the

genetic regulatory network in the context of a Boolean network, several algorithms have been

proposed. For instance, Leone et al. firstly applied the SAT (the satisfiability problem of Bool-

ean formulas in conjunctive normal form) algorithms to identify the singleton attractor in a

Boolean network [35]. Based on this observation, Tamura and Akutsu showed that the detec-

tion problem of singleton attractor for a Boolean network with maximum in-degree k can be

reduced to (k + 1)-SAT, and presented an algorithm for detecting the singleton attractor of an

AND/OR Boolean network in O(1.787N) time [36]. Subsequently, the authors and coworkers

succeeded in improving the above algorithm, including proposed an O(1.587N) time algorithm

for determining the singleton attractor of an AND/OR Boolean network [37], an O(1.757N)

time algorithm for determining the singleton attractor of planar and nonplanar Boolean

networks [38], the O(1.799N) and O(1.619N) time algorithm for determining the singleton

attractor of Boolean networks with nested canalyzing functions and chain functions [39],

respectively. In the O(1.799N) time algorithm, it was implicitly assumed that the network does

not contain the positive self-loop. While allowing for the presence of positive self-loop, the sin-

gleton attractor detection problem was solved in O(1.871N) time [40]. Besides, Zhang et al.

developed a quite fast algorithm using gene ordering [30]. It is shown that the algorithm can

identify all singleton attractors for a random Boolean network with maximum indegree two

with an average time O(1.19N). However, the average computational time complexity would

increase (approximately O(1.5N) for maximum indegree ten) with increasing of maximum

indegree. Recently, Zou proposed an algorithm by dividing the polynomial equation system

into many subsystems [41]. Indeed, the problem of detection for the singleton attractor is still

NP-hard [29, 30, 42]. Thus, it is not plausible to solve this problem efficiently in all cases. How-

ever, we can develop a new algorithm that is fast and can be applied in different mathematical

models.

In this paper, we focus our attention on the strong-inhibition Boolean network model, and

propose an algorithm for detecting the singleton attractors and pre-images of genetic regula-

tory network. Our algorithm is applied to the cell-cycle network of budding yeast, and can
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accurately identify all the singleton attractors of the network. Furthermore, we show that the

average computational time increases exponentially with the growth of the network size N,

and the order is approximately O(1.34N). Moreover, we discover that the computational time

is proportional to the number of the singleton attractors of network. Based on this observation,

we find that our algorithm has much advantage in finding the singleton attractors for the net-

works with high average degree and less inhibitory interactions. We further extend the algo-

rithm for studying the pre-image problem. The pre-image problem (or predecessor problem),

to find the set of all possible inputs that evolve into the given output, has been addressed by

Wuensche in [43]. In recent years, several algorithms have been introduced, such as reverse

algorithm [44], probabilistic algorithm [45]. But it has also been shown to be NP-hard in gen-

eral [46]. In this paper, we extend the previous singleton attractor detection algorithm to find

the pre-images of any given state. All pre-images and even the basin of one singleton attractor

are successfully and accurately found.

The paper will be arranged as follows: in Sec. II, the state transition model is introduced. In

Sec. III, the algorithm for finding the singleton attractor is given. In Sec. IV, we show an exam-

ple for finding the singleton attractor with this algorithm, and the computational time of the

algorithm for finding singleton attractors is analyzed. In Sec. V, we present the algorithm of

finding the pre-images of any target network state. Finally, we give a summary in Sec VI.

State transition model

Boolean network model is a discrete dynamical model of genetic regulatory networks. In this

model, each node has only two states, 1 or 0, representing “on” (active) or “off” (inactive) state,

respectively. For a network system with N components, the network state at time t is denoted

by S(t) = (S1(t), S2(t), . . ., SN(t)). The network state in the next step is uniquely determined by

the following rule [15]:

Siðt þ 1Þ ¼

1; if
PN

j¼1
aijSjðtÞ > 0;

0; if
PN

j¼1
aijSjðtÞ < 0;

SiðtÞ; if
PN

j¼1
aijSjðtÞ ¼ 0;

ð1Þ

8
>>><

>>>:

where i, j = 1, 2, . . ., N. A = {aij, i, j = 1, 2, . . ., N} is the adjacency matrix of the network, which

denotes the interactions between all the components. aij can be positive, negative, or zero,

standing for an activating interaction, inhibiting interaction or no interaction, respectively.

Usually, aii take −1, 1, or 0, and aij take −γ, 1, or 0 for j 6¼ i.
In fact, the inhibiting interactions are dominant for most biomolecular interactions, one

prefers γ� 1. Following the “dominant inhibition” assumption γ =1, which represents some

typical biological transcriptional regulatory processes [47–49], the Eq (1) can be simplified

into a logical equation [18]

Siðt þ 1Þ ¼ ð
X

j6¼i

ðSjðtÞgijÞ þ SiðtÞr ii þ SiðtÞgiiÞ
Y

j6¼i

ðSjðtÞrijÞ; ð2Þ

where rij and gij represent the putative inhibitory and putative stimulatory edge from node j to

i, respectively. The relation between aij and gij, rij is

gij ¼ 1; rij ¼ 0; if aij ¼ 1;

gij ¼ 0; rij ¼ 1; if aij ¼ � g or � 1;

gij ¼ 0; rij ¼ 0; if aij ¼ 0;

ð3Þ

8
><

>:

Algorithm for Finding the Singleton Attractors and Pre-Images

PLOS ONE | DOI:10.1371/journal.pone.0166906 November 18, 2016 3 / 18



where i, j = 1, 2, . . ., N. It should be noted that node j can’t have activating and inhibiting effect

on node i at the same time, namely gij and rij can’t both take the value 1 for any fixed i and j.
The addition, multiplication and bar in the Eq (2) represent the Boolean operator OR, AND,

and NOT, respectively. This model is called strong-inhibition Boolean model due to the “dom-

inant inhibition” assumption.

The algorithm for finding the singleton attractor

To identify the singleton attractor which the network system will eventually evolve into a lim-

ited set of stable states, we should check all the states in the network state space. However, a

great deal of time will be assumed for the large networks under this enumeration-based algo-

rithm since the state space consists of 2N different states. So it is very necessary to design more

efficient method to identify the singleton attractor.

For the strong-inhibition Boolean model, the singleton attractors are solutions of the fol-

lowing equations

SiðtÞ ¼ ð
X

j6¼i

ðSjðtÞgijÞ þ SiðtÞr ii þ SiðtÞgiiÞ
Y

j6¼i

ðSjðtÞrijÞ; ð4Þ

where i, j = 1, 2, . . ., N. We can obtain a concise equation by setting Si = Si(t),

Si ¼ ð
X

j6¼i

ðSjgijÞ þ Sir ii þ Si giiÞ
Y

j6¼i

ðSjrijÞ; for i ¼ 1; 2; :::;N: ð5Þ

Among all the interactions that regulate node i, we suppose that there are h positive interac-

tions (gij1
= gij2

= . . . = gijh
= 1) and m negative interactions (rik1

= rik2
= . . . = rikm

= 1). Then Eq

(5) can be written as:

Si ¼ Sk1
^ Sk2

^ � � � ^ Skm
^ ðSj1

_ Sj2
� � � Sjh

_ XiÞ; ð6Þ

where ^ and _ represent AND and OR, respectively. And Xi = 1 if gii = 1; Xi = 0 if rii = 1; Xi =

Si if gii = rii = 0. According to the definition in Ref. [40], one can see that the right side of Eq (6)

is a chain function, which is a special case of nested canalyzing function (nc-function). It was

proved by Akutsu et al. that finding a singleton attractor for an nc-network with chain func-

tions remains NP-hard [39].

Then, some rules are gotten by analysing Eq (5),

rule 1. if Si = 1 and rji = 1, then Sj = 0;

rule 2. if Si = 1 and rij = 1, then Sj = 0;

rule 3. if Si = 1, rii = 1, gij0
= 1 and ∑j6¼j0(Sj gij) = 0, then Sj0

= 1;

rule 4. if Si = 0 and ∑j6¼i(Sj rij) = 0, gij0
= 1 and ∑j6¼j0(Sj gij) = 0, then Sj0

= 0;

rule 5. if rii = 1 and ∑j6¼i(Sj gij) = 0, then Si = 0;

rule 6. if gii = 1 and ∑j6¼i(Sj rij) = 0, then Si = 1;

rule 7. if ∑j6¼i(Sj rij) = 0, and there is a node j0 such that Sj0
gij0

= 1, then Si = 1.

According to these rules and the given network structure, the states of other nodes can be

determined if we already know the states of part of nodes. The states of its neighbors may be

determined with the rules 1 − 4 if the state of a node is known; its state may be determined

with the rules 5 − 7 if the state of a node is unknown. What’s more, according to the rules 1

and 2, we can find that if Si = 1 and the node i has more putative inhibitory connections, the

Algorithm for Finding the Singleton Attractors and Pre-Images
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states of its neighbors can be easily determined. Based on these rules, we can design the follow-

ing algorithm to identify the singleton attractors.

Step 1. Input the network matrix A, and a network state S = (S1, S2, . . ., SN), where the states of

l0 (0< l0� N) nodes are unknown while the states of other N − l0 nodes are known. Those

l0 nodes are variable nodes as their states can be 1 or 0.

Step 2. Find the node i0 which has the most putative inhibitory connections among the vari-

able nodes of the network.

Step 3. Let S1
old ¼ S and assign Si0

= 1. According to the rules 1 − 7, we can determine the states

of more variable nodes, and obtain new network state Snew. Throughout this process, a case

may occur: according to one rule, the state of a variable node can be determined as 1, but

it is determined as 0 with another rules. This contradiction means that the assignment of

Si0
= 1 is not appropriate, and the corresponding network state is not a singleton attractor of

the network system, so we should remove it. On the other hand, if this case does not occur,

we should remember the state Snew and count the number of its variable nodes lnew. More-

over, if lnew > 0, we should remember this state and wait the next turn to begin Step 1; if

lnew = 0, which means that the states of all nodes are determined and a new singleton

attractor is found, return this singleton attractor.

Step 4. Let S0
old ¼ S and assign Si0

= 0. Do the same as those did in Step 3.

Next, we will prove that the states found with our algorithm are exactly all the singleton

attractors of the network. In our algorithm, we determine the states of variable nodes accord-

ing to the rules and remove the state if contradiction appears. Actually, the states found with

our algorithm are states that do not contradict with the rules, here we use set U to denote

them. And we use set V to represent all the singleton attractors of the network. Because a sin-

gleton attractor must satisfy Eq (5), so it obeys the rules, thus V is a subset of U, namely V� U.

Afterwards, we will prove that U is also a subset of V.

Suppose that U is not a subset of V, there must be a state S0 such that S0 2 U and S0 =2 V.

Accordingly, the state S0 obeys all the rules but does not satisfy Eq (5). Then, there must be a

node’s state, assuming S0
i , such that

S0

i 6¼ ð
X

j6¼i

ðS0

j gijÞ þ S0

i r ii þ S0
i giiÞ

Y

j6¼i

ðS0
j rijÞ; ð7Þ

where S0
i ¼ 0 or 1.

Firstly, assuming S0
i ¼ 0 and inserting it into Eq (7), we obtain

ð
X

j6¼i

ðS0

j gijÞ þ giiÞ
Y

j6¼i

ðS0
j rijÞ ¼ 1: ð8Þ

Therefore, we get

Y

j6¼i

ðS0
j rijÞ ¼ 1; ð9Þ

ð
X

j6¼i

ðS0

j gijÞ þ giiÞ ¼ 1: ð10Þ
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The Eq (9) indicates
X

j6¼i

ðSjrijÞ ¼ 0: ð11Þ

And from Eq (10), we obtain

gii ¼ 1 or
X

j6¼i

ðS0

j gijÞ ¼ 1: ð12Þ

Obviously, it contradicts with the rule 6 through Eq (11) and S0
i ¼ 0 if gii = 1. And if

P
j6¼iðS

0
j gijÞ ¼ 1, then there must be a node j0 such that S0

j0
gij0
¼ 1. So we can get

S0

j0
¼ 1 and gij0

¼ 1: ð13Þ

Through Eqs (11) and (13) and S0
i ¼ 0, one can see that it contradicts with the rules 4 and 7.

Therefore, it is impossible that S0 which obeys all the rules does not satisfy the Eq (5), if

S0
i ¼ 0.

Then, we assume S0
i ¼ 1. Inserting it into Eq (7), we obtain

ð
X

j6¼i

ðS0

j gijÞ þ riiÞ
Y

j6¼i

ðS0
j rijÞ ¼ 0: ð14Þ

Further, we get
X

j6¼i

ðS0

j gijÞ þ r ii ¼ 0 or
Y

j6¼i

ðS0
j rijÞ ¼ 0: ð15Þ

If
P

j6¼iðS
0
j gijÞ þ r ii ¼ 0, then

P
j6¼iðS

0
j gijÞ ¼ 0 and rii = 1. It contradicts with the rule 5 since

S0
i ¼ 1. If

Q
j6¼iðS0

j rijÞ ¼ 0, then there must be a node j0 such that

S0

j0
¼ 1 and rij0

¼ 1: ð16Þ

Through Eq (16) and S0
i ¼ 1, we find that it contradicts with the rules 1 and 2. These results

show that if S0
i ¼ 1, it is also impossible that S0 which obeys all the rules does not satisfy Eq (5).

Now we can conclude that the state S0, which obeys all the rules but dissatisfies Eq (5), does

not exist. It indicates that U is a subset of V, namely U� V. Therefore, U = V is proved. And

we get the proof that the states found with our algorithm are exactly all the singleton attractors

of the network. The code of this algorithm is provided in Supporting Information (S1 File).

An example for finding the singleton attractor

To verify the validity of the above algorithm, we apply it to detect the singleton attractors of

the cell-cycle network for budding yeast which is well studied in the research of cell-cycle pro-

cess [15]. As shown in Fig 1(a), the network consists of 11 nodes and 34 edges. According to

prior works, there are 7 singleton attractors among 211 = 2048 states in the state space of the

cell-cycle network, as shown in Fig 1(b). Next, we will show how to find these singleton attrac-

tors with our algorithm.

A flow chart for detecting all the singleton attractors of the network is shown in Fig 2. We

obtain S1 = 0 according to the known network structure and the rule 5. Next, we begin to

detect the states of the variable nodes. We firstly rank all nodes from large to small according

to the number of their putative inhibitory connections, the order is node 10, 9, 8, 5, 7, 4, 6, 3,

2, 11, 1.
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Firstly, the network state (S1, S2, . . ., SN) is set to (0, S2, . . ., SN) with l0 = N − 1. Then, we get

S7 = 1 according to the rule 7 by setting S10 = 1. Afterwards, S10 = 0 is obtained according to

the rule 1. Now the contradiction appears, so the state S = (0, S2, . . ., S9, 1, S11) should be

removed. On the other hand, assign S10 = 0. It turns out that no more nodes’ state can be deter-

mined, so we remember the state S = (0, S2, . . ., S9, 0, S11) with l0 = N − 2 and begin the next

turn.

Secondly, we have network state S = (0, S2, . . ., S9, 0, S11) with l0 = N − 2. Then, we get S8 = 0

and S4 = 0 according to the rules 1 and 2 by assigning S9 = 1. We obtain S3 = 0 and S7 = S11 = 0

based on these known states and the rules 4, 5. S6 = 0 according to the rule 5. Now, no more

nodes’ states can be determined, so we remember the state S = (0, S2, 0, 0, S5, 0, 0, 0, 1, 0, 0)

with l0 = 2 and wait the next turn. Assign S9 = 0, we can not determine the states of any nodes,

so we remember the state S = (0, S2, . . ., S8, 0, 0, S11) with l0 = 8 and begin the next turn.

Thirdly, there are two network states S = (0, S2, 0, 0, S5, 0, 0, 0, 1, 0, 0) with l0 = 2 and S = (0,

S2, . . ., S8, 0, 0, S11) with l0 = 8. For the first network state, we find that all cases are ok through

Fig 1. (a) The cell-cycle network of budding yeast. The green solid and pink dashed arrows represent positive and negative interactions,

respectively. (b) Seven singleton attractors are found under the strong-inhibition Boolean model for the network in (a). The basin size for each

singleton attractor is also given in the figure.

doi:10.1371/journal.pone.0166906.g001
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the assignment of S2 = 0 or 1 and S5 = 0 or 1. Therefore, we can obtain 4 singleton attractors:

S = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0) and (0, 0,

0, 0, 0, 0, 0, 0, 1, 0, 0). For the second network state, assigning S8 = 1, we obtain S11 = 1, and

then we obtain S7 = 1 according to the rule 7. We can get S8 = 0 according to S7 = 1 and the

rule 1, when contradiction appears. So this state should be removed. On the other hand, we

assign S8 = 0, according to the rule 5, we have S11 = 0, and further S7 = 0. Then according to

the rules 4 and 5, we obtain S2 = 0 and S6 = 0, respectively. Now, we can not determine the

states of any nodes, so we remember the state S = (0, 0, S3, S4, S5, 0, 0, 0, 0, 0, 0) with l0 = 3 and

begin the next turn.

Fourthly, the network state is S = (0, 0, S3, S4, S5, 0, 0, 0, 0, 0, 0) with l0 = 3. We assign S5 = 1,

S4 = 0 is determined according to the rule 2. Further, we have S3 = 0 according to the rule 4.

Therefore, we can return the singleton attractor S = (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0). On the other

hand, we assign S5 = 0, and find that the states of nodes 3 and 4 can not be determined. So we

remember the state S = (0, 0, S3, S4, 0, 0, 0, 0, 0, 0, 0) with l0 = 2 and begin the next turn.

Fifthly, the network state S = (0, 0, S3, S4, 0, 0, 0, 0, 0, 0, 0) with l0 = 2 is gotten. Assigning

S4 = 1, we have S3 = 1 according to the rule 3. So we return the singleton attractor S = (0, 0, 1,

1, 0, 0, 0, 0, 0, 0, 0). Next, we assign S4 = 0, we obtain S3 = 0 according to the rule 4. So we

return the singleton attractor S = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

Finally, we get all the singleton attractors: S = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0, 0,

0, 1, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

Fig 2. The flow chart for detecting all singleton attractors of the cell-cycle network of budding yeast.

doi:10.1371/journal.pone.0166906.g002
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(0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). These seven states are exactly all the

singleton attractors of the cell-cycle network of budding yeast as shown in Fig 1(b).

Furthermore, the singleton attractors of five classical networks are detected. As shown in

Table 1, the number of singleton attractors (NS) and running time of our algorithm for each

network are given in columns 4 and 5. We also give the results of the enumeration-based algo-

rithm in columns 6 and 7. Comparing our algorithm with the enumeration-based algorithm,

our algorithm can not only find the same number of the singleton attractors with the enumera-

tion-based algorithm (columns 4 and 6), but also decrease extremely the running time (col-

umns 5 and 7). Especially for the largest network (T-cell receptor), it took round 0.0468

seconds for our algorithm, whereas the enumeration-based algorithm spent more than 40

hours.

Next, we will show the computational time of our algorithm by numerical simulations on

random gene regulatory networks. Similar to the ER random network [54], there exits interac-

tion (aij 6¼ 0) from node j to i (i = j is allowed) with the probability p. Usually, the parameter

p is determined by p = hki/N, where hki is the average degree of the network. Furthermore,

aij 6¼ 0 has been assumed to take an independent value (±1) distributed according to a two-

point probability distribution function. More specifically, we adopt the following values at ran-

dom:

aij ¼
� 1; the inhibiting interaction with probability r;

1; the activating interaction with probability 1 � r:
ð17Þ

(

The average degree is about 2 * 4 for many biological networks, and the amount of inhibiting

interactions is less than that of activating interactions [15, 55–57], so hki = 3 and r = 0.4 are

fixed. We set N = 50 and generate 500 sample networks. The CPU computational time for

finding all the singleton attractors of each network with above algorithm is calculated and

shown in Fig 3(a). As we can see, the singleton attractors of every network can be detected,

and the time is no more than 1 minute. This indicates that the singleton attractors of a network

can be found efficiently with our algorithm.

The average CPU computational time avT as a function of the network size N is also com-

puted. The result is shown in a semi-logarithmic plot in Fig 3(b), with a straight fit (dashed

line) to guide an eye. The value of avT for each N is averaged over 500 samples. And the error

bars denote the range of CPU computational time, where the upper and lower ends of bars

represent the maximum and minimum values, respectively. In the figure, the average CPU

computational time increases as the growth of network size N. This behavior is well character-

ized by the exponential relationship, avT/ 1.34N. This exponential increase also exists between

the maximum CPU computational time and the size of network.

Although the average and maximum CPU computational time increase exponentially with

the increase of N, we do not know why the minimum CPU computational time is very short for

Table 1. Experiment results of five classical networks.

Network size Our algorithm Enum. algorithm

Network name Nodes Edges NS time(s) NS time(s)

Cancer cell [50] 8 21 2 <10−8 2 <10−8

Budding yeast [16] 11 34 7 <10−8 34 <10−8

Arabidopsis thaliana [51] 15 43 188 <10−8 43 0.0156

T-helper cell [52] 23 35 4453 0.1404 4453 2.5896

T-cell receptor [53] 40 596 1364 0.0468 1364 147080.09

doi:10.1371/journal.pone.0166906.t001

Algorithm for Finding the Singleton Attractors and Pre-Images

PLOS ONE | DOI:10.1371/journal.pone.0166906 November 18, 2016 9 / 18



each N, as shown in Fig 3(b). To understand this question, the maximum, average, and mini-

mum number of the singleton attractors as the function of the size of system N are shown in Fig

4(a), respectively. From this figure, we find that the average and the maximum number of the

singleton attractors increase exponentially with N increasing, and there is not exponential rela-

tion between the minimum number of the singleton attractors and the size of system. Further-

more, the sample networks with size of N = 50 are generated. We plot the CPU computational

time against the number of singleton attractors (NS) of the sample networks, and show the

result in Fig 4(b). We find that the computational time increases linearly with the number of

the singleton attractors increasing. Based on these observations, the minimum CPU computa-

tional time nonexponentially increases with the size of system, as the exponential relation

between the minimum number of the singleton attractors and the size of system does not exist.

Following the above observation, we may want to know what characteristics of networks

could have small number of singleton attractors. So we calculate the average number of

Fig 3. (a) The CPU computational time assumed of the algorithm for finding the singleton attractors of M (M = 500) random genetic

regulatory network with N = 50, hki = 3, r = 0.4. (b) Semi-logarithmic plot of the averaged CPU computational time (avT) as a function of the

network size N. For each N, the value of avT is averaged over M (M� 500) samples. And the error bars denote the range of CPU

computational time, while the upper and lower ends of bars represent the maximum and minimum values, respectively. The straight dashed

line is linearly fit of the data, indicative of the correlation avT/ 1.34N.

doi:10.1371/journal.pone.0166906.g003
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singleton attractors of networks for different average degree hki0s and inhibiting interactions

probability r0s. In Fig 5(a) and 5(b), we show the semi-logarithmic plots of avS (the average

number of singleton attractors) as a function of hki and r, respectively. We can find that avS
decreases extremely fast with the increase of hki and increases exponentially with the increase

of r. According to the above observation, these results indicate that less computational time is

assumed to find the singleton attractors of the networks with high average degree and less

inhibitory interactions.

Fig 4. (a) Semi-logarithmic plot of the maximum (MaxS), average (avS), and minimum (MinS) number of the singleton attractors of networks

as the function of the size of system N. (b) Semi-logarithmic plot of the CPU computational time vs the number of the singleton attractors

(NS). The straight line is linearly fit of the data to guide an eye.

doi:10.1371/journal.pone.0166906.g004

Fig 5. (a) Semi-logarithmic plot of the avS as a function of the average degree hki for networks with N = 50, r = 0.4. (b) Semi-logarithmic

plot of the avS against the inhibiting interactions probability r for networks with N = 50, hki = 5. Every data in the plots is averaged over

M (M� 500) samples.

doi:10.1371/journal.pone.0166906.g005
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Finding the pre-images of any target network state

The pre-images are the set of all possible inputs which evolve into a given output. For the

strong-inhibition Boolean model, the pre-images of a given state S0(t + 1) (target state) are the

solutions of

S0

i ðt þ 1Þ ¼ ð
X

j6¼i

ðSjðtÞgijÞ þ SiðtÞrii þ SiðtÞgiiÞ
Y

j6¼i

ðSjðtÞrijÞ; ð18Þ

For simplity, we will use Sj to represent Sj(t). Through analysing this equation, we can still

obtain the following rules if S0
i ðt þ 1Þ ¼ 1,

rule 1.1. if rij = 1, then Sj = 0;

rule 1.2. if rii = 1, gij0
= 1, ∑j6¼i(Sjrij) = 0 and ∑j6¼j0(Sjgij) = 0, then Sj0

= 1;

rule 1.3. if gii = 0, rii = 0, ∑j6¼i(Sjrij) = 0 and ∑j6¼i(Sjgij) = 0, then Si = 1;

rule 1.4. if gii = 0, gij0
= 1, ∑j6¼i(Sjrij) = 0, ∑j6¼j0(Sjgij) = 0 and Si = 0, then Sj0

= 1;

rule 1.5. if rii = 1 and ∑j6¼i(Sjgij) = 0, then contradiction appears.

Some rules are given if S0
i ðt þ 1Þ ¼ 0,

rule 2.1. if ∑j6¼i(Sjrij) = 0 and there is a node j0 such that gij0
= 1, then Sj0

= 0;

rule 2.2. if gii = 0, rii = 0 and ∑j6¼i(Sjrij) = 0, then Si = 0;

rule 2.3. if gii = 1, rij0
= 1, and ∑j6¼j0(Sjrij) = 0, then Sj0

= 1;

rule 2.4. if rij0
= 1, ∑j6¼i, j6¼j0(Sjrij) = 0 and gii = 1 or there is a node j00 such that Sj0

0
gij0

0
¼ 1, then

Sj0
= 1;

rule 2.5. if gii = 1 and ∑j6¼i(Sjrij) = 0, then contradiction appears.

If one observes carefully those rules, we find that the previous algorithm for detecting the

singleton attractors can be extended to find the pre-images for any target network state. Here,

we just need to input the target state in Step 1 and replace the rules 1 − 7 with rules 1.1 − 1.5

and 2.1 − 2.5 in Steps 3 and 4.

Next, we will prove that the states found with this algorithm are precisely all the pre-images

of the target network state. Here, we still use U and V to stand for the set of the states found

with this algorithm and the set of all the pre-images of the target network state, respectively.

Obviously, any pre-image of S0(t + 1) must satisfy Eq (18), and it follows certainly all the rules.

So V is a subset of U, namely V� U. Therefore, to prove U = V, we just need to prove U� V.

Suppose that U is not a subset of V, then there must be a state S0(t) such that S0(t) 2 U and

S0(t) =2 V. The state S0(t) obeys all the rules but does not satisfy Eq (18), namely, there is a

node’s state which dissatisfies the equation. We assume that this state is S0
i ðt þ 1Þ, and we have

S0

i ðt þ 1Þ 6¼ ð
X

j6¼i

ðS0

j ðtÞgijÞ þ S0

i ðtÞr ii þ S0
i ðtÞgiiÞ

Y

j6¼i

ðS0
j ðtÞrijÞ; ð19Þ

where S0
i ðt þ 1Þ ¼ 0 or 1.

Firstly, assuming S0
i ðt þ 1Þ ¼ 1 and inserting it into Eq (19), we obtain

ð
X

j6¼i

ðS0

j ðtÞgijÞ þ S0

i ðtÞrii þ S0
i ðtÞgiiÞ

Y

j6¼i

ðS0
j ðtÞrijÞ ¼ 0: ð20Þ
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This equation indicates

Y

j6¼i

ðS0
j ðtÞrijÞ ¼ 0 ð21Þ

or

X

j6¼i

ðS0

j ðtÞgijÞ þ S0

i ðtÞrii þ S0
i ðtÞgii ¼ 0: ð22Þ

Through Eq (21), there must be a node j0 such that S0
j0
ðtÞ ¼ 1 and rij0 = 1, we can find that it con-

tradicts with the rules 1.1. So it is necessary that
Q

j6¼iðS0
j ðtÞrijÞ ¼ 1, hence we have ∑j 6¼ i(Sjrij) = 0.

If Eq (22) holds, one case is
P

j6¼iðS
0
j ðtÞgijÞ ¼ 0, gii = rii = 0 and S0

i ðtÞ ¼ 0, it contradicts with the

rule 1.3 through ∑j 6¼ i(Sjrij) = 0; the other case is
P

j6¼iðS
0
j ðtÞgijÞ ¼ 0 and rii = 1, we can observe

that the contradiction appears according to the rule 1.5. Therefore, it is impossible that S0(t)
which obeys all the rules does not satisfy Eq (18), if S0

i ðt þ 1Þ ¼ 1.

Afterwards, we assume S0
i ðt þ 1Þ ¼ 0. Inserting it into Eq (19), we obtain

ð
X

j6¼i

ðS0

j ðtÞgijÞ þ S0

i ðtÞrii þ S0
i ðtÞgiiÞ

Y

j6¼i

ðS0
j ðtÞrijÞ ¼ 1: ð23Þ

From this equation, we can get

Y

j6¼i

ðS0
j ðtÞrijÞ ¼ 1; ð24Þ

ð
X

j6¼i

ðS0

j ðtÞgijÞ þ S0

i ðtÞrii þ S0
i ðtÞgiiÞ ¼ 1: ð25Þ

The Eq (24) indicates

X

j6¼i

ðS0

j ðtÞrijÞ ¼ 0: ð26Þ

And from Eq (25), we obtain

X

j6¼i

ðS0

j ðtÞgijÞ ¼ 1 ð27Þ

or

S0

i ðtÞr ii þ S0
i ðtÞgii ¼ 1: ð28Þ

If Eq (27) works, then there must be a node j0 such that

S0

j0
ðtÞ ¼ 1 and gij0

ðtÞ ¼ 1: ð29Þ

Through Eqs (26) and (29), we can find that it contradicts with the rule 2.1. On the other

hand, if Eq (28) is valid, two cases should be discussed: one case is gii = rii = 0 and S0
i ðtÞ ¼ 1, it

contradicts with the rule 2.2 since Eq (26) holds; the other case is gii = 1 (rii = 0 at this time),

combining with Eq (26), one can see that the contradiction appears according to the rule 1.5.

In summary, if S0
i ðt þ 1Þ ¼ 0, it is also impossible that S0(t) obeys all the rules and dissatisfies

Eq (18) at the same time.

These results demonstrate that the state S0(t), which obeys all the rules but dissatisfies the

Eq (18), does not exist. Therefore, U is a subset of V (U� V), and U = V is proved. Now, we
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can conclude that the states found with our algorithm are precisely all the pre-images of the

target network state.

As an example, we will show that how we find the pre-images of one singleton attractor (0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 0) of the cell-cycle network of budding yeast. For this case, S0(t + 1) = (0,

0, 0, 0, 1, 0, 0, 0, 1, 0, 0) in Eq (18). As shown in Fig 6, according to the known network struc-

ture and the rules 1.1 − 1.5 and 2.1 − 2.5, the states of many nodes are determined: we obtain

S4 = S8 = S10 = 0 based on S0
5
ðt þ 1Þ ¼ S0

9
ðt þ 1Þ ¼ 1 and the rule 1.1; then, S1 = 0 and S2 = 0

are gotten according to S0
2
ðt þ 1Þ ¼ 0 and the rules 2.1 and 2.2, respectively; according to

S0
3
ðt þ 1Þ ¼ 0 and the observation 2.2, we obtain S3 = 0; according to S0

6
ðt þ 1Þ ¼ 0 and the

observation 2.1, we obtain S7 = S11 = 0; then again according to S0
5
ðt þ 1Þ ¼ 1 and the rule 1.3,

we obtain S5 = 1. Now, the remain nodes whose states can not be determined are nodes 6 and

9, so we remember the state S = (0, 0, 0, 0, 1, S6, 0, 0, S9, 0, 0) with l0 = 2.

For the network state S = (0, 0, 0, 0, 1, S6, 0, 0, S9, 0, 0) with l0 = 2. We assign S9 = 1 firstly.

However, the state of node 6 can not be determined, and we find that S6 = 0 and S6 = 1 both

are the solutions of the equations. So we return the pre-images S = (0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0)

and (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0). Then, we assign S9 = 0. According to the rule 1.4, we obtain

S6 = 1 and the pre-image is S = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0). Finally, we successfully find three

pre-images of the target network state S0(t + 1): S = (0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0,

0, 0, 1, 0, 0) and (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0).

Fig 6. The flow chart for determing the pre-images of target state S = (0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0).

doi:10.1371/journal.pone.0166906.g006
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We can also find the basin of any singleton attractor with this algorithm by reversely infer-

ring the pre-images step by step: we can obtain the pre-images of the singleton attractor first,

then find the pre-images of all these known pre-images, go on until all states of the basin are

found. The basin of the singleton attractor (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0) is displayed hierar-

chically in Fig 7, where we can clearly see how far a state is from the singleton attractor.

Conclusion

In summary, we have presented a novel algorithm for finding the singleton attractors in

strong-inhibition Boolean networks. The average case time complexity of the proposed algo-

rithm is approximately O(1.34N) which is much faster than the enumeration-based algorithm.

It may not be faster than the out-degree based ordering algorithm in [30] for networks with

very low maximum indegree. However, we find that the computational time assumed of the

algorithm is proportional to the number of the singleton attractors, it shows that our algorithm

will work much better for networks with less singleton attractors, especially for the networks

with high average degree and less inhibitory interactions. What’s more, the algorithm can

be extended to identify the pre-images of any network state and the basin of any singleton

attractor. Therefore, the proposed algorithm could be effective and practical. We hope it has

good applications in the study of biological networks. On the other hand, we can also know

that the algorithm has its own limitations. For example, our algorithm completely relies on the

strong-inhibition Boolean model, it may not be workable for other kinds of model, such as the

general Boolean model. The computational time of the algorithm increases exponentially with

the size of network, so it may not be applied to networks with several hundreds or more nodes.

Moreover, we didn’t get the theoretical results of the time complexity of the algorithm though

we have made great efforts. We hope some of these limitations can be overcome and this work

can be further improved in the future.

Fig 7. The basin of the singleton attractor (0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0) is displayed hierarchically.

doi:10.1371/journal.pone.0166906.g007
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Supporting Information

S1 File. Data and code of the algorithm. This data set contains the code of the algorithm for

finding the singleton attractors and pre-images in strong-inhibition Boolean networks. The

adjacency matrices of five classical networks are also given.
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