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Abstract

Research Article

IntroductIon

Melanocytic nevi are mostly benign and common, but certain 
forms of nevi can be difficult to classify; however, accurate 
classification of nevi is important in feature evaluation for 
distinguishing nevi from melanoma. The architecture and 
cytomorphology of different types of nevi vary significantly and 
their overlapping characteristics further confound the accurate 
diagnosis of malignancy. Features of malignant lesions are 
also found in benign nevi,[1] which makes diagnosis difficult. 
Depending on the criteria, accurate diagnoses range from 71% 
to 82%,[2] leading to 17.6% false diagnoses of melanoma.[3]

Recently, whole-slide image (WSI) scanners have made it 
possible to fully digitize pathology slides. In addition to 
enabling long‑term slide preservation and facilitating slide 
sharing for collaboration or second opinions, digitization of 
pathology slides allows for the development and utilization 
artificial intelligence (AI)‑driven diagnostic tools. During 
microscopic examination, a pathologist uses salient clinical 
information, pattern matching, and feature recognition 

(shape, color, structure, etc.) to render a diagnosis. For 
example, to diagnose melanoma, relevant features may include 
asymmetry, poor circumscription, predominance of single 
melanocytes, mitoses, necrosis, and other features. The major 
objective of this study was to develop a convolutional neural 
network (CNN) capable of distinguishing between conventional 
and Spitz nevi. A classification challenge exists in the diagnosis 
of a subset of melanocytic nevi as conventional or Spitz‑type; 
a difficult but clinically important task. To accomplish this, 
curated image patches of conventional nevi, Spitz nevi, or 
nonnevus skin tissue (other) were manually extracted from 
WSIs by a board‑certified dermatopathologist. The curated 
patches were used to train a CNN for the classification task.

Whole-slide images (WSIs) are a rich new source of biomedical imaging data. The use of automated systems to classify and segment WSIs 
has recently come to forefront of the pathology research community. While digital slides have obvious educational and clinical uses, their most 
exciting potential lies in the application of quantitative computational tools to automate search tasks, assist in classic diagnostic classification 
tasks, and improve prognosis and theranostics. An essential step in enabling these advancements is to apply advances in machine learning and 
artificial intelligence from other fields to previously inaccessible pathology datasets, thereby enabling the application of new technologies to 
solve persistent diagnostic challenges in pathology. Here, we applied convolutional neural networks to differentiate between two forms of 
melanocytic lesions (Spitz and conventional). Classification accuracy at the patch level was 99.0%–2% when applied to WSI. Importantly, when 
the model was trained without careful image curation by a pathologist, the training took significantly longer and had lower overall performance. 
These results highlight the utility of augmented human intelligence in digital pathology applications, and the critical role pathologists will 
play in the evolution of computational pathology algorithms.
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Methods

We investigated the utility of a CNN to assist in the 
classification of selected melanocytic lesions as Spitz or 
conventional. Histologic sections of pigmented lesions 
were reviewed by two board‑certified dermatopathologists 
and only cases where there was concurrence of diagnoses 
of conventional and Spitz nevi were utilized. Slides were 
digitized using an Aperio AT Turbo scanner from Leica 
Biosystems, with ×40 power. Large sections of representative 
tissue were curated by an expert dermatopathologist from 
300 hematoxylin and eosin (H and E) slides each containing 
conventional (n = 150) or Spitz nevi [n = 150, Figure 1]. Slides 
were digitized using an Aperio AT Turbo scanner from Leica 
Biosystems, with ×40 power. The scans from 100 H and E 
slides (50 conventional and 50 Spitz nevi) were used for the 
training and validation set. Smaller variant image patches 
299 × 299 pixels (px) were then derived for conventional 
nevi (n = 15,868), Spitz nevi (n = 21,468), and other nonnevus 
skin features (n = 38,374). From these patches, 30% were used 
exclusively for validation experiments. These image sets were 
then used to train and validate the deep CNN (Inception V3[4]) 
using the TensorFlow framework (version: 1.5.0).[5] Models 
were trained using pretrained weights (available from the 
TensorFlow website) or entirely from scratch. Using pretrained 
weights decrease the time to convergence since it reuses the 
weights that identify sample agnostic image characteristics 
such as edges and curves. Training from scratch means that the 
weights are initially randomized and then adjusted throughout 
the training process to converge. This process typically yields 
higher accuracy but requires more data and compute time 
to relearn basic features in addition to sample‑dependent 
features (e.g., nuclei, cells, tissue compartments). In both 
cases, we used the following hyperparameters: RMSprop 
optimizer, batch size of 32, learning rate of 0.01, and training 
for 250k steps. At 250k steps, the model observed each image 
approximately 150 times (epochs).

A second experiment was also performed on noncurated image 
patches representing the entire slide. In this experiment, tissue 
segments were automatically extracted from the WSI without 
pathologist input. Successive nonoverlapping 299 × 299 px 

tiles representing the entire WSI were evaluated for tissue 
content by converting the red, green, and blue values to gray 
scale and applying a mean intensity cut‑off of >210. Any 
299 × 299 px region with sufficient gray scale intensity was 
considered to possibly contain tissue and was extracted and 
analyzed. Regions with insufficient gray scale intensity were 
not considered for the analysis and treated as missing data. 
Since no human selection occurred, only two prediction classes 
were available: Spitz and conventional, with n = 611,485 
and n = 612,523 image patches, respectively, from the 100 
training slides. To effectively compare the results to the curated 
patch‑level classifications, training was performed for 3.6 M 
steps (~135 epochs).

Testing was performed using 200 WSI not used during training 
or validation. Accuracy was measured at the patch level (from 
the validation patches) and at the WSI level. WSI were classified 
as either conventional or Spitz by calculating a prediction for 
all nonoverlapping 299 × 299 px regions with sufficient 
tissue. Classifications where the classification probability (i.e., 
logit) was at least 10% higher than the next likely class were 
used as votes, with the classification label for the entire slide 
assigned by simple majority (Spitz or conventional, [other was 
ignored]). Accuracy for the WSI‑label predictions was then 
assessed for binary classification accuracy using the Caret 
package (version: 6.0–71)[6] in R (version: 3.2.3).[7] The gold 
standard for the correct classification was the diagnosis made 
by the dermatopathologist.

All codes used for these data are publicly available on 
GitHub.[8] This work was conducted under approval from the 
Institutional Review Board at Mayo Clinic.

results

Training using the curated image patches took approximately 
50 h to complete 250k iterations with 4 GeForce GTX 1080 
GPUs. Training accuracy for curated patches reached 
maximum accuracy (100%) at around epoch 13, whereas 
the pretrained model only began to converge around epoch 
100 [Figure 2]. Training accuracy for the noncurated patches 
converged around epoch 50. The validation accuracy, however, 
revealed stark differences in the generalizability of the models. 

Figure 1: Experimental design. (a) Representative examples of image classes. (b) Sample image selection and modeling. Note the “other” class was 
only available for the curated informative regions
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Both the de novo and pretrained networks had high validation 
accuracy (99.0% and 95.4%, respectively), but the noncurated 
patches were unable to learn transferable features with a final 
validation accuracy of only 52.3%.

A single classification was applied to an entire slide denoting 
whether or not it contained a Spitz or conventional nevus. For 
each patch in a given WSI, a prediction was made as to whether 
that patch was of type “Spitz,” “conventional,” or “other.” 
Then, the number of patches that were predicted as Spitz 
or conventional was tallied, and an overall slide prediction 
was based on whichever category was more abundant. That 
WSI‑level prediction is then compared to the true label of the 
slide to determine accuracy. The classification accuracy of 
the 200 whole slides not seen by the training algorithm was 
92.0%. Sensitivity was 85% with a specificity of 99%. On a 
per class basis, 99 of 100 conventional nevi were classified 
correctly (99%), compared to only 85% for Spitz nevi. Of the 
16 misclassified WSI, 94% were due to Spitz‑type lesions 
being classified as conventional. When further exploring the 
false‑positive calls, a strong edge effect was observed around 
the decision boundary [Figure 3], meaning that the incorrect 
calls were primarily driven by small differences in the expected 
versus observed classes. Examples of correctly and incorrectly 
predicted WSI are shown in Figure 4.

conclusIons

This work highlights an important lesson when developing 
algorithms for use by pathologists; involve the pathologist in 
the design of the assay. The manual curation, though tedious for 
the clinician, proved to be a valuable contribution to optimizing 
model performance. By preselecting representative examples 
of Spitz and conventional nevi, along with providing examples 

for nondiagnostic areas such as hair follicles, sweat glands, and 
tissue artifacts, the model was able to learn faster and has an 
overall higher accuracy on the training and validation sets with 
fewer examples. The number of images used from the curated 
images was ×16 less than the noncurated approach but was 
more focused on learning the salient features for discrimination 
in less time, taking only 50 h to train versus 800.

Given a small image patch, the algorithm will correctly 
predict the correct classification 99% of the time. However, 
there are several important caveats. At present, the classifier 
does not achieve high accuracy with undirected evaluation 
of all image patches extracted from WSIs to be reliable for 
clinical use. Our data show that the accuracy of a single call 
for a WSI is 92% accurate. This is a major limitation since 
this would be the expected workflow in clinical practice. 

Figure 2:  TTraining and Validation Accuracy. (Left) Training accuracy for each cohort of images and models. The shaded area is the margin of error. 
(Right) Accuracy of predictions on the validation images

Figure 3: Experimental design. Count of patch predictions from the 
whole‑slide image. For each whole‑slide image, the total number 
of predictions for Spitz and conventional was aggregated. Squares 
and crosses signify correct classifications. Circles and triangles are 
misclassified whole‑slide image. Notice the majority of misclassified 
images reside near the decision boundary (solid line)
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Figure 4: Example classification of the whole‑slide image. Each of these 
images shows an example of correct (left) or incorrect (right) classification 
for Spitz (top) and conventional (bottom) nevi types. In the heatmaps 
adjacent to each image, each pixel is colored to represent the prediction 
for a particular region. Blue indicates a patch‑level classification for 
“Spitz,” red for “conventional,” and green for “other”

These errors are predominantly derived around a decision 
boundary between the number of patches counted as either 
Spitz or conventional. More sophisticated methods will be 
needed to improve classification accuracy at the whole‑slide 
level. Alternatively, more work could be done to improve the 
patch‑level accuracy (currently at 99%), which would decrease 
the number of false calls in a WSI. Given that each WSI 
generates about 15,000 image patches, a 1% error rate would 
result in 150 false‑positive calls, which on its face does not 
seem alarming. However, ~75% of those fall into the “other,” 
noninformative classification, so the influence of even a few 
incorrect assertions can have moderate influence on the final 
classification.

Additional work on refining that initial classification or on 
developing a secondary machine learning framework for 
results interpretation is necessary to decrease the error rate of 
diagnostic classification of Spitz versus conventional Nevi. 
These data provide strong evidence for the potential utility of 
AI to enhance diagnosis in digital pathology.
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