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Abstract: The pineal hormone, melatonin, plays important roles in circadian rhythms and energy
metabolism. The hepatic peptide hormone, hepcidin, regulates iron homeostasis by triggering the
degradation of ferroportin (FPN), the protein that transfers cellular iron to the blood. However,
the role of melatonin in the transcriptional regulation of hepcidin is largely unknown. Here, we
showed that melatonin upregulates hepcidin gene expression by enhancing the melatonin receptor
1 (MT1)-mediated c-Jun N-terminal kinase (JNK) activation in hepatocytes. Interestingly, hepcidin
gene expression was increased during the dark cycle in the liver of mice, whereas serum iron levels
decreased following hepcidin expression. In addition, melatonin significantly induced hepcidin gene
expression and secretion, as well as the subsequent FPN degradation in hepatocytes, which resulted
in cellular iron accumulation. Melatonin-induced hepcidin expression was significantly decreased by
the melatonin receptor antagonist, luzindole, and by the knockdown of MT1. Moreover, melatonin
activated JNK signaling and upregulated hepcidin expression, both of which were significantly
decreased by SP600125, a specific JNK inhibitor. Chromatin immunoprecipitation analysis showed
that luzindole significantly blocked melatonin-induced c-Jun binding to the hepcidin promoter. Finally,
melatonin induced hepcidin expression and secretion by activating the JNK-c-Jun pathway in mice,
which were reversed by the luzindole treatment. These findings reveal a previously unrecognized
role of melatonin in the circadian regulation of hepcidin expression and iron homeostasis.

Keywords: circadian rhythm; cell signaling; gene regulation; hepcidin

1. Introduction

Iron is an essential element not only for vertebrates, but also for most microorgan-
isms, plants, and invertebrates [1]. In mammals, dietary Fe3+ iron is reduced to Fe2+ by
cellular reductase, which is transported to enterocytes via divalent metal transporter-1 [2].
Absorbed iron binds to the iron-transporter protein, transferrin, which circulates through
the bloodstream and is imported into the cells by binding to transferrin receptors (Tfr) [3].
Most of the iron in the body is bound to the hemoglobin in red blood cells, and this iron
is recycled by macrophages through the degradation of heme by the hydrolytic enzyme
heme oxygenase 1 [4].

Hepcidin is an antimicrobial peptide hormone that plays an important role in iron
homeostasis [5,6]. It is synthesized and secreted by the liver and binds to the iron exporter
ferroportin (FPN) which is present on the membrane of enterocytes, macrophages, and
hepatocytes. By binding to FPN, hepcidin inhibits cellular iron export by inducing its
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internalization and degradation [7]. Transcription of the hepcidin gene is regulated by two
main stimuli, inflammation and plasma iron concentration [8,9]. Inflammatory signals,
such as interleukin-6 (IL-6), activate the Janus kinase/signal transducer and activator of
the transcription 3 signaling pathway, resulting in hepcidin induction [10]. IL-6-induced
hepcidin inhibits the absorption of dietary iron, resulting in hypoferremia, which regulates
pathogen survival [11]. The response of hepcidin to cellular iron levels is regulated by bone
morphogenetic protein 6 (BMP6)/SMAD signaling [12]. BMP6 binds to BMP type I and
type II serine/threonine kinase receptors and induces phosphorylation of SMAD proteins
(SMAD1, SMAD5, and SMAD8) [13]. These findings suggest a critical role of hepcidin
in iron metabolism. However, the circadian regulation of hepcidin and iron homeostasis
remains unknown.

Melatonin, which is also known as N-acetyl-5-methoxytryptamine, is a tryptophan
derivative that is mainly produced by the pineal gland and is dependent on the light/dark
cycle [14]. It functions as a strong antioxidant and directly scavenges free radicals, including
superoxide, hydrogen peroxide, and nitric oxide [15]. Melatonin also reduces oxidative
stress by regulating the transcription and activity of antioxidant enzymes, such as super-
oxide dismutase, catalase, and glutathione peroxidase [16]. Melatonin binds to melatonin
receptor type (MT) 1 and MT2—which are G-protein-coupled receptors—and controls
diverse cellular functions such as energy metabolism, cardiac function, and circadian
rhythm [17–20]. It also regulates lipid metabolism by upregulating the expression of genes
related to lipolysis [21]. In addition, melatonin increases hypothalamic Akt expression,
resulting in the suppression of hepatic gluconeogenesis [22]. These results were further
supported by a previous study that reported decreased free fatty acid levels and systemic
insulin resistance in MT1 knockout (KO) mice [23]. Melatonin also plays an important role
in innate immunity by activating immune cells, such as monocytes, neutrophils, natural
killer cells, and macrophages [24]. In addition, melatonin had a protective effect against
sepsis caused by bacterial infection [25]. Interestingly, it was reported that high serum iron
levels increased mortality in sepsis patients [26]. These findings suggest that there may
be a positive correlation between melatonin and iron metabolism. Indeed, reports have
shown that melatonin plays a role in iron metabolism. For example, melatonin regulates
the concentration of iron-related proteins, including ferritin and transferrin [27]. Moreover,
the administration of melatonin decreased the expression of Tfr which mediates the cellular
uptake of iron under hypoxia [28]. Recently, it was reported that melatonin inhibits iron-
overload-induced apoptosis and necrosis in bone marrow mesenchymal stem cells [29].
However, the mechanistic link between melatonin and iron metabolism is largely unknown.

In this study, we demonstrated the circadian regulation of hepcidin expression and iron
homeostasis. In addition, the pineal hormone, melatonin, regulated the hepcidin expression
and iron metabolism by inducing the activation of MT1-mediated c-Jun N-terminal kinase
(JNK) signaling in hepatocytes. These findings reveal a previously unrecognized role of
melatonin in the transcriptional control of hepcidin—an inducible hepatokine and a key
regulator of iron homeostasis.

2. Results
2.1. Circadian Oscillation of Hepatic Hepcidin Gene Expression

To investigate whether hepcidin gene expression in the liver undergoes circadian
oscillation, we examined the expression of hepcidin in the liver of mice during a 24 h
circadian cycle. Interestingly, hepcidin gene expression was increased during the dark cycle
and peaked at ZT 0, whereas serum iron levels decreased following hepcidin expression
during the dark cycle (Figure 1A,B). Circadian rhythms are controlled by the core circadian
clock genes, Bmal1, Clock, Cry, and Per [30]. These genes constitute a transcriptional
feedback loop and generate circadian oscillation with a 24 h cycle in which the Clock and
Bmal1 heterodimer complex activates the transcription of Cry and Per, which functions as
a transcriptional repressor [31]. Similarly, Bmal1 and Per1 exhibited circadian expression
patterns and showed negative feedback loops (Figure 1C,D). However, these clock genes
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did not affect hepcidin gene expression (Figure S1). These findings suggest that melatonin
could be involved in the circadian oscillation of hepatic hepcidin and serum iron levels.
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Figure 1. Circadian oscillation of hepatic hepcidin gene expression and serum iron levels.
(A–D) C57BL/6J mice (n = 5 per ZT point) were sacrificed at different ZT points (ZT0, ZT4, ZT8,
ZT12, ZT16, and ZT20) to assess the following: (A) Hepcidin mRNA levels in the liver; (B) serum iron
levels; (C) Bmal1 mRNA levels in the liver; (D) Per1 mRNA levels in the liver. All experiments were
performed in triplicate and repeated at least three times. Data are presented as means ± SD.

2.2. Melatonin Induces Hepcidin Expression and Secretion

To examine the possibility that melatonin may regulate hepcidin gene expression in hep-
atocytes, we analyzed hepcidin-promoter activity in HepG2 cells treated with various con-
centrations of melatonin. As expected, melatonin significantly increased hepcidin-promoter
activity (Figure 2A). In addition, hepcidin mRNA levels were significantly induced in
HepG2 (human hepatoblastoma cell line) and AML12 cells (alpha mouse liver 12, a non-
transformed mouse liver cell line) treated with melatonin (Figure 2B,C). To examine the
effect of melatonin on hepcidin secretion, we measured the levels of secreted hepcidin in
the culture medium of melatonin-treated AML12 cells. The results showed that melatonin
significantly increased hepcidin secretion, which was followed by FPN degradation, result-
ing in a high iron concentration in HepG2 and AML12 cells (Figure 2D–F). These results
indicated that melatonin induces hepcidin transcription and secretion in hepatocytes.
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Figure 2. Melatonin upregulates hepcidin production in hepatocytes. (A) Effect of melatonin on
hepcidin-promoter activity. HepG2 cells were transfected with a hepcidin-promoter reporter (mHamp-
luc; 200 ng) and then treated with melatonin for 12 h after 2 h of serum starvation. (B,C) Quantitative
polymerase chain reaction (qPCR) analysis showing hepcidin mRNA expression in (B) HepG2 cells
and (C) AML12 cells. The cells were treated with melatonin for 6 h after 2 h of serum starvation.
(D) Melatonin-induced hepcidin secretion. (E) Western blot analysis of FPN expression. AML12 cells
were treated with melatonin for 6 h after 2 h of serum starvation. (F) Cellular iron concentration
in HepG2 and AML12 cells treated with melatonin (100 µM) for 6 h after 2 h of serum starvation.
Gels for Western blot analysis were run under the same experimental conditions. All experiments
were performed in triplicate and repeated at least three times. Data are presented as means ± SD.
* p < 0.05, ** p < 0.01, *** p < 0.001 using two-tailed Student’s t-test.

2.3. Melatonin Receptor Blockade Prevents Induction of Hepcidin by Melatonin

To elucidate the molecular mechanism underlying melatonin-dependent hepcidin ex-
pression, we investigated whether luzindole, a MT antagonist, inhibits melatonin-induced
hepcidin expression in hepatocytes. The results showed that luzindole treatment almost
completely inhibited the melatonin-induced increase in hepcidin mRNA levels (Figure 3A),
implying that melatonin upregulates hepcidin expression by activating MT signaling. Inter-
estingly, we found that basal MT1 expression levels were higher than MT2 expression levels
in hepatocytes (Figure 3B). To demonstrate the role of MT1 in the melatonin-mediated
increase in hepcidin expression in hepatocytes, AML12 cells transfected with a small-
interfering RNA (siRNA) for MT1 (si-MT1) were treated with melatonin. As expected,
melatonin-induced hepcidin expression was significantly blocked by transfection with
si-MT1 (Figure 3C,D). These results demonstrated that melatonin regulates hepcidin ex-
pression by activating MT1 signaling in hepatocytes.

2.4. Melatonin Upregulates Hepcidin Expression by Activating the MT1-JNK-c-Jun Pathway

Lipopolysaccharide induced hepcidin expression by activating JNK-c-Jun signaling in
hepatocytes [32]. To investigate whether JNK is involved in melatonin-induced hepcidin
expression, we analyzed hepcidin-promoter activity and mRNA expression in HepG2 cells
treated with melatonin and SP600125, a specific JNK inhibitor. The results showed that
melatonin-induced hepcidin-promoter activity and mRNA expression were significantly
reduced upon treatment with SP600125 (Figure 4A,B). It was reported that JNK-mediated
phosphorylation of c-Jun increases AP-1 binding to target gene promoters [33]. Mela-
tonin significantly increased hepcidin-promoter activity in HepG2 cells, which was almost
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completely blocked by the mutation of the AP-1-binding site in the hepcidin promoter
(Figure 4C). Melatonin-mediated phosphorylation of JNK and c-Jun was significantly
decreased in HepG2 cells treated with luzindole (Figure 4D). Furthermore, a chromatin
immunoprecipitation (ChIP) assay demonstrated that melatonin increased c-Jun bind-
ing to the hepcidin promoter, which was significantly blocked by luzindole treatment
(Figure 4E). These results suggest that melatonin induces hepcidin expression by activating
the JNK-c-Jun pathway in hepatocytes.
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(a specific JNK inhibitor) on melatonin-induced hepcidin-promoter activity. HepG2 cells were trans-
fected with mHamp-luc (200 ng) and then treated with melatonin (100 µM) and SP600125 (50 µM)
for 12 h after 2 h of serum starvation. (B) qPCR analysis of hepcidin mRNA expression. HepG2
cells were treated with melatonin (100 µM) and SP600125 (50 µM) for 6 h after 2 h of serum starva-
tion. (C) AP-1-dependent regulation of hepcidin-promoter activity by melatonin. HepG2 cells were
transfected with mHamp-luc (wild-type, 200 ng) or mHamp AP1-mut-luc (200 ng) and then treated
with melatonin (100 µM) for 12 h after 2 h of serum starvation. (D) Inhibitory effect of luzindole on
melatonin-mediated activation of JNK signaling. HepG2 cells were treated with melatonin (100 µM)
and luzindole (10 µM) for 6 h after 2 h of serum starvation. (E) Chromatin immunoprecipitation
assay showing the inhibitory effect of luzindole on melatonin-induced c-Jun binding to the hep-
cidin promoter. Soluble chromatin was immunoprecipitated with an anti-IgG or anti-c-Jun antibody.
Gels for Western blot analysis were run under the same experimental conditions. All experiments
were performed in triplicate and repeated at least three times. Data are presented as means ± SD.
* p < 0.05, ** p < 0.01, *** p < 0.001 using two-tailed Student’s t-test.

2.5. Melatonin Regulates Hepcidin Expression in Mice

Based on the findings in cultured hepatocytes, we next examined whether melatonin
could regulate hepcidin expression and secretion, resulting in alteration of iron metabolism
in mice. The results showed that melatonin treatment led to a significant increase in hep-
cidin levels in the liver and serum, concomitant with reduced serum iron levels. Consistent
with these findings, melatonin significantly increased the phosphorylation levels of JNK
and c-Jun in the liver (Figure 5A–E). Luzindole treatment significantly reversed these effects
of melatonin on hepcidin and serum iron levels and on JNK-c-Jun signaling (Figure 5A–E).
Thus, we concluded that melatonin upregulates the transcription of hepcidin and thereby
alters iron metabolism by activating JNK-c-Jun signaling in hepatocytes.
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Figure 5. Effects of melatonin on hepcidin expression and iron metabolism in mice. (A–E) C57BL/6J
mice were intraperitoneally injected with melatonin (10 mg/kg, n = 5) and luzindole (10 mg/kg,
n = 5) for 12 h and then the following were analyzed: (A) Serum iron levels; (B) serum hepcidin levels;
(C) hepcidin mRNA expression in the liver; and (D) Western blot analysis. (E) Graphical representation
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showing JNK and c-Jun protein levels. Gels for Western blot analysis were run under the same
experimental conditions. All experiments were performed in triplicate and repeated at least three
times. Data are presented as means ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001 using two-tailed
Student’s t-test.

3. Discussion

Hepcidin, which is mostly produced by the liver, controls cellular iron homeostasis by
binding to FPN, an iron transporter found in enterocytes, macrophages, and hepatocytes.
Under iron overload, intracellular accumulation of iron increases reactive oxygen species
(ROS), resulting in cell death via apoptosis, ferroptosis, and necrosis. Recently, it was
reported that mitochondrial ROS, produced in response to cellular iron, activates the
expression of nuclear factor erythroid 2-related factor (Nrf2) and induces the expression
of BMP6 and hepcidin, leading to decreased serum iron levels [34]. These results indicate
that hepcidin expression depends on the cellular redox state and is induced by antioxidant
effects. These findings are supported by a previous report which showed that resveratrol, a
polyphenol, induces hepcidin expression via the Nrf2-c-Jun pathway [35]. In this study, we
found that melatonin increased hepcidin expression in a concentration-dependent manner,
suggesting that the antioxidant effect of melatonin contributes to hepcidin expression.
Indeed, melatonin induced hepcidin transcription and secretion in hepatocytes, whereas
a loss of MT1 expression inhibited the melatonin-mediated upregulation of hepcidin.
Melatonin also induced the activation of cellular JNK and binding of c-Jun to the AP-1 site
of the hepcidin promoter, as was demonstrated by the lack of transcriptional upregulation
with an AP-1 mutant promoter and a ChIP assay in hepatocytes. Luzindole had inhibitory
effects against melatonin-induced hepcidin expression in cultured hepatocytes and mouse
livers. Thus, we concluded that melatonin regulates hepcidin gene expression through the
MT1-JNK-c-Jun signaling pathway (Figure 6).
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The circadian clock, which is composed of the suprachiasmatic nucleus and a
transcription–translation feedback loop, is influenced by fasting/feeding and the sleep/wake
cycle [36]. The circadian clock controls diverse behavioral and physiological processes. For
example, glucose, lipid, and bile acid metabolism are regulated by the circadian clock in
the liver [37]. The pineal hormone melatonin, which has a circadian rhythm that depends
on light/dark signals, also regulates metabolism. It has been reported that melatonin sig-
naling regulates glucose rhythms [38]. Interestingly, we showed here that hepatic hepcidin
expression shows a circadian rhythm that is similar to the pattern of mouse melatonin
secretion [39]. In addition, we demonstrated that melatonin signaling induced hepcidin
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expression, leading to hypoferremia in mice. These findings suggest that melatonin acts
as a circadian regulator of iron metabolism. However, there are other factors that may
affect the circadian rhythm of hepcidin expression. For example, hepcidin expression is
regulated by orphan nuclear receptors, such as estrogen related receptor γ (ERRγ) [40] and
small heterodimer partner [41], which also showed circadian rhythms in the liver [42]. In
addition, insulin and glucose also regulate the concentration of hepcidin [43,44]. Therefore,
the detailed molecular mechanism regulating the circadian rhythm of iron metabolism
needs to be further characterized.

Under inflammation, the pro-inflammatory cytokine IL-6 induces expression of the
orphan nuclear receptor ERRγ and leads to hepcidin secretion [45]. Hepcidin is an an-
timicrobial peptide hormone that reduces the plasma iron concentration by inducing the
degradation of FPN [7] and inhibits the growth and proliferation of extracellular pathogens.
It has been reported that overexpression of hepcidin led to a marked reduction in Plas-
modium berghei infection which causes malaria [46]. Melatonin has also been shown to
have a protective effect against sepsis [25]. In this study, we demonstrated that melatonin
induced hepcidin production, suggesting that melatonin may regulate bacterial infections
by modulating hepcidin expression. However, hepcidin is not always beneficial to the
host during pathogen invasion. For example, an increase in intracellular iron promotes the
growth of intracellular bacteria, such as Salmonella enterica, Chlamydia psittaci, and Legionella
pneumophila [47,48]. Previously, we reported that ERRγ modulates the survival of Salmonella
typhimurium by regulating hepcidin expression in macrophages [40]. Here, we showed
that an intraperitoneal injection of melatonin increased hepcidin production and decreased
serum iron levels, which suggests that melatonin may not be effective against intracellular
bacterial infection. These findings were further supported by results from a previous study,
showing that exogenous melatonin exacerbates Salmonella enteritidis infection in molted
layers [49]. Interestingly, GSK5182, an inverse agonist of ERRγ, controlled the growth
of S. typhimurium by decreasing hepcidin expression [40]. In this study, we found that
luzindole, a MT antagonist, inhibited melatonin-induced hepcidin expression. Together,
these findings suggest that luzindole may have therapeutic effects against intracellular
bacterial infection.

4. Materials and Methods
4.1. Chemicals

Melatonin and luzindole were purchased from Sigma-Aldrich (St. Louis, MO, USA)
and then dissolved in ethanol and dimethyl sulfoxide (DMSO), respectively. SP600125 was
dissolved in DMSO, as described previously [32].

4.2. Plasmid DNAs

The mouse hepcidin-promoter (mHepcidin-luc, −982/+84 bp) and AP-1 mutant mouse
hepcidin-promoter (mHepcidin AP1 mut-luc) constructs were described previously [32].
pcDNA3-Flag-mERRγ was described previously [50]. pCMV-SPORT6-Bmal1 and pCMV-
SPROTT6-Clock were purchased from Korea Human Gene Bank (Medical Genomics Re-
search Center, KRIBB, Daejeon, Korea).

4.3. Animal Experiments

Male, 8-week-old C57BL/6J mice (Jackson Laboratory, Bar Harbor, ME, USA) were
used in this study. The mice were acclimatized to a 12 h light/dark cycle, at 22 ± 2 ◦C,
with free access to food and water, in a specific-pathogen-free facility. For the circadian
experiments, zeitgeber time (ZT) 0 was lights on, and ZT 12 was lights off for animals
under a 12 h light/dark cycle. We also indicated time by the a.m. and p.m. designations,
whereby ZT 0 (lights on) was 7:00 a.m., and ZT 12 (lights off) was 7:00 p.m. To investigate
the effects of melatonin and luzindole on hepcidin expression, mice were injected with
(intraperitoneally (i.p.)) melatonin (10 mg/kg, n = 7), luzindole (10 mg/kg, n = 7), or
melatonin plus luzindole (n = 7). Mice were injected with melatonin for 12 h after 4 h
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of luzindole injection. All experimental procedures were reviewed and approved by the
Institutional Animal Care and Use Committee of Chonnam National University (CNU
IACUC-YB-R-2021-121).

4.4. Cell Culture and Transient Transfection

HepG2 was cultured in high-glucose Dulbecco’s Modified Eagle’s Medium (DMEM;
Welgene, Gyeongsan, Korea) supplemented with 10% heat-inactivated fetal bovine serum
(FBS; Gibco, Waltham, MA, USA) and 1% antibiotics (penicillin–streptomycin; Capricorn
Scientific, Ebsdorfergrund, Germany). AML12 cells were cultured in DMEM F-12 medium
(Welgene) supplemented with 10% FBS, 1% insulin–transferrin–selenium–pyruvate (Wel-
gene), 40 ng/mL dexamethasone, and 1% antibiotics. All cell lines were cultured in a
humidified atmosphere containing 5% CO2 at 37 ◦C. Transient transfections were per-
formed using polyethylenimine (Polysciences, Inc., Warrington, PA, USA) or SuperFect
reagent (QIAGEN, Hilden, Germany) according to the manufacturer’s instructions. For lu-
ciferase assays, the Nano-Glo vector (Promega, Madison, WI, USA) was used as an internal
control, and firefly luciferase activity was normalized to Nano-Glo luciferase activity. The
data were from at least three independent experiments.

4.5. RNA Interference

si-MT1 and si-Con were purchased from QIAGEN (Cat # 1027416). AML12 cells
were transfected with si-Con and si-MT1 using Lipofectamine RNAi MAX (Thermo Fisher
Scientific, Waltham, MA, USA) according to the manufacturer’s instructions.

4.6. Q-PCR Analysis

Total RNA was extracted from cultured hepatocytes or mouse liver tissue using
Tri-RNA reagent (Favorgen Biotech Corporation, Ping-Tung, Taiwan) according to the
manufacturer’s instructions. The quantity and purity of the extracted RNA were measured
using a Biophotometer D30 (Eppendorf, Hamburg, Germany). cDNAs generated using
TOPscript RT DryMIX (Enzynomics, Daejeon, Korea) were analyzed with a CFX Connect
real-time system (Bio-Rad, Hercules, CA, USA) using TOPreal qPCR 2× PreMIX (SYBR
Green with low ROX) (Enzynomics). The results were normalized to the expression of the
ribosomal protein L32, and relative gene expression data were analyzed using the delta
delta Ct method. All primers used for qPCR analysis are listed in Supplementary Table S1.

4.7. Western Blot Analysis

Western blotting was performed with whole-cell extracts and mouse liver tissue and
was generated using RIPA buffer (Thermo Fisher Scientific) as previously described [50].
Proteins were separated by 10% SDS-PAGE and then transferred to nitrocellulose mem-
branes (GE Healthcare, Chicago, IL, USA). The primary antibodies used for the immunoblot-
ting assays were anti-JNK (1:2000, Cell Signaling Technology, Danvers, MA, USA), anti-
phospho-JNK (1:2000, Cell Signaling Technology), anti-c-Jun (1:2000, Cell Signaling Tech-
nology), anti-phospho-c-Jun (1:2000, Cell Signaling Technology), anti-FPN (1:2000, Novus
Biologicals, Centennial, CO, USA), and anti-β-Actin (1:3000, Santa Cruz Biotechnology,
Dallas, TX, USA). The primary antibodies were probed with HRP-conjugated secondary
antibodies (Bethyl Laboratories, Montgomery, TX, USA) and visualized using Amersham
ECL Western Blotting Detection Reagent (GE Healthcare). Images were visualized using a
Chemi-doc XRS system (Bio-Rad Chemidoc XRS Gel Imaging System).

4.8. Measurement of Hepcidin and Serum Iron Levels

Blood samples were collected from mice under anesthesia before killing via intracardiac
puncture. Serum hepcidin was measured using the mouse hepcidin enzyme-linked immunosor-
bent assay (ELISA) kit (Elabscience, Houston, TX, USA) according to the manufacturer’s proto-
cols. AML12 cells were treated with melatonin for 6 h after 2 h of serum starvation. Hepcidin
concentrations in the cell culture medium were measured using the mouse hepcidin ELISA
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kit (Elabscience) according to the manufacturer’s instructions. Serum and cellular iron were
measured using a spectrophotometric method (TBA-200FR NEO) or an iron assay kit (Abcam,
Cambridge, UK), according to the manufacturer’s instructions.

4.9. ChIP Assay

A ChIP assay was performed using the SimpleChIP Plus Enzymatic Chromatin IP kit
(Cell Signaling Technology) according to the manufacturer’s protocol. In brief, HepG2 cells
were transfected with a mouse hepcidin-promoter luciferase reporter construct (mHamp-
luc, 4 µg) and then treated with melatonin (1 mM) and luzindole (10 µM) for 6 h after
2 h of serum starvation. Cells were fixed with 1% formaldehyde and then harvested.
Soluble chromatin was immunoprecipitated using anti-IgG and anti-c-Jun antibodies (Cell
Signaling Technology). After DNA extraction, qPCR was carried out using primers to
amplify the AP-1 binding regions on the mouse hepcidin promoter. The primers used for
qPCR analysis are listed in Supplementary Table S1.

4.10. Statistical Analysis

Statistical analyses were performed using GraphPad Prism [51]. Data are presented
as means ± standard deviation (SD) or ± standard error of the means (SEM). Significance
was determined using a two-tailed Student’s t-test (p < 0.05).

5. Conclusions

In conclusion, we report a previously unrecognized role of melatonin in the circadian
regulation of hepcidin expression and iron metabolism, with detailed molecular mech-
anisms in hepatocytes. Melatonin induced hepatic hepcidin production by enhancing
MT1-mediated JNK-c-Jun activation. Thus, these findings suggest that melatonin plays
a pivotal role in the circadian regulation of hepcidin and iron homeostasis as well as
controlling pathogen invasion.
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