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The emergence of bacteria that are resistant to antibiotics is common in areas where 
antibiotics are used widely. The current standard procedure for detecting bacterial drug 
resistance is based on bacterial growth under antibiotic treatments. Here we describe 
the morphological changes in enoxacin-resistant Escherichia coli cells and the computational 
method used to identify these resistant cells in transmission electron microscopy (TEM) 
images without using antibiotics. Our approach was to create patches from TEM images 
of enoxacin-sensitive and enoxacin-resistant E. coli strains, use a convolutional neural 
network for patch classification, and identify the strains on the basis of the classification 
results. The proposed method was highly accurate in classifying cells, achieving an 
accuracy rate of 0.94. Using a gradient-weighted class activation mapping to visualize 
the region of interest, enoxacin-resistant and enoxacin-sensitive cells were characterized 
by comparing differences in the envelope. Moreover, Pearson’s correlation coefficients 
suggested that four genes, including lpp, the gene encoding the major outer membrane 
lipoprotein, were strongly associated with the image features of enoxacin-resistant cells.

Keywords: drug resistance, convolutional neural network, transmission electron microscope, identification, 
Escherichia coli, quinolone, enoxacin, LPP

INTRODUCTION

The development of antibiotics has progressed dramatically since the middle of the 20th century, 
but drug-resistant bacteria emerged shortly after antibacterial drugs were introduced to treat 
bacterial infections, and antibiotic-resistant strains have increased rapidly in number with the 
long-term overuse of antibacterial drugs. Consequently, in recent years, the emergence of 

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.839718&domain=pdf&date_stamp=2022-03-15
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.839718
https://creativecommons.org/licenses/by/4.0/
mailto:mnishino@sanken.osaka-u.ac.jp
mailto:aoki.k@am.sanken.osaka-u.ac.jp
mailto:nishino@sanken.osaka-u.ac.jp
https://doi.org/10.3389/fmicb.2022.839718
https://www.frontiersin.org/articles/10.3389/fmicb.2022.839718/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.839718/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.839718/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.839718/full
https://www.frontiersin.org/articles/10.3389/fmicb.2022.839718/full


Frontiers in Microbiology | www.frontiersin.org 2 March 2022 | Volume 13 | Article 839718

Hayashi-Nishino et al. Identification of Drug-Resistant Cells by CNN

multidrug-resistant bacteria with resistance to multiple types 
of antibiotics has become a global problem. Various types of 
resistant bacteria have appeared in clinic, and effective 
countermeasures to combat multidrug-resistant bacteria are 
required (Alekshun and Levy, 2007).

Laboratory-based bacterial evolution is a powerful tool 
for investigating the dynamics of acquired drug resistance 
(Suzuki et  al., 2014; Furusawa et  al., 2018; Maeda et  al., 
2020). In these experiments, bacterial cells are exposed to 
fixed concentrations of drugs, around which cell growth is 
partially or completely inhibited such that a selective advantage 
for resistant strains is maintained. Recently, Suzuki et  al. 
performed laboratory evolution of Escherichia coli under 
various drug treatment conditions to obtain resistant strains, 
including those resistant to quinolones such as enoxacin 
(ENX; Suzuki et  al., 2014). For each drug-resistant strain 
obtained, transcriptome and genome sequencing analyses 
were performed to identify fixed mutations and gene expression 
changes. By integrating these data and using a simple 
mathematical model, they succeeded in quantitatively predicting 
resistance to various drugs on the basis of the gene expression 
levels (Suzuki et  al., 2014). Because many gene expression 
changes were observed in the drug-resistant strains, we queried 
whether these changes may affect the bacterial morphology. 
There are several reports on the effect of antibiotics on 
bacterial morphology, including morphogenesis and fatal 
variations of Gram-positive staphylococci in the presence of 
penicillin (Giesbrecht et  al., 1998) and the response of E. 
coli to quinolones (Elliott et  al., 1987). On the other hand, 
electron microscopic analysis of vancomycin-resistant 
staphylococci has shown morphological changes in cell wall 
(Cui et  al., 2003). Although outer membrane barrier of 
Gram-negative bacteria is also important against toxic 
compounds (Nikaido, 2003), little is known about the 
morphological changes of drug-resistant Gram-negative 
bacteria including E. coli. Compared with that of the drug-
sensitive parent strain, especially in the absence of drugs.

In this study, we  performed a morphological analysis of 
ENX-resistant cells that were obtained through the laboratory 
evolution of E. coli. Microscope images of both drug-resistant 
and drug-sensitive cells were obtained and their morphological 
characteristics were described. Electron microscopy, including 
transmission electron microscopy (TEM), is a powerful means 
of observing the ultrastructures of various biological samples, 
and these tools have been used often to study bacterial cell 
morphology (Giesbrecht et  al., 1998; Kuo, 2014). Recently, 
it was reported that deep learning approaches have been 
applied to electron microscopy images of biological specimens, 
including isolated macromolecules and brain tissues (Zeng 
et  al., 2017; Zhu et  al., 2017). However, to the best of our 
knowledge, no computational methods have been developed 
yet to identify drug-resistant bacteria in TEM images. 
Considering this background, clarifying the morphological 
changes that occur in bacterial drug resistance is important, 
and the ability to estimate drug resistance from the 
morphological features of bacterial cells is also key to basic 
and applied microbiological studies. We  therefore attempted 

to distinguish drug-resistant cells according to their 
morphological features visible on TEM images using deep 
learning and identify the discriminatory features. Moreover, 
we  sought to identify the genes related to the morphological 
characteristics of ENX-resistant cells.

This study provides a novel method for discriminating 
drug-resistant and drug-sensitive bacterial cells from their 
TEM images using deep learning. The main contributions 
of this paper include the (1) clarification of morphological 
changes in drug-resistant bacteria from observations using 
optical and electron microscopy, (2) application of deep 
learning to discriminate TEM images of drug-resistant bacterial 
cells with a high level of accuracy, (3) visualization of 
morphological features peculiar to the drug-resistant bacteria 
using classifier models, and (4) identification of genes that 
may be  associated with the morphological changes by 
correlating the image features extracted by the classifier 
models with gene expression levels.

MATERIALS AND METHODS

Cell Culture Conditions
Laboratory-evolved ENX, AMK, CFIX, and CP-resistant strains 
and the parental MDS42 strain (Suzuki et  al., 2014) were used 
for the experiments. First, a single colony of these resistant 
strains, harboring the equivalent MIC value of the original 
stocks against each drug, was obtained and stored in an M9 
medium containing 15% glycerol at −80°C. These bacterial 
strains were precultured in a 200 μl modified M9 medium 
(Mori et al., 2011) in Nunc 96-well microplates (Thermo Fisher 
Scientific Inc.), shaken at 432 rpm on a multimode microplate 
reader (Infinite M200 PRO, TECAN Ltd.) at 34°C for 23 h, 
and used for experiments.

Light Microscopy
For light microscopy-based observations, precultures of ENX-, 
AMK-, CFIX-, and CP-resistant strains and the parental strain 
were diluted to an OD600  nm of 1 × 10−4 to 1 × 10−8 in 5 ml 
of modified M9 medium in glass test tubes and grown in 
a water bath at 34°C that was shaking at 150 rpm to reach 
an OD600  nm in the range 0.07–0.13. Bacterial cultures were 
then transferred to 15 ml centrifuge tubes, and cells were 
collected by centrifugation at 3000 × g for 10 min at 4°C. 
The bacterial cell pellets were resuspended with phosphate-
buffered saline (PBS, Sigma-Aldrich) and washed twice by 
centrifugation. Finally, the cell pellets were resuspended with 
200 μl of PBS and 2 μl of the cell suspension were mounted 
on a glass slide and covered with a 22 × 22 mm glass cover 
slip (Matsunami, Japan). Specimens were then observed, and 
images were taken under phase-contrast microscopy with 
an objective lens of ×100 (Leica Microsystems). Individual 
bacterial cells were detected using a watershed algorithm, 
and quantitative analysis was performed using Fiji-ImageJ 
software. The interquartile ranges of the cell size distributions 
were used for further statistical analysis.
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Fixation and Embedding for TEM
Precultures of both ENX-resistant strains and the parental 
strain were diluted to an OD600  nm of 1 × 10−4 to 1 × 10−8 in 
5 ml of M9 medium in glass test tubes and grown in a water 
bath at 34°C that was shaking at 150 rpm to reach an OD600  nm 
in the range 0.07–0.13. Bacterial cultures were then transferred 
to 15 ml centrifuge tubes and the cells were collected by 
centrifugation at 3000 × g for 10 min at 4°C. The bacterial pellets 
(~8 μl) were resuspended with 3 μl of M9 medium and transferred 
to Eppendorf tubes and used for cryofixation. Cell suspensions 
(1.5 μl) were loaded onto a flat specimen carrier (200 μm deep) 
and frozen multiple times in a Leica EM PACT2 high-pressure 
freezer (Leica Microsystems). Frozen specimens were transferred 
into glass bottles with screw caps containing 2% (wt/vol) 
osmium tetroxide (OsO4) in anhydrous acetone as a substitution 
medium and were freeze-substituted in an automatic freeze 
substitution unit (EM AFS2; Leica Microsystems). During these 
periods, the specimens were kept at −80°C for 72 h, and the 
temperature was raised at a rate of 5°C/h to −20°C and 4°C 
and kept at each temperature level for 2 h in the substitution 
medium. Once the samples reached room temperature, the 
substitution medium was removed and the samples were washed 
carefully in anhydrous acetone for 5 min, three times. Samples 
were then incubated in a 1:1 mixture of acetone and Epon 
812 resin mixture (TAAB Laboratories) overnight at room 
temperature, and then in pure Epon mixture overnight. Samples 
were placed with the cells face up in flat bottomed capsules 
(TAAB Laboratories), filled with pure Epon mixture, and cured 
in an oven for polymerization at temperatures of 35°C for 
24 h, 42°C for 24 h, and 60°C for 2 days.

Sectioning and Image Acquisition
Specimen carriers in Epon blocks were exposed by removing 
excess resin using a specimen trimming device (EM TRIM2; 
Leica Microsystems), followed by hand trimming with a razor 
blade to allow complete exposure. The specimen carrier was 
detached using a detaching tool according to the manufacturer’s 
instructions (Leica Microsystems). Ultrathin (80 nm) sections 
of the cell specimens were cut using an ultramicrotome (EM 
UC7; Leica Microsystems) equipped with a diamond knife 
and were collected on formvar/carbon-coated Maxtaform finder 
grids (Electron Microscopy Sciences). The grids were stained 
in 2% (wt/vol) aqueous uranyl acetate for 25 min and in lead 
citrate for 3 min. Ultrathin sections were observed using JEOL 
TEM (JEM-2100 HC) at an accelerating voltage of 80 kV, and 
images were taken with a 2 k × 2 k CCD camera (UltraScan 
1,000; Gatan Inc.). For machine learning, raw TEM images 
were taken using automatic image acquisition software (Shot 
Meister; System in Frontier Inc) at an xy pixel size of 
3.4 nm × 3.4 nm, and a single image size of 6.926 μm × 6.926 μm. 
A panoramic image comprising 36 images (41.554 μm × 41.554 μm 
in size) was taken without any margin between neighboring 
images. Each image was taken with an exposure time of 1 s, 
giving a 3 s wait time to minimize the image drift. At least 
five different shots (a total of 180 images) were taken from 
different arbitrary regions of the section on an individual grid. 

Hence, at least 900 images were obtained from five grids 
prepared from each specimen block, and these were used for 
the analysis.

Preparation of Data Sets for Machine 
Learning
To create a data set that was robust against image data variability, 
a total of three data sets were created, with one set contained 
each block for ENX-resistant strains and two blocks for a 
parental strain, giving a total of six blocks. Since there were 
four lines of ENX-resistant strains and only one line of the 
parental strain, we  used two blocks of the parental strain for 
each data set and six blocks in total, which was the maximum 
number to be  prepared from one culture, to eliminate the 
data imbalance as much as possible. Moreover, to cover the 
variation in image data caused by thin-sectioning and staining, 
images were taken from five independent grids for each block, 
as described above. Using these data sets, we  replaced 
each  set  with training and testing and performed a three-fold 
cross-validation to evaluate robustness against variations in 
specimen preparation.

Image Preprocessing and Construction of 
a Patch Data Set
Preprocessing was needed for raw TEM images so that the 
classifier models could handle them effectively. There were 
some TEM images whose intensity distribution was observed 
in a dynamic range different from others and unusual or 
defective pixels whose intensity value was extremely small or 
large. Such inconsistency in the intensity values may prevent 
a classifier model from learning the essential differences in 
TEM images between drug-resistant strains and the parental 
strain and thus reduce the classification performance.

A TEM image obtained originally as 16 bit was standardized 
and converted to 8 bit as follows. Both a mean and a standard 
deviation of intensity values were first calculated from all pixels 
of an image, which formed upper and lower bounds on intensity 
values in accordance with the so-called three-sigma rule. The 
image was processed so that the intensity values were within 
the range and then was standardized as if the intensity values 
followed a standard normal distribution (with zero mean and 
unit variance). Finally, the image was converted into 8 bit by 
scaling the intensity values to a range of 0–255. Defective 
pixels with extremely small or large intensity values could 
be  corrected after completing these steps. A raw TEM image 
was also subject to uneven intensity levels. For example, intensity 
levels slightly declined (and thus pixels looked darker) from 
left to right or top to bottom in an image, and it was considered 
that this unevenness in intensity was caused by the uneven 
irradiation of the electron beam on the fluorescent screen. 
Thus, contrast limited adaptive histogram equalization (CLAHE) 
was used to enhance the local contrast of TEM images and 
alleviate uneven intensity levels (Supplementary Figures S3A,B).

The original TEM images were 2,048 pixels both in width 
and height, which did not fit into the pretrained classifier model 
and were difficult to transfer to the GPU memory. Furthermore, 
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compared with data sets used in typical image recognition tasks, 
a relatively smaller number of TEM images could be  obtained, 
because it took time and effort as described above. Therefore, 
subimages, or 512 × 512 pixel patches showing parts of cells, were 
extracted from the TEM images. This produced a large data set 
and allowed us to train the classifier models effectively. At least 
5,400 TEM images from the parental strain and 10,800 TEM 
images from the ENX-resistant strains were used for preparation 
of patches. All TEM images were processed as follows after CLAHE:

 1. The noise level in the TEM images was so high as to affect 
the outcome of the following processes. A Gaussian smoothing 
filter was typically applied to each image to reduce noise.

 2. The Otsu method is one of the most commonly used image 
thresholding techniques and was adopted to separate cell regions 
from the background in this study (Supplementary Figure S3C). 
This traditional method worked sufficiently well for images 
obtained after preprocessing because the intensity histograms 
tended to become bimodal.

 3. It was often the case that the enlarged periplasmic space 
appeared as holes, which were sometimes large in size, in 
cell regions obtained using the Otsu method. To fill the 
holes as much as possible, most external contours that ideally 
corresponded to the cell outer membrane were detected, 
and then, areas bounded by the contours were filled 
(Supplementary Figures S3D,E). At the same time, small 
regions below the given threshold were rejected as false 
detection. Mask images refined through these procedures 
were generated and used for further processing.

 4. Patches containing parts of cells were selected if the number 
of pixels assigned to cell regions within the patch exceeded 
a predefined threshold (Supplementary Figure S3F). A 
sliding window with a stride of 128 pixels was applied to 
check whether a patch satisfied the above condition. 
Consequently, a million patches were obtained from each 
data set of cross-validation folds.

Patch Classification
A patch classification experiment was conducted following 
k-fold cross-validation in which a data set was first split into 
k subsets, and then, in each fold, all except one subset were 
dedicated to training a classifier model and the remaining one 
subset was used to evaluate the performance of the model. A 
training set was usually split further into two sets to keep 
one as a validation set and estimate the generalization ability 
of a classifier model and/or convergence of the training process 
by observing the history of a loss function. As mentioned 
above, a data set was prepared for three-fold cross-validation 
so that those images obtained from the same block were not 
included in both training and test sets to demonstrate how 
well a classifier model could perform in a practical situation. 
Furthermore, some grids of a block were picked out from a 
training set to construct a validation set.

We found out that a batch normalized version (Ioffe and 
Szegedy, 2015) of AlexNet (Krizhevsky et al., 2012) was a simple 
yet effective architecture for patch classification. Different 

architectures should be investigated in future work. The network 
architecture and some hyperparameters are depicted. Starting 
from a publicly available model pretrained on the ImageNet 
data set (Paszke et  al., 2019), the classifier model was retrained 
or fine-tuned on our TEM image/patch set. In the training 
phase, Gaussian noise was added to a patch, and also, a patch 
was randomly rotated by either 0, 90, 180, or 270 degrees and 
flipped horizontally and vertically, before being fed into the 
classifier model, where the standard deviation of Gaussian noise 
was randomly chosen in range 0–30. The batch size was set 
to 32, and 19,200 patches were randomly sampled from the 
training set in each epoch, so the number of iterations per 
epoch was 600. To update the model parameters (weights), the 
Adam optimization algorithm (Kingma and Ba, 2015) was used 
with an initial learning rate of 0.0001 and weight decay of 
0.00001. After one epoch training, the validation data set was 
fed into the classifier model to calculate the loss, and the learning 
rate was reduced by a factor of 10 if there was no improvement 
in the validation loss after five epochs. Cross-entropy loss was 
used with weights inversely proportional to class frequencies. 
Thus, the training phase proceeded by alternating between 
updating the weights and adjusting the learning rate. All classifier 
models were trained and tested on NVIDIA RTX 3090.

Patches obtained from the ENX-resistant strains were treated 
as a positive class, while patches obtained from the parental 
strain were treated as a negative class. The performance of 
the classifier model could be  evaluated through sensitivity and 
specificity defined as follows:

 
Sensitivity �

�
TP

TP FP
,

 
(1)

 
Specificity �

�
TN

TN FN
,

 
(2)

where TP denotes true positives (correctly classified ENX-resistant 
cell patches), FP  denotes false positives (parental cell patches 
that were classified into the ENX-resistant cell), TN denotes 
true negatives (correctly classified parental cell patches), and 
FN denotes false negatives (ENX-resistant cell patches that 
were classified into the parental cell).

Visualization of Discriminative Parts of 
Bacterial Cells
Visualization of the characteristic features of both the 
ENX-resistant and parental cells was attempted using 
Grad-CAM (Selvaraju et  al., 2017). In our approach, inputs 
to the classifier model were patches, not images. Because it 
was known which image each patch was extracted from, 
the class activation map of a patch could be  accumulated 
on its corresponding area within the image. A class activation 
map was multiplied by the output of the softmax function 
corresponding to its class, and also, averaged in an area 
overlapped by some patches. Then, patchwise class activation 
maps were accumulated onto their originating images to 
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visualize the discriminative parts of the bacterial cells in 
each image.

Calculation of Pearson’s Correlation 
Coefficients
To investigate which genes were associated with the morphological 
features, we calculated Pearson’s correlation coefficients between 
the gene expression information (Suzuki et  al., 2014) and the 
image features extracted from the full connection layer before 
the last one in the CNN model. The image features were 
extracted as a 4,096-dimensional vector from each patch image 
and were averaged over all patches of each strain, which resulted 
in five representative image features. An element of the image 
features is considered as 5-dimensional vector and can 
be  investigated individually because each element is the output 
of convolution performed at each location. We used the expression 
values of a gene from five strains (ENX-1,2,3,4 and parent) 
x , , , ,� � �x x x x x T

1 2 3 4 5  and also the values of an image feature 
element y , , , ,� � �y y y y y T

1 2 3 4 5  from those five strains, and Pearson’s 
correlation coefficient r between the level of gene expression 
and the image feature was defined as

 
r

xy

x y

�
�

� �

2

2 2

,

 
(3)

where σ xy2  is the covariance of x and y and σ x2 and σ y2 are 
the variance of x and y, respectively. We  retained pairs of 
genes and image feature elements meeting the condition 
that the absolute correlation coefficient between them was 
equal to or greater than 0.999. There were some image 
feature elements whose values were zero for all strains. 
We  removed these elements from the image features, and 
consequently, the number of features varied in the cross-
validation folds (Supplementary Table S2). The most 
frequently appearing genes were highly correlated with image 
features elements.

RESULTS

Observation of Drug-Resistant and 
Drug-Sensitive Bacterial Strains Using 
Optical Microscopy
The morphologies of both drug-resistant E. coli cells and 
sensitive parental cells were observed first under a light 
microscope. The parental E. coli strain and drug-resistant 
laboratory-evolved strains obtained from a previous study 
(Suzuki et  al., 2014) were grown in the absence of antibiotics. 
Of 10 different drug-resistant strains, four types of strain with 
high resistance to drugs with different mechanisms of action 
[ENX, amikacin (AMK), cefixime (CFIX), and chloramphenicol 
(CP)] were selected for observation. Although other drug-
resistant strains exhibited rod-shaped cell morphology, the 
ENX-resistant strains were more spherical in cell shape 
(Figure 1A). Further morphometric analysis of the ENX-resistant 
strains demonstrated that the distribution of major and minor 

axis lengths appeared to have shifted from those of the parental 
strain (Figure  1B). Although the cells of the ENX-resistant 
strains tended to be  shorter, they were wider. Consequently, 
the aspect ratio was smaller than that of the parental strain 
(Figure  1C). However, area, major and minor axis in 
ENX-resistant strains versus the parental strain did not differ 
too much, and the ENX 2 strain was a bit of an outlier and 
seemed closer to the parental strain than other ENX-resistant 
strains (Figure  1C). Furthermore, the aspect ratio of the 
ENX-resistant strains was significantly lower than that for the 
other drug-resistant strains, strongly suggesting that the cell 
shape of the ENX strains had changed from that of the parental 
strain (Figure  1D). It was of interest that CP-resistant strains 
also showed more spherical cells, though not as pronounces 
as ENX-resistant strains (Figure  1D). Conversely, the aspect 
ratio of the AMK-resistant strains was larger than that of the 
parental strain.

Observation of ENX-Resistant Strains 
Using TEM
The results of the light microscopy study suggested that the 
ENX-resistant strains exhibited the largest difference in cell 
shape of all the drug-resistant strains investigated. We therefore 
speculated that the ultrastructures of these strains might also 
be different from those of the parental strain. Hence, we used 
TEM to further study the detailed morphologies of the 
ENX-resistant strains. A high-pressure freezing procedure was 
employed to fix the samples and preserve the ultrastructures 
of the bacterial cells better than when classical chemical 
fixation is used (Hunter and Beveridge, 2005; Vanhecke et al., 
2008). Both the ENX-resistant strains and the parental strain 
cultured in modified M9 medium were cryofixed and freeze-
substituted. The bacterial specimens were further processed 
with thin-sectioning and staining as illustrated in 
Supplementary Figure S1. Finally, the specimens were observed 
using TEM and their representative images are depicted in 
Figure  2. Cross sections of bacterial cells were included in 
each image, and the envelope including the outer membrane 
and periplasm, granular structures, and cytoplasm were visible. 
Occasionally, the periplasmic space appeared to be  enlarged 
around the cell poles in both the parental and ENX-resistant 
cells, except ENX 4 cells (Figure  2, lower panels). This 
enlargement of the periplasm was considered partially to 
be  the result of the cryoprocedures as reported previously 
(Kellenberger, 1990), although the degree of enlargement 
appeared to be  different among the strains. In the parental 
cells, dense granules appeared to have accumulated at the 
cell poles, whereas they seemed less electron-dense and 
relatively less abundant in the ENX-resistant cells. When the 
morphologies of four ENX-resistant strains were observed, 
the appearance of the cell shape, the outer membrane, 
periplasmic space, and granules varied (Figure  2, upper 
panels). Although a rod-like cell shape was seen in the parental 
strain, the cell shape appeared to be  irregular and relatively 
round in the ENX 1, ENX 3, and ENX 4 strains; this difference 
was reflected in the results obtained using light microscopy. 
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FIGURE 1 | Light microscopy of drug-resistant strains. (A) Representative images of four different drug-resistant strains, enoxacin (ENX), amikacin (AMK), cefixime 
(CFIX), chloramphenicol (CP), and the parental strain (P) are shown. Scale bars, 2 μm. (B–D) Results of the morphometric analysis presented as (B) scatter plots of 
major vs. minor axis lengths of the parental cells and ENX-resistant cells. The color scales indicate the ratio of cell densities. (C) Bar graphs show averages of 
bacterial cell sizes, major and minor axis lengths, and the aspect ratio. All indicated data were significantly different by p < 0.01, Welch’s t-test. (D) Logarithmic 
changes in the average aspect ratio of the indicated drug-resistant strains against the parental strain are shown.

Additionally, the outer membranes of the ENX-resistant cells 
appeared to be  slightly wavy, and bleb-like structures were 
occasionally visible, especially in the ENX 3 and ENX 4 cells 
(Figure 2, lower panels). Taken together, these results suggested 
that the ENX-resistant strains harbored different morphologies 
from the parental strain at the ultrastructural level.

We next examined whether the ENX-resistant strains  
could be  discriminated from the parental strain by 
machine learning.

Classification of ENX-Resistant Strains 
Using Convolutional Neural Networks
The deep learning approach (Krizhevsky et  al., 2012) was 
reported to achieve much higher levels of performance than 
conventional, handcrafted feature-based techniques in an image 
recognition competition [the ImageNet Large Scale Visual 
Recognition Challenge (Russakovsky et al., 2015)] held in 2012. 

Since then, deep learning approaches have been applied to 
EM images. The DeepEM algorithm (Zhu et  al., 2017) was 
proposed to determine whether a single particle is present in 
a boxed area cropped from cryo-EM images for the 3D 
reconstruction of the structure. The DeepEM3D algorithm 
(Zeng et  al., 2017) and other methods (Cireşan et  al., 2012; 
Fakhry et  al., 2017), were proposed for neuronal membrane 
segmentation in 3D EM image stacks. Furthermore, a cloud-
based solution to the segmentation tasks, named CDeep3M 
(Haberl et  al., 2018), was developed as an applicable tool for 
the biomedical community. Some state-of-the-art deep learning 
models were used to classify scanning electron microscopy 
images in 10 categories (Modarres et al., 2017) and to discriminate 
whether an image was obtained by TEM or scanning TEM 
(Weber et  al., 2018).

In the present study, we  aimed to discriminate between 
the ENX-resistant strains and the parental strain, rather than 
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to distinguish an individual strain, and find morphological 
features shared by the ENX-resistant strains. Our experiments 
in image classification using convolutional neural network 
(CNN) models with TEM data sets were conducted as illustrated 
in Figure  3 to demonstrate differences in the appearance and 
shape of ENX-resistant strains compared with the parental 
strain. Because 2048 × 2048 pixel TEM images were too large 
to be  fed into the CNN models, and there were not enough 

images to train the CNN models effectively, patches that 
contained portions of bacterial cells were cropped from each 
image. To validate the consistency and robustness of the CNN 
models against the process of acquiring the TEM data sets, 
three blocks for each ENX-resistant strain and six blocks for 
the parental strain were prepared, respectively, and split into 
three individual sets for three-fold cross-validation. The TEM 
images for all of the bacterial specimen blocks used in the 

FIGURE 2 | Ultrastructure of the ENX-resistant cells. Upper panels show representative transmission electron micrographs of the ENX-resistant cells and the 
parental (P) cells. Lower panels show magnification of the boxed bacterial cells in upper panels, depicting the detailed morphology of the cells. The number denotes 
the indicated ENX-resistant strains. The outer membrane, granules, bleb-like structures, and periplasmic space are indicated by an arrow, arrowheads, white 
arrowheads, and asterisks, respectively. Scale bars, 1 μm in upper panels; 500 nm in lower panels.
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experiments showed reproducibility, but there were variations 
in image quality for each cryofixation block among the strains 
(Supplementary Figure S2A). Although the overall image 
features appeared to be  similar for each strain in different 
cryofixation blocks, when observed in detail, the intensity of 
the staining, the appearance of the outer membrane and 
periplasmic space, and the electron densities of granules varied 
slightly for each block. Additionally, variations in image quality 
and cell density were observed among grids, as well as in 
different regions of the grid sections. Moreover, some pictures 
contained non-cellular structures such as knife marks, a wrinkle 
in a section, or a small contaminant, which had to be eliminated 
as much as possible to avoid any influence on the classification 
result (Supplementary Figure S2B). As the TEM images 
contained cross sections of cells at different angles, large 
variations in the appearance of cell shape were observed 
(Supplementary Figure S2C). Therefore, because of these 
issues, we  considered it important to evaluate the robustness 
of the image data by preparing a multitude of samples for 
each strain and using image data sets obtained from a multitude 
of grids.

The CNN architecture and hyperparameters used in this 
study are illustrated in Figure 4. The AlexNet model (Krizhevsky 

et  al., 2012) was adopted because it was found to be  efficient 
and effective at demonstrating the feasibility of TEM image 
classification. A batch normalized version (Ioffe and Szegedy, 
2015) of AlexNet was used for patch classifications. After the 
TEM images were preprocessed and patch data sets constructed 
(Supplementary Figure S3 and see also Materials and Methods), 
the model was trained using the ImageNet data set (Russakovsky 
et  al., 2015) during a pretraining phase and then retrained or 
fine-tuned to classify the TEM images of the ENX-resistant 
strains and parental strain. The classifier models were successfully 
trained, but not overfitted, because the validation losses converged 
to values that resembled the training losses during every fold 
of the cross-validation (Figure  5). Consequently, similar 
performances were achieved for sensitivity, specificity, and 
accuracy in the validation sets during all folds.

Table  1 shows the performance of the classifier models 
evaluated in the test sets during the cross-validation scheme. 
All of the sensitivity and specificity, defined as Eqs. (1) and 
(2), respectively (see Materials and Methods), exceeded ~0.9. 
The classifier models achieved high levels of performance for 
TEM patch classifications in the test sets, whereas the sensitivity 
and specificity scores varied among the folds of the cross-
validation. One of the reasons is that the number of patches 

FIGURE 3 | Overview of three-fold cross-validation for prediction of ENX-resistant cells. The cartoon shows that TEM images were taken (denoted as “Shot”) from 
the 80-nm-thick sections on multiple grids, which were prepared from three blocks for each ENX-resistant strain and six blocks for the parental strain, and were split 
into three individual sets for three-fold cross-validation. In the cross-validation, four blocks of the parent strain and eight (= 4 × 2) blocks of the resistant strain were 
used for training, and two blocks of the parent strain and four (= 4 × 1) blocks of the resistant strain were used for testing. Thus, the test was done on completely 
unseen blocks. Numerous patches containing portions of cross sections of bacterial cells were extracted from TEM images and used for training, validation, and 
tests for classifier models (see also Materials and Methods).
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extracted from the TEM images differed considerably among 
the bacterial strains (Supplementary Table S1) and this 
imbalance in the data may have influenced the training of 
the classifier models and performance evaluation. Unbalanced 
data sets were acquired because of the elimination of patches 
containing non-cellular structures and variations in the cell 
densities among the acquired images, as described above. 
Moreover, the difference in classification performance may 
have been caused by variations in the appearance and shape 
of cells (Supplementary Figures S2B,C) that could not 
be  compensated for by increasing the number of training 
samples/patches. However, overfitting did not seem to occur. 
That is, the classifier models were successfully trained because 
there was only a small gap between the losses in the training 
and validation sets.

Visualization of the Discriminative 
Features of ENX-Resistant Cells
The next stage of the experiment was to clarify the morphological 
features of ENX-resistant cells using gradient-weighted class 
activation mapping (Grad-CAM) to visualize important regions 
in the images, which a CNN model relies on to predict class 
labels (Selvaraju et al., 2017). We hypothesized that the activated 
regions might contribute to the ability to discriminate between 
the bacterial strains and therefore could indicate the characteristic 
features of bacterial cells.

Figure 6 shows the representative results acquired using Grad-
CAM, which were obtained from one of three folds, by accumulating 
patchwise results, in which the classification confidence was equal 
to 1 on the corresponding images. All folds demonstrated similar 
results (Supplementary Figure S4). The classifier models were 
revealed to be  activated predominantly at the envelope for all 
ENX-resistant strains. Some bleb-like structures on the outer 
membrane were also activated in both ENX 3 and ENX 4 strains. 
Thus, these results supported our findings from the initial TEM 
observation. Besides the envelope, the granules and a portion 
of cytoplasm in some of the ENX-resistant cells (Figure  6 and 
Supplementary Figure S4, insets) were occasionally activated. 
However, the classifier models focused specifically on the dense 
granules at the cell poles in the parent strain.

Correlation of Image Features With Gene 
Expression
The results obtained using Grad-CAM suggested that the 
morphological features of the ENX-resistant strains could 
be  found mainly at the envelope, and this led us to consider 
which genes might be  associated with the morphological 
characteristics of these strains. Thus, we  calculated Pearson’s 
correlation coefficients for gene expression (Suzuki et al., 2014) 
and the image features extracted from the CNN model [Eq. 
(3) in Materials and Methods]. We  retained pairs of genes 
and image features meeting the condition that the absolute 
correlation coefficient between them was equal to or greater 

FIGURE 4 | CNN architecture used in this study. A batch normalized version of AlexNet was used for patch classification. The network architecture and some 
hyperparameters are illustrated in the figure. The input was a grayscale patch with a size of ×512 512 pixels whose values were copied into three channels. The first 
layer in the network was a 2-dimensional convolutional layer whose kernel was ×11 11 with stride 4 and padding 2, which produced values with a size of 

× ×127 127 64 (an image with a size of ×127 127 and 64 channels). The softmax function was used for the classification output.

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Hayashi-Nishino et al. Identification of Drug-Resistant Cells by CNN

Frontiers in Microbiology | www.frontiersin.org 10 March 2022 | Volume 13 | Article 839718

than 0.999. Consequently, multiple genes were identified for 
each fold (Supplementary Table S2) and four appeared in all 
the folds (Table  2). Surprisingly, all of these four genes were 
associated with envelope, being either envelope components 
or involved in the regulation of membrane lipid A modification 
(Plumbridge, 2009; Shepherd et al., 2010; Dalebroux and Miller, 
2014; Asmar and Collet, 2018). Particularly, lpp, a gene that 
encodes the major outer membrane lipoprotein (Li et al., 2014), 

appeared most frequently in all the folds. Lpp is important 
to the maintenance of the outer membrane structure and its 
mutant causes morphological alterations in the membrane, 
resulting in blebs and wavy appearance (Yem and Wu, 1978; 
Asmar et  al., 2017). Of note, similar morphological features 
were observed at the outer membrane in both ENX 3- and 
ENX 4-resistant strains (Figure  2). In fact, lpp in these strains 
caused a dysfunctional mutation and a significant decrease in 
gene expression (Suzuki et  al., 2014). Some other genes highly 
associated with certain image features were identified statistically, 
but it was difficult to ascertain which gene was associated 
with each image feature, so these questions remain unanswered.

DISCUSSION

Previous studies on bacterial drug resistance have generally 
provided an explanation of the genetic mutations that have 
occurred in drug-resistant cells. In recent years, the analysis 

TABLE 1 | Classification resultsa.

Fold Sensitivity Specificity Accuracy

1 0.966 0.900 0.943
2 0.927 0.984 0.953
3 0.984 0.902 0.947

aThe table presents classification accuracy rates. “Sensitivity” and “Specificity” denote 
the accuracy rate for classifying ENX-resistant cells and accuracy rate for parental cells, 
respectively.

FIGURE 5 | Validation loss and accuracy curves. The history of losses on the training and validation sets during each training phase (left panels) and the history of 
the sensitivity, specificity, and accuracy scores (right panels) are shown for each fold.
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of transcriptional data has revealed that the expression patterns 
of many genes are altered in drug-resistant cells, and it is 
becoming possible to predict drug-resistant bacteria from gene 
expression profiles (Suzuki et al., 2014). Similarly, morphological 
changes associated 1:1 with a particular gene have been described 
(Hirota et al., 1968; Wachi et al., 1987). However, as mentioned 
above, the expression patterns of multiple genes are altered 
in drug-resistant strains, and these changes may have a complex 
effect on the morphology of the bacterial cells.

In this study, we  revealed that drug-resistant strains that 
evolved in the laboratory maintained their morphological changes 

even in the absence of drugs. This finding suggested that the 
genetic changes that occur during the acquisition of drug 
resistance may induce morphological changes. Using deep 
learning techniques, which have progressed markedly in recent 
years, we  succeeded in accurately identifying TEM images of 
strains resistant to ENX, a quinolone antibacterial agent, showing 
the morphological characteristics of ENX-resistant strains. In 
the future, it will be  possible to explain the mechanisms of 
multidrug resistance in bacteria in a new way by clarifying 
the morphological characteristics of various types of drug-
resistant strains. Making image discrimination possible for 

FIGURE 6 | Visualization of the discriminative parts of bacterial cells using Grad-CAM. The representative Grad-CAM images generated from fold three by the 
accumulation of patchwise results on their corresponding images are shown. Insets depict the magnification of the boxed regions in each image. White arrowheads 
indicate bleb-like structures. Scale bars, 1 μm.

TABLE 2 | Genes exhibiting a high correlation with image feature elementsa.

Gene Description Locationb

Frequency

Fold 1 Fold 2 Fold 3

lpp Major outer membrane lipoprotein OM 6 23 68
phoP DNA-binding transcriptional dual regulator PhoP Cytosol 1 16 12
appB Cytochrome bd-II ubiquinol oxidase subunit II IM 2 3 4
nagE N-acetylglucosamine-specific PTS enzyme II IM 1 5 1

aThe four genes that were highly correlated with image feature elements obtained by the classifier models in all three folds are shown. The genes that correlated frequently with the 
image feature elements are listed in descending order of the number of appearances. The number of image feature elements varied in the three folds as 948, 836, and 808, 
respectively.
bOM, outer membrane; IM, inner membrane.
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clinical isolates will be  a significant advance as well. In this 
study, patches containing a portion of cells were used to 
discriminate the resistant strains, and local differences in the 
internal structure were used for identification purposes. However, 
both the internal structure and cell shape of drug-resistant 
bacteria change, and therefore, whether single-cell images can 
be  used for highly accurate identification remains to 
be  investigated.

We further explored the genes associated with the image 
features of the ENX-resistant strains using the image features 
extracted from the CNN model. Consequently, genes related 
to the composition of the envelope, including lpp, were 
found to be  highly correlated. These genes coincided with 
the regions of interest in the images visualized by Grad-
CAM, suggesting that genes involved in envelope formation 
are linked to the characteristics seen in ENX-resistant strains. 
Interestingly, lpp, phoP, and lolE are regulated by σE, one 
of the sigma factors that respond to envelope stress (Hews 
et  al., 2019), and appB is regulated by σS, the starvation/
stationary phase sigma factor that is also induced by antibiotics 
(Hengge-Aronis, 2002; Gutierrez et  al., 2013). Many of the 
other genes extracted in this study were found also to 
be  involved in sigma factors and stress responses (Gruber 
and Gross, 2003; Keseler et al., 2017). Presumably, the stress 
of continuous exposure to the antibacterial drugs in the 
evolution experiments may have altered the expression of 
these genes and consequently affected the morphological 
changes in the ENX-resistant strains. The genes extracted 
in this study have not previously been identified in reports 
on evolved drug-resistant bacterial strains (Suzuki et  al., 
2014; Germond et  al., 2018), their potential involvement in 
the morphological changes of the ENX-resistant strains is 
of great interest. However, it is not clear at present whether 
these genes correlate highly with the image features of 
ENX-resistant strains specifically. It should be  noted that 
interpretation of the results is limited by the use of a single 
antibiotic condition, and also on the current limits in our 
understanding of the complex changes in bacterial morphology 
associated with acquiring drug resistance. Further 
investigations using other drug-resistant strains are required 
to clarify these points. Furthermore, the morphology of 
clinical isolates should be compared with that of experimentally 
evolved strains using image discrimination and genetic 
analysis to determine whether the morphology of clinical 
isolates is similarly altered.

The mechanism underlying bacterial resistance to quinolones 
is assumed to be associated with mutations in the target factors 
DNA gyrase and topoisomerase IV, decreased expression of 
porins, and increased activity of efflux pumps (Aldred et  al., 
2014). However, the genes found to be  highly correlated with 
the image features of the ENX-resistant strains were different 
from these factors, although genetic mutations and expression 
changes of these factors occurred in these strains (Suzuki et al., 
2014). Thus, the relationship between the factors involved in 
drug resistance and the morphological changes that occur 
during the acquisition of drug resistance should be  elucidated 
in future work.
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