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Abstract Gliomas are one of the most common types of brain cancers. Numerous efforts have

been devoted to studying the mechanisms of glioma genesis and identifying biomarkers for diagno-

sis and treatment. To help further investigations, we present a comprehensive database named

GliomaDB. GliomaDB includes 21,086 samples from 4303 patients and integrates genomic, tran-

scriptomic, epigenomic, clinical, and gene-drug association data regarding glioblastoma multiforme

(GBM) and low-grade glioma (LGG) from The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO), the Chinese Glioma Genome Atlas (CGGA), the Memorial Sloan Kettering Can-

cer Center Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT), the US

Food and Drug Administration (FDA), and PharmGKB. GliomaDB offers a user-friendly inter-

face for two main types of functionalities. The first comprises queries of (i) somatic mutations,

(ii) gene expression, (iii) microRNA (miRNA) expression, and (iv) DNA methylation. In addition,

queries can be executed at the gene, region, and base level. Second, GliomaDB allows users to per-

form survival analysis, coexpression network visualization, multi-omics data visualization, and tar-

geted drug recommendations based on personalized variations. GliomaDB bridges the gap between
nces and
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glioma genomics big data and the delivery of integrated information for end users, thus enabling

both researchers and clinicians to effectively use publicly available data and empowering the pro-

gression of precision medicine in glioma. GliomaDB is freely accessible at http://bigd.big.ac.cn/glio-

maDB.
Introduction

Gliomas are the most common form of brain cancers and can

be classified as Grade I–IV based on standards set by the
World Health Organization (WHO). Grade I, II, and III
gliomas are usually considered low-grade glioma (LGG),
whereas Grade IV tumors are frequently termed high-grade

glioma, which is also known as glioblastoma multiforme
(GBM) (https://cancergenome.nih.gov/cancersselected/lower-
gradeglioma). In the United States of America, there were

23,820 estimated new cases and 17,760 estimated new deaths
owing to diseases of the brain and nervous system in 2019
[1]. Glioma is one of the deadliest forms of human cancers,

with a 5-year relative survival of 33% [2], and for GBM
patients in particular, the median duration of survival is esti-
mated to be 14 months after maximal surgical resection, radio-

therapy, and chemotherapy [3].
Recent years have witnessed the rapid development of high-

throughput technology, including microarray and next-
generation sequencing. For example, The Cancer Genome

Atlas (TCGA) [4–6] has been assembled from thousands of
glioma cancer and noncancer samples. In addition, an enor-
mous amount of data from independent studies has been

deposited into Gene Expression Omnibus (GEO) [7,8]; both
of these data aggregates provide an unprecedented opportu-
nity for glioma research. For example, genomic profiling could

be used to separate primary and secondary GBM, which are
otherwise indistinguishable histologically [9,10]. Single cell
sequencing technologies have been utilized for identifying
tumor initiating cells in glioma and presenting a paradigm

for interpretation of intra-tumor heterogeneity and personal-
ized therapy [11]. ATRX has been associated with increased
telomere length based on whole-genome data analysis; glioma

molecular classification by IDH mutation status and 1p/19q
codeletion were identified using clinically relevant molecular
subsets [6]. Despite advances in glioma research, most studies

use only a limited number of datasets because of insufficient
ready-to-use resources. Moreover, the highly dispersed nature
of data resources hindered the progression of precision medi-

cine. Hence, an integrated database must be urgently estab-
lished for the storage, retrieval, and analysis of big data in
glioma.

In the recent past, several databases have been developed

for the storage and analysis of big data in cancer. Some of
the databases focus on pan-cancer expression analysis; for
example, Gene Expression Profiling Interactive Analysis

(GEPIA, http://gepia.cancer-pku.cn) [12] provides RNA
sequencing (RNA-seq) data from 9736 tumors and 8587 nor-
mal samples from the TCGA and the Genotype-Tissue Expres-

sion (GTEx) projects and offers tools for differential analysis,
similar gene analysis, correlation analysis, and dimensionality
reduction. Cancer RNA-seq Nexus (http://syslab4.nchu.edu.

tw/) [13] provides 28 types of cancer RNA-seq data from the
TCGA and GEO. Moreover, this database provides function-
alities for the differential analysis of genes and long noncoding
RNAs (lncRNAs) as well as mRNA-lncRNA coexpression
network analysis. Other databases specifically focus on glioma;
some examples are given as follows. (1) The diffuse low-grade

glioma (DLGG) database (http://db-gliomas-gradeii.net/) [14]
provides 210 different fluid-attenuated inversion recovery
(FLAIR) magnetic resonance (MR) images of DLGG patients
at different levels of evolution and the tools for the analysis of

clinical images. (2) GLIOMASdb (http://cgga.org.cn:9091/
gliomasdb/) [15] provides RNA-seq data of 325 gliomas at
different stages with different subtypes and identified

progression-associated genes. (3) Xena (http://xena.ucsc.edu/)
[16] provides numerous useful visualization and analysis tools
for deposited omics data and secure analysis and visualization

of private functional genomics data. (4) cBioPortal (http://
www.cbioportal.org/) [17] provides simultaneous visualization
of multiple types of genomic data from multiple data sources.

Although these databases or web tools provide abundant
resources for the glioma scientific and clinical community,
many additional features or functions that are often required
by biologists and clinicians are not appropriately addressed

by these tools and databases. For example, most of the disper-
sive datasets in GEO are not included in GEPIA, Cancer
RNA-seq Nexus, DLGG, GLIOMASdb, Xena, or cBioPortal,

which limits the data usage. While Cancer RNA-seq Nexus
supports the query of a specific gene or lncRNA for the coex-
pression network, this database contains only the connections

of the query gene/lncRNA but not the connections between all
nodes. Moreover, while cBioPortal provides mutation annota-
tion from OncoKB [18], CIViC [19], and My Cancer Genome

[20], there lacks information on the mutation status for healthy
populations and lacks customizable annotation of mutations
for targeted drug recommendations. In addition, although
GEPIA provides survival analysis based on gene expression

profiles, the analysis is based on a single variable; an option
to consider two or more variables (genes) is not available. Fur-
thermore, none of these databases provide miRNA expression

or DNA methylation profiles. Hence, to mitigate the afore-
mentioned problems, we developed GliomaDB, an integrative
database for glioma-related data, to complement the existing

databases and web tools.
Implementation

GliomaDB codes were developed using an integrated develop-
ment environment, Eclipse (http://www.eclipse.org). MySQL
(https://www.mysql.com) is used to store and manage the

metadata information of this database. For database connec-
tion and operation, MyBatis (http://www.mybatis.org) is used
as a persistence framework. Spring (http://www.springsource.
org) is used for the inversion of control containers. Java Server

Pages is used to render the dynamic front pages. Struts (http://
struts.apache.org) is used to manage the model-view-controller
model web application. GliomaDB is hosted on a CentOS

operating system with two servers, with Tomcat (http://
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Figure 1 Scheme describing data processing, storage, and display for the GliomaDB visualization tool

Raw and annotation data from 10 public databases were stored in GliomaDB and then computed or analyzed using our in-house scripts,

with outputs visualized in figures or tables. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; MSK-IMPACT,

Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets; 1 KGP, 1000 Genomes Project; COSMIC,

Catalogue of Somatic Mutations in Cancer; FDA, Food and Drug Administration.

Table 1 Statistics of omics data deposited in GliomaDB

Data category
No. of

projects

No. of

samples

No. of

patients

No. of

records

Somatic

mutation

3 2490 1423 6,083,427

Gene

expression

18 3309 3283 56,181,100

miRNA

expression

3 733 715 1,072,792

DNA

methylation

3 986 960 184,091,259
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tomcat.apache.org/) serving static and dynamic content and a

MySQL (version 5.6.19) server providing the features for data-
base management. All the plotting features in GliomaDB are
implemented using R (version 3.4.2), Perl (version v5.10.1),
and Python (version 2.7.12). The tables for this database are

generated using DataTables (https://www.datatables.net)
JavaScript library. The interactive heatmap and network are
visualized with jHeatmap (https://jheatmap.github.io/jheat-

map/) and Cytoscape (http://js.cytoscape.org/) JavaScript
library, respectively (Figure 1).

Database content and usage

Database structure and organization

GliomaDB comprises four modules: search, analysis, team
introduction, and statistics. The search module includes four

aspects: genomic mutation, gene expression, miRNA expres-
sion, and DNA methylation. The analysis module contains
four analytical perspectives: survival analysis, coexpression

network visualization, cluster analysis, and variant-based tar-
geted drug recommendation.

Data sources

Genomic variants, gene expression, miRNA expression, DNA
methylation and clinical data of glioma patients were inte-
grated from the TCGA (https://cancergenome.nih.gov/),

MSK-IMPACT Clinical Sequencing Cohort [21], GEO
(https://www.ncbi.nlm.nih.gov/geo/), and CGGA (http://
www.cgga.org.cn/) projects; these data include tumor/normal

tissue and blood samples. For the glioma sample, we selected
only data from brain tissue, excluding data from cell lines,
and all published data should be from after 2005. To continu-

ously update the data, we developed a tool based on Entrez
Programming Utilities (E-Utils) provided by the National
Center for Biotechnology Information (NCBI) to automati-

cally search for the newly updated datasets (see ‘‘Update”
section in the ‘‘tutorial” page). For the genomic variants, we

also integrated annotations from public resources, such as gene
ontology (GO), the Catalogue Of Somatic Mutations In
Cancer (COSMIC, http://cancer.sanger.ac.uk/cosmic/), the
mutation frequency in different populations in the 1000

Genomes Project (https://www.genome.gov/27528684/1000-
genomes-project/), and context information on the mutation
in ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/). Drug-

responsive gene/variant data were collected from the Food
and Drug Administration (FDA) (http://www.fda.gov/) and
PharmGKB (https://www.pharmgkb.org).

Data preprocessing

For the expression profile generated with the microarray plat-

form from the GEO database, we first convert the probe id to
the gene symbol and then use the average value to represent
the expression of a gene if there are more than one probes
mapped to one gene. For the data from TCGA, we first down-

load level 3 files from the Genomic Data Commons (GDC)
data portal and then link the omics data to sample and patient
information with the Application Program Interface (API)

(https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/
#tools-for-communicating-with-the-gdc-api) provided by the
GDC data portal.
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Figure 2 Example of gene expression search output with IDH1

A. The first query result of the gene expression of IDH1 is shown as an example, including the gene summary information and projects

with expression records of the query gene. B. Boxplot showing the expression of IDH1 in different subtype of glioma from the CGGA

project. C. Detailed gene expression information of IDH1 in the CGGA project (only first 10 samples are listed). D. Information provided

for a specific sample CGGA_1001 included in the project shown in panel C. CGGA, Chinese Glioma Genome Atlas.
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Data statistics

GliomaDB integrates multi-omics data from 21 projects,
which include 4303 patients and 21,086 samples. There are
6,083,427 records of single nucleotide variants (SNVs), and

the corresponding annotations are based on hg19. There are
56,180,100 and 1,072,792 records in the gene expression and
miRNA expression data, respectively. The DNA methylation
data contain 27 K and 450 K data. The former has 27,578

CpG sites, and the latter has 485,578 CpG sites. There are
184,091,259 records in the DNA methylation data (Table 1).
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Figure 3 Example of GliomaDB analysis output

A. The overall survival analysis of a gene/genes of interest can be

expression of two genes, KLF1 and NF1, in TCGA-LGG as an examp

Samples with scores greater than the mean score of all samples are lab

signature score”. P = 0.011 indicates that the expression of KLF1 and

patients in TCGA-LGG. B. The coexpression network of genes correl

with ATRX were firstly selected as a dataset and the relationships of e

plugin in different layouts. C. The interactive heatmap visualization

variation, and expression profiles.
The variant/gene-related drug information collected from the
FDA and PharmGKB contains data on the variant, PubMed
ID, drug, disease, gene, P value, race, association, FDA guide-

line, etc. There are 77 targeted drugs and 6569 records regard-
ing drug information.

Search

Four types of data can be queried in the search section: somatic
mutation, gene expression, miRNA expression, and DNA

methylation. GliomaDB provides a straightforward search
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NF1 is significantly associated with the overall survival of LGG

ated with ATRX. All genes (shown in red solid circles) correlated

ach pair of genes in the dataset are visualized with the Cytoscape

of the multi-omics data tested, including mutation, copy number
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interface. Users can query by gene symbol (e.g., IDH1),
Ensembl ID (e.g., ENSG00000138413), or gene ID (e.g.,
3417) in the ‘‘Gene name” search field. For the mutation query,

chromosomal region, gene name, and dbSNP accession number
are supported for the retrieval of somatic mutations. The results
include the tumor sample and the matched normal sample,

which could be further linked to detailed information about
the corresponding patient. We also integrated the annotation
for mutations from Oncotator [22]. This mutation information

included the gene information and GO categories of the gene
where the mutation is located, the somatic mutations from
COSMIC located in the gene, the mutation frequency of the
mutation in 1000 Genomes data, and the mutation information

from ClinVar. In the gene and miRNA expression search sec-
tion, the results are grouped by project, considering the incom-
patibility of expression value between different platforms

(Figure 2). The results are presented in two steps. The first step
shows the summary information of the query gene and projects
containing the query gene in any of its samples (Figure 2A), and

the second step shows the expression boxplot of different sam-
ple groups (Figure 2B) and detailed expression (Figure 2C) of
the query gene in a specific project. Users can also obtain

detailed information on the patient fromwhom the sample orig-
inated (Figure 2D) by clicking the sample accession number in
the expression search results. In the methylation search section,
chromosomal region, gene name, and cgid (Infinium Methyla-

tionEPIC probe ID) are supported for the retrieval of DNA
methylation, and 450 K/27 K methylation data are included.

Analysis

GliomaDB includes four types of analysis: survival analysis,
coexpression network, interactive heatmap visualization, and

auxiliary targeted drug recommendation (Figure 3).

Survival analysis

Survival analysis based on gene expression levels is also widely

used for predicting the clinical outcome of a given gene [23].
Therefore, the gene expression datasets were used for survival
analysis. Single-gene or multiple-gene queries are both sup-

ported, and the results are presented in a Kaplan–Meier plot
of two groups stratified by the mean score obtained by Cox
regression (Figure 3A).

Coexpression network visualization

In each dataset, the Pearson’s correlation coefficient is calcu-
lated for each of the two genes, which potentially denotes their

regulation relationship. For the query of one gene, the result-
ing network includes edges between the query gene and each of
other genes with a Pearson’s correlation coefficient greater
than 0.85 (Figure 3B).

Interactive heatmap view of multiple omics data

We integrated jHeatmap [24], an interactive web heatmap

viewer built using JavaScript, to represent mutation, copy
number variation, and expression profiles (Figure 3C).

Auxiliary targeted drug recommendation

We integrated the pharmacogenomics knowledge for personal-
ized medicine from the FDA and PharmGKB [25] and offered
a built-in interactive service for the retrieval of targeted drugs
with either gene name/dbSNP accession ID/drug or a standard
VCF file.
Conclusion and discussion

GliomaDB is a web server that has been developed for the inte-
gration of multiple omics data and interactive analysis in
glioma studies. The data in GliomaDB are from TCGA, the

GEO database, the MSK-IMPACT project, the FDA, and
PharmGKB, with thousands of tumor and normal samples
included. Data types include genome, transcriptome, miR-
Nome, methylome, targeted drug, and genetic variation-drug

association. GliomaDB is a time-saving, free, and intuitive tool
for tapping the full potential of publicly available genomics big
data, which enables biologists and clinicians without any pro-

gramming experience to obtain ready-to-use multi-omics data
and perform a diverse range of data analyses. GliomaDB is
designed to complement existing tools, such as cBioPortal

and GEPIA. It also has the potential to become a one-stop ser-
vice for data query and analysis for the scientific and clinical
community associated with the glioma field. In the future,
we will not only continuously update multi-omics data from

both glioma and normal samples, but also develop new analyt-
ical features for further exploration of the available big geno-
mic data. We hope that GliomaDB would facilitate a better

translation of data into knowledge and of knowledge to
application.
Availability

GliomaDB is freely accessible at http://bigd.big.ac.cn/
gliomaDB.
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