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Abstract

In this work, we analyse and model a real life financial loan application belonging to a sample

bank in the Netherlands. The event log is robust in terms of data, containing a total of 262

200 event logs, belonging to 13 087 different credit applications. The goal is to work out a

decision model, which represents the underlying tasks that make up the loan application

service. To this end we study the impact of incomplete event logs (for instance workers for-

get to register their tasks). The absence of data is translated into a drastic decrease of preci-

sion and compromises the decision models, leading to biased and unrepresentative results.

We use non-classical probability to show we can better reduce the error percentage of infer-

ences as opposed to classical probability.

1 Introduction

In recent years, we have witnessed a vast increase in information. Given that the price of stor-

age devices has been decreasing throughout the years, storing millions of records of informa-

tion has become a common and affordable task. These large amounts of data pose serious

difficulties in the extraction of valuable information, and the analysis of these datasets has

become an extremely complex task. Companies often do not have control of the underlying

processes that make up their products or services. This translates in workflow sequences with

several redundant tasks, which play a crucial role in increasing the amount of expenses a com-

pany incurs and delays the delivery of a final product or service to a client.

In this paper, we have as objective to model a real life financial event log of a loan applica-

tion belonging to a sample bank in the Netherlands. The event log is robust in terms of data,

containing a total of 262,200 event logs, belonging to 13,087 credit applications. The only

information known is that a customer selects a certain amount of money and submits her / his

request to the bank’s web platform. Some automatic tasks are triggered and one can verify if

an application is eligible for credit. The underlying tasks of this loan application are heteroge-

neous and consist of a mixture of computer generated processes and manual human tasks. The

identification of the underlying processes that lead to a product / service is a very important
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task and an active research field in the scientific community, more specifically in the domain

of Business Process Management (see, e.g., [1]).

This work is motivated by the Business Process Intelligence (BPI) challenge of 2012 (please

see http://www.win.tue.nl/bpi/doku.php?id=2012:challenge). In this challenge, institutions

anonymously provide real-world event logs and participants are asked to analyse the data

using any techniques available that they think are suitable for the task. A jury then evaluates

the best report submitted and the winning participant receives a prize. In this challenge, the

owner of the financial institution data was interested in all valuable information that could be

extracted from the dataset as well as several different specific aspects. Some of these aspects

were concerned with the understanding of a general process that could represent the data and

how decisions could influence and have impact in this process. In this work, we try to address

some of these issues by exploring an alternative probabilistic graphical model (Bayesian Net-

works), that enables a graphical and unique analysis of how the information of some decisions

taken could propagate and influence whether a client gets a credit approved or not.

1.1 Business process management

Defined as the set of techniques responsible for the optimization of a company’s business pro-

cesses, Business Process Management promises the automatic detection of redundant tasks,

cycles or unprofitable sequences of events, leading to an increase in the company’s productiv-

ity, efficiency and a reduction of operational costs. Under these circumstances, a business pro-

cess is understood as a collection of tasks that are linked and executed in a sequence until they

result in a product or a service delivered to a client (see [2, 3]).

One of the techniques used in Business Process Management (and which will be the focus

of this work) is Process Mining. Process mining is a technique that enables the automatic analy-

sis of business processes based on event logs. Instead of designing a workflow, process mining

consists in gathering the information of the tasks that take place during the workflow process

and storing that data in structured formats called event logs [4]. While gathering this informa-

tion, it is assumed that (1) each event refers to a task in the business process; (2) each event is

associated with an instance of the workflow and; (3) since the events are stored by their execu-

tion time, it is assumed that they are sorted [5]. This means that the ordering of the activities

can be described by causal relationships, suggesting that decision models capable of represent-

ing cause/effect relationships are suitable models for the representation and analysis of the

company’s workflow and business process. Probabilistic graphical models, such as Bayesian

Networks, are examples of decision models which are capable of representing influences or

causal relationships between events [6].

1.2 The problem of missing data

Event logs are the main source of data for the discovery of the business processes that make up

a company. However, it is quite common that event logs are incomplete with several amounts

of missing information (for instance, workers forget to register their tasks, system crashes,

etc.). Usually, statistical methods are applied to the existing data, in order to create knowledge

and overcome the missing data. However, most of the statistical methods require a complete

dataset (or at least a dataset sufficiently robust) in order to perform accurate predictions [7].

The absence of data is translated into a drastic decrease of precision and compromises the sta-

tistical model, leading to biased and unrepresentative results. This affects all fields of knowl-

edge ranging from genetics [8], psychology [9], medical research [10], etc.

Missing data involves (or leads to) high levels of uncertainty. Although many tasks are auto-

mated in corporations, there is also a significant human component in these tasks. When
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workers need to make decisions under scenarios with high levels of uncertainty (when data is

missing, untrusted information, or simply decisions under pressure), the work force is subject

to human judgment errors and such errors can lead to redundant tasks in companies or lead

to more unnecessary and more complex sequences of tasks. All of this can cause additional

operational costs to companies whilst also adding to the potential of increased inaccurate deci-

sions (see [11]). The theme of human judgment errors, is covered by a large body of work

which reports ample experimental evidence demonstrating that humans constantly violate the

laws of classical probability theory and logic in decision scenarios under uncertainty. All of

this has led to a set of well publicised decision paradoxes and fallacies (see [12–17]).

1.3 Non-classical probability

Classical probability theory (also called Kolmogorovian probability [18]) can sometimes have

difficulty in providing effective models that can capture human judgments and decisions.

Well known paradoxes like the Ellsberg paradox [19], attest to this. In order to accommodate

decision paradoxes, a new discipline has emerged in the last decade, often known under the

generic name of quantum cognition. This new field aims to build cognitive models by using

the mathematical principles of quantum mechanics, and by so doing it uses non-classical prob-

ability (see, e.g., [20–25]). From the outset, two caveats need pointing out:

1. it is important to stress that this new approach is essentially limited to the borrowing of a

formalism from quantum mechanics. Current research in this new area of work does over-

all, not pretend to claim that human decision-making is quantum mechanical in nature.

We will therefore in the sequel of this paper often use the term ‘quantum-like’.

2. the quantum probabilistic formalism from basic quantum mechanics is by no means the

only expression of non-classical probability. There exist several deviations from classical

probability (those are often termed as ‘non-Kolmogorovian’ probabilistic frameworks)

In a classical setting, probability is computed using the law of total probability. Let A be a

random variable defined by real numbers and contained in a sample space ω, and let Bi with

i = 1, . . . N be a partition of the same sample space, then the classical law of total probability is

PrðAÞ ¼
XN

i¼1

PrðBiÞPrðAjBiÞ ð1Þ

Quantum cognition does not use classical probability theory. In quantum cognition, proba-

bilities are defined by complex numbers, instead of real numbers, and they are called ampli-

tudes (we denote them by ψ). A complex number is a number that can be expressed in the

form z = a + ib, where a and b are real numbers and i corresponds to the imaginary part,

such that i2 = −1. A complex number can also be described in the form z = |r|eiθ, where

jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

. The eiθ term is defined as the phase of the amplitude. These amplitudes are

related to classical probability by taking the squared magnitude of these amplitudes through

the so called Born rule [26]. This is achieved by multiplying the amplitude with its complex

conjugate (Eq 2)

PrðAÞ ¼
XN

i¼1

cðBiÞcðAjBiÞ

�
�
�
�
�

�
�
�
�
�

2

ð2Þ

From a strictly physics point of view, a consequence of using Born’s rule to define probabili-

ties will lead to the emergence of quantum interference effects. If we expand Eq 2, we will end
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up with a quantum probability formula (i.e. a non-classical probability formula), which con-

tains two terms: one that corresponds to the classical probability and another term that corre-

sponds to the quantum interference effects (see, e.g., [27])

PrðAÞ ¼
XN

i¼1

PrðBiÞPrðAjBiÞ þ interference ð3Þ

By manipulating the quantum interference term, we can disturb the classical probability

values through constructive interferences (when the interference term is positive) or destruc-

tive interferences (when the interference term is negative).

In terms of constructing inferences out of the missing data problem in business process

management, we can claim that quantum probabilistic inferences can be considered as an

additional layer to classical probability inferences allowing for a non-linear parameterisation

of the data. Our hypothesis is thus that one can take advantage of this additional parametric

layer and use it to improve the results of decision models in business process management.

This then will lead to more robust decision scenarios that can help reduce operational costs

in companies by reducing insignificant tasks and consequently improve the service delivery

times to clients.

To date, the literature has shown that quantum cognitive models are able to accommodate

many paradoxical situations in a general and fairly straightforward framework (see, e.g., [24,

28–32]). There are also quantum predictive models that are able to predict the outcome of

these decision scenarios with low percentage errors (see, e.g., [33, 34]). However, current

quantum cognitive models have been applied in very simple decision scenarios (for instance,

the Prisoner’s Dilemma), which can be modelled with at most two random variables. To the

best of our knowledge, no quantum-like model has ever been applied in the context of a com-

plex real life decision scenario, such as in Business Process Management.

1.4 Why Bayesian networks?

In process mining, there are many models used in the literature, which range from Markov

Chains [35, 36], to Petri Nets [37], Neural Networks [38] and even to BPMN [39]. Markov

Chains and Petri Nets are probably the most used models in the literature of process mining

[40], since they can make an easy and direct mapping from the event logs to a causal and

sequential structure (for more information on how these models can be applied, please see

[41]). Bayesian Networks, on the other hand, differ from Markov Chains, because of their

cycle-free and directed structure. They have the advantage of dealing with uncertainty differ-

ently from Markov Chains. While in Markov Chains business processes are modelled as a

chain of events that are observed to occur, under a Bayesian Network perspective, this does

not apply: each task can either be present or absent in the business process. Therefore, Bayes-

ian Networks allows the modelling of uncertainty associated with a business process by per-

forming a different analysis that will enable the computation of the probability of some task of

the business process occurring, given that we do not know which tasks have already been per-

formed [42]. It is this capability and graphical analysis of dealing with uncertainty that make

Bayesian Networks attractive models in many research fields including medical decision-mak-

ing [43] and risk management [44]. As shown throughout the paper, the graphical analysis

that a Bayesian Network can perform is something that is not directly perceived in a Markov

Chain and this is indeed one contribution of the present paper. Bayesian Networks could also

be used to assist business managers in decision-making by providing them a visual and proba-

bilistic analysis of a decision-scenario.
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We are aware that the directed acyclic structure of the Bayesian Network leads to a simplifi-

cation of the business process itself. But since the goal of this paper is to show a different and

alternative probabilistic model to compute inferences under high levels of uncertainty, this

does not hold a significant drawback. The analysis that we performed compares inferences

in the classical Bayesian Network with a non-classical Bayesian Network with an incomplete

dataset. For the validation of the probabilistic inferences, we used a classical Bayesian Network

with the full dataset as ground truth.

1.5 What are the main contributions of this paper?

The applicability of quantum-like models in complex real life scenarios, such as in medical

decision-making problems or decision-making in economical / financial scenarios, is still an

open research question in the literature. As of yet, to the best of our knowledge, no such studies

have been conducted. For this reason, the purpose of this paper is to provide for a first step

into this direction. We want to test the effectiveness of quantum-like cognitive models in a real

life financial scenario corresponding to a Dutch bank, which provides credit loans to its clients.

We focus our attention on the issue of event logs which are incomplete and which thus can

lack a large amount of data. The main contribution of our paper is the study of the impacts of

missing data in the reconstruction of the institution’s business processes. We investigate how

classical probabilistic models are affected by missing data and we explore a non-classical prob-

ability approach. We focus on the use of quantum-like probabilistic inferences as an alternative

mathematical model to the classical probability model.

In a nutshell, the paper aims to contribute to:

1. optimizing the institution’s business processes by identifying and eliminating redundant

tasks. This leads to an exponential drop in the costs and time that are involved in the loan

application.

2. the extraction of a decision model which is representative of an optimised loan

application.

3. dealing with missing data by exploring the impact of two different probabilistic inference

frameworks (one based on classical probability theory and the other based on non-classical

(here quantum theory based) probability).

1.6 Organization of the paper

Given the complexity of the problem at hand, our paper is segmented and organized in the fol-

lowing topics:

• Processing of the event log by discovering the underlying information that makes up the

event log and making sense of the relevance of this information for the construction of the

business process (Section 2.1).

• Extraction of the institution’s business process by extracting the sequence of tasks involved

in each loan application from the bank’s event log and by detecting redundant and miscon-

ducted tasks (Section 2.2);

• Construction of a decision model representative of the business process extracted. There are

many options to be explored here. In this paper, we opt for Bayesian Networks (Section 4);

• Investigation of the impact of missing data in the event log for classical and non-classical

probabilistic inferences. We explore alternative mathematical approaches to deal with
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uncertainty that are not based in classical probability theory. Again, there are many non-Kol-

mogorovian probabilistic frameworks. Due to the recent successful application of quantum-

like models (see, e.g., [20]), we will investigate quantum-like probabilistic inferences (Section

4.2).

2 Case study: A loan application bank in the Netherlands

The event log that we use in this work is taken from a bank in the Netherlands and corre-

sponds to a loan application, where customers request a certain amount of money. This dataset

has been provided for the BPI Challenge in 2012 and is publicly available (BPI Challenge 2012

Dutch financial institution Dataset: http://www.win.tue.nl/bpi/doku.php?id=2012:challenge).

The loan application starts with a webpage from where a customer selects a certain amount of

money and then submits his request. Then, the application performs some automatic tasks

and checks if an application is eligible. If it is eligible, then the customer is sent an offer by mail

(or by phone). After this offer is received, it will be evaluated. In case of any missing informa-

tion, the offer goes back to the client and is again evaluated until all the required information

is gathered. A final evaluation is then performed and the application is then approved [45].

It is also known that the process is composed of three different groups of processes. The

first letter of each task corresponds to an identifier of the sub-process it belongs to. The tasks

that start with the letter A correspond to states of the application, which are computer auto-

mated tasks. The tasks that start with the letter O correspond to offers, which are communi-

cated to the client. It is not clear from the dataset if these tasks are automatically generated by

the application or if they involve any human work. The tasks that start with the letter W corre-

spond to the work item belonging to the application and correspond to human tasks.

2.1 Processing the event log

The event log consists of a structured file, which requires a substantial amount of processing

effort in order to identify and extract all relevant information for the analysis. In total, we iden-

tified 262,200 events, which are contained in 13,087 different loan applications. Each loan

application is associated with some amount of money requested by the client. The summary of

all the different tasks extracted from the event log are laid out throughout Tables 1 to 3.

Table 1 summarises the computed automated tasks, A_. These tasks correspond to the

bank application, and from what the data informs us of, the costumer triggers the initiation of

Table 1. System application tasks that were identified during the processing of the event log. Some redundant task were identified, but still not confirmed: {A_SUB-

MITTED, A_PARTLYSUBMITTED} and {A_APPROVED, A_REGISTERED, A_ACTIVATED} [45].

Event Occurrences Description

A_SUBMITTED

A_PARTLYSUBMITTED

13 087

13 087

Initial states. All 13 087 cases recorded in the log file start with these events.

These tasks correspond to the action of a client starting the submission for a request of some amount of money to be

loaned.

A_PREACCEPTED 7 367 The application has not been accepted, because it requires additional information.

A_ACCEPTED 5 113 The application has been accepted and ready to go to the final stage.

However, it can still need some additional information from the client.

A_FNIALIZED 5 015 The submitted application is fully accepted and ready for assessment.

A_CANCELLED

A_DECLINED

2 807

7 635

End states of an unsuccessful application process.

Not clear what is the difference between them.

A_APPROVED

A_REGISTERED

A_ACTIVATED

2 246

2 246

2 246

Represent the end of a successful application process.

These three events always appear together interchangeably and

correspond to an approved loan application.

https://doi.org/10.1371/journal.pone.0207806.t001
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the process by submitting some required amount of money. The root node of the entire appli-

cation was identified as being A_SUBMITTED. At this stage, we already identified some

redundancy in the data since it seems that the processes A_SUBMITTED and A_PARTLYSUB-
MITTED always occur together and in sequence. This means that the bank application has an

additional process that is unnecessarily consuming time and computer resources. However,

we can only confirm this redundancy after analysing the graphical structure of the process

(Section 2.2). The same redundancy was found at the end of the application process. The three

redundant end nodes identified were A_APPROVED, A_REGISTERED and A_ACTIVATED.

These three events always occur together interchangeably.

Table 2 summarises the tasks that correspond to manual workers. The event log contains a

time sequence information regarding these tasks, which can either be START, SCHEDULE or

COMPLETE. As the name indicates, START corresponds to the beginning of a worker’s task.

When the worker has finished addressing the task, then the event state is changed to COM-
PLETE. Tasks that are postponed to some specified date (or time) are marked SCHEDULE.

For the analysis of the event log and for the extraction of the business process, we only consid-

ered the tasks that were in the state COMPLETE. Since these tasks are purely performed by

humans, a lot of errors are expected. For instance, the task W_Change contract details exists on

the system, however it has never been performed by any worker in the bank.

Table 3 summarises the tasks that correspond to Offers. It is not clear from the dataset or

from the information provided if these tasks correspond to human tasks or to application

tasks. We are guessing that they are a mix of both, but we will never know this with certainty.

For what we understood from the process, whenever a loan application is elicited for credit, an

offer is created and sent to the client. This offer can be sent back to the client, presumably if

Table 3. Tasks corresponding to offers that were identified during the processing of the event log. These tasks are not fully known if they are conducted by works, by

automatic application processes or by a mix of both [45].

Event Occurrences Description

O_CREATED

O_SELECTED

O_SENT

7 030

7 030

7 030

Offer created for the client

The client was selected to receive an offer

Offer sent to the client

O_SENT BACK 3 454 Client’s response to the received offer

O_ACCEPTED 2 243 Corresponds to an end state of a successful offer

Both parties agree with the offer.

O_CANCELLED

O_DECLINED

3 655

802

Corresponds to end states of an unsuccessful offer.

Either the client or the institution rejected the offers or the offer was cancelled for some reasons

https://doi.org/10.1371/journal.pone.0207806.t003

Table 2. Worker tasks that were identified during the processing of the event log. Workers tasks mean that these

tasks are pure manual and performed by humans [45].

Event Occurrences Description

W_Calling after sent offers 52 016 Event triggered whenever there is an offer sent to a client

W_Assessing the application 20 809 Evaluates whether the application is elicit for credit

W_Filling in information 54 850 Required after applications are pre accepted

W_Fixing incoming lead 16 566 Triggered by the initial application processes and whenever a client

did not fill all the required information

W_Calling to add missing

information

25 190 Additional information needed after performing the application

assessment

W_Rate fraud 664 Triggered after the assessment of the application, it is investigated

cases of suspicious fraud

W_Change contract details 0 Triggered when it is required a change in the contract

https://doi.org/10.1371/journal.pone.0207806.t002
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some changes are needed to the offer. It can also be accepted if the client accepts the offer or it

can be cancelled or declined. Regarding these last two eventualities, it is not clear what the dif-

ference is between them. It is supposed that an offer can be declined if the client or the institu-

tion rejects the offer. Three possibly redundant tasks were also identified, given that they

always appear together: O_CREATED, O_SELECTED and O_SENT. Again, this redundancy of

tasks can contribute to a drop in the productivity of the service by consuming extra resources

and time.

In summarizing, the dataset contained a total of 262,200 events, which are contained in

13,087 different loan applications. We identified 24 different events and several redundant

events that could be subject to some degree of optimization.

2.2 Extracting a business model

In a first step towards the understanding of the company’s business processes, we generated a

graphical model showing the sequence of all tasks that were conducted from the beginning of

the loan application request, until its end (either with a successful application or with a rejec-

tion). The resulting plot shows a graphical structure where each node represents a task and

each edge represents the probability of transiting from one task to another (Fig 1). Fig 1 shows

the complexity of the business process extracted directly from the event log. One can see that

the extracted graph is incomprehensible, very dense and extremely unclear. For this reason, we

needed to take some steps in order to extract information and value out of this process.

To extract informational value out of the business process, we removed a sequence of tasks

that were very unlikely to occur. In other words, tasks that had very small transition probabili-

ties. Consider Fig 2, which is a representation of a subset of the business process in Fig 1. For

Fig 1. Extracted business process from a Dutch’s financial institution Dataset.

https://doi.org/10.1371/journal.pone.0207806.g001
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instance, the probability of executing the sequence of tasks A_DECLINED!W_RateFraud is

0.0068. Since the occurrence of the sequence of these tasks is very rare, one can ignore it and

discard it from the analysis. In this paper, any sequences of tasks with a transition probability

below 0.05 are not deemed relevant to assess the value of the internal processes conducted in

the company. Consequently, those sequences were ignored.

2.3 Elimination of redundant tasks

When identifying the business processes from the event log, we suspected that there were sev-

eral tasks, which were redundant and could be merged into a single task. Regarding the auto-

matic processes, two sets of tasks were identified: { A_SUBMITTED, A_PARTLYSUBMITTED

} and { A_APPROVED, A_ACTIVATED, A_REGISTERED }. After extracting the causal rela-

tions and dependencies between events, we were able to confirm that in fact these tasks are

redundant and can potentially contribute to an increase in operational costs and, consequently,

to a decrease in productivity and efficiency. Considering Fig 3, we can see that after the root

node A_SUBMITTED, the node A_PARTLYSUBMITTED always occurs. To extract a more effi-

cient business process out of the data, we merged these two tasks into a single one and called it

A_START_APPLICATION.

Fig 2. Part of the business process extracted where we identify and remove very rare sequences of tasks. We consider that a sequence is rare if the probability of its

occurrent is bellow 0.05.

https://doi.org/10.1371/journal.pone.0207806.g002

Fig 3. Redundancy found between events {A_SUBMITTED, A_PARTLYSUBMITTED}.

https://doi.org/10.1371/journal.pone.0207806.g003
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The same occurs for the ending processes (Fig 4). The dataset shows that before a credit

application is approved, these three nodes occur interchangeably. Again, they are consuming

extra and unnecessary resources and in order to reduce the complexity of the model, we merged

these tasks into a single one: { A_APPROVED, A_ACTIVATED, A_REGISTERED }!

A_CREDIT_APPROVED.

Finally, in Fig 5, the dataset shows that after an offer is created, the offer is always sent. Also,

it seems that there are no rules in the application of the task O_SELECTED. Almost half of the

times it is triggered by the finalization of the automatic process A_FINALIZED. At some other

times, it is the task O_SELECTED that triggers the A_FINALIZED task. This last transition

makes no real sense, because first the automatic processes are conducted and only then, if they

are successful, the manual tasks and offer tasks start. Given this order inconsistency, it seems

that this task has been subjected to human intervention. It is straightforward that an offer can-

not be done before the application process is finalized, so we know that A_FINALIZED pre-

cedes the creation of the offer. To avoid redundancy and inconsistencies, we decided to group

the three tasks into a single one called O_OFFER_SENT, that is { O_SELECTED, O_CRE-

ATED, O_SENT }!O_OFFER_SENT. We note that by removing these redundancies and

unnecessary tasks, we were able to reduce the complexity of the business process from 24 to 18

tasks.

Fig 4. Redundancy found between events {A_APPROVED, A_ACTIVATED, A_REGISTERED}.

https://doi.org/10.1371/journal.pone.0207806.g004

Fig 5. Redundancy found between events {O_SELECTED, O_CREATED, O_SENT}.

https://doi.org/10.1371/journal.pone.0207806.g005
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2.4 Elimination of cycles

The next step to optimise the business process is to eliminate cycles. This step plays an impor-

tant role for two main reasons. First, it enables the discovery of cyclic sequences of tasks. Usu-

ally, these types of tasks are redundant and they contribute to the company’s inefficiency. This

translates again into a decrease in productivity and a vast increase in operational costs and pro-

duction (or service delivery) time. Second, the literature has reported the effectiveness of acy-

clic decision models as good approaches to model business processes and sequences of events

[46]. A type of acyclic decision model that we are going to explore in this work are the Bayesian

Networks [47].

These two reasons made us pursue the direction of eliminating cycles in the business pro-

cess as a way to optimise the underlying processes that make up the bank. Fig 6, for instance,

consists in a fragment of the business process, which contains cycles. One can easily notice

that there could be human error between the transition of the manual task to the automatic

task W_Fixing_Incoming_Lead! A_PREACCEPTED (which only contains a transition prob-

ability of 0.0684) versus the opposite direction A_PREACCEPTED!W_Fixing Incoming
Lead (which has a probability of 0.3417). This actually makes some sense. Human worker’s

tasks are more subject to human errors in contrast with pre-programmed computer automa-

tized tasks. In these circumstances, we eliminate the cycle by simply deleting the edge with the

lowest probability of occurrence. In Fig 6, the same reasoning can be made between tasks

W_Fixing_Incoming_Lead and A_DECLINED.

2.5 Final network structure

In summarizing, to extract a network structure representing the underlying processes that

make up the bank, we proceeded in the following way:

1. processing of the event log: identifying all tasks that were being conducted in the bank and

determining the frequency of their occurrences. In the end, we identified 24 different tasks,

contained in 262,200 events, which belonged to 13, 087 different loan applications

Fig 6. Subprocess containing a transition with a cycle. The transition with the lowest probability was removed in

order to guarantee an acyclic structure.

https://doi.org/10.1371/journal.pone.0207806.g006
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2. Extraction of a network structure, which initially was very complex to deal with due to the

vast amount of transitions between tasks

3. Optimization of the network structure, which consisted of three main steps: (1) elimination

of all edges with a transition probability below 0.05; (2) identification and elimination of

redundant tasks and; (3) identification and elimination of cycles.

In the end, we obtained a clear acyclic graphical structure (Fig 7) representative of the busi-

ness processes that makes up the bank from the beginning of a loan application until its end

(either with a successful outcome or a denial). This structure is clearer and can now be ana-

lysed in terms of probabilistic inferences.

Given the acyclic structure of the network, the next step is to fill the corresponding condi-

tional probability table, which shows the probability distribution of a random variable given its

parents nodes. In the next section, we briefly explain how this was achieved.

Fig 7. Optimised and reduced acyclic network structure extracted from the loan application bank event log.

https://doi.org/10.1371/journal.pone.0207806.g007
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3 Learning the conditional probabilities

The acyclic network structure that we obtained from the event log is called a Bayesian Net-

work. Bayesian networks are probabilistic graphical models that are used to model decision

scenarios. They aid in making probabilistic inferences, that is, asking queries to the model and

receiving answers in the form of probability values.

Under the realm of process mining, Bayesian Networks can represent activities as nodes

(i.e. random variables) and the edges between activities can be seen as transitions between

these tasks. From this structure, it is possible to automatically learn the conditional probability

tables from a complete log of events using statistical models. Every node of the network is asso-

ciated with a conditional probability table, which specifies the probability distribution of a

node, given its parents nodes.

Having a complete network structure, the estimation of the probabilities of a node given its

parents nodes is straightforward. The financial institution provided a complete sample of their

event log. When we have a known network structure and a full dataset, then the conditional

probabilities of the network can be computed by simply counting how many times the condi-

tioned variables occurred in the dataset. For instance, in the example in Fig 8, the variable

O_OFFER_SENT has one single parent node, A_FINALIZED. Both variables are binary and

can represent the presence or absence of the event: if the task A_FINALIZED has been executed,

then it is present, otherwise it is absent from the application form.

Using the example in Fig 8, the learning process of a conditional probability table from a

complete dataset with a known network structure simply consists in counting the number of

occurrences of each assignment of the random variables and normalizing the final counts to

obtain a probability value. When the variable O_OFFER_SENT has the value present, there are 2

out of 3 entries in the dataset where its parent variable also occurs (probability of 0.67) and 1 out

of 3 entries where it does not (with probability 0.33). In the same way, when O_OFFER_SENT
is absent, then we find that there is 1 out of 2 entries in the dataset where its parent variable is

found to be present and absent, leading to a probability of 0.5.

One can see that the task of learning is very easy and straightforward in these circum-

stances. However, in most of the real world scenarios that is not the case. It is quite common

that event logs are incomplete with several amounts of missing information (for instance,

workers forget to register their tasks). The absence of data is translated into a drastic decrease

of precision and compromises the statistical models, leading to biased and unrepresentative

results.

For the study of this paper, which consists in comparing the effectiveness of quantum-like

probabilistic inferences with classical inferences, it is straightforward to understand that for a

complete dataset, the classical probabilistic inferences performed will always be more repre-

sentative of the data, because we are learning the data in a classical way. The interesting ques-

tion to explore is: what is the impact of quantum-like probabilistic inferences when the dataset

Fig 8. Example of learning a conditional probability table from a complete dataset and a known network

structure. The learning process consists in simply counting the number of occurrences of each assignment of the

random variables and normalizing the final counts to obtain a probability value.

https://doi.org/10.1371/journal.pone.0207806.g008
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is not robust enough and suffers from a vast amount of missing information (which is actually

quite common in real world scenarios). In this situation, the classical statistical models cannot

generalize well and will lead to inaccurate results.

To explore this condition, we randomly removed 70% of the data from the event log and

used a learning algorithm called Expectation / Maximization to learn the conditional probabil-

ity tables of the Bayesian Network [48]. Generally speaking, expectation / maximization is a

statistical method. The mean and the variance of the probability distribution can be estimated

by only knowing a partial sample of the dataset. The details of this algorithm already fall out-

side of the scope of this paper, but the reader can refer to the book of Bishop (2007) for further

details. Fig 9, shows an example of what a dataset with missing data looks like and the final

estimations of the conditional probability table learned with the expectation/maximization

algorithm.

It is interesting to notice that the conditional probabilities learned using the incomplete

dataset do not reveal much information about the underlying business processes of the bank.

The conditional probability tables learned for most of the tasks has nearly a 50% chance of

either the task occurring or not. To give a more specific example, we can see that the probabil-

ity of having a credit approved, Pr(A_CREDIT_APPROVED), is 44.41% in the Bayesian net-

work learned with missing data (Fig 10). We contrast this with the 2.86% obtained in the

Bayesian network with the conditional probability tables learned using the full dataset (Fig 11).

After finishing the learning phase, we ended up with two classical Bayesian networks: one

for the missing data and another one for the full data represented in Figs 10 and 11, respec-

tively. The Bayesian network in Fig 11 is our control network and will be used for evaluation

purposes. Its conditional probability tables were learned using the full event log. On the other

hand, the Bayesian network in Fig 10 is the one that will be used to compare classical infer-

ences over quantum-like inferences and its conditional probability tables were learned using

the same event log. However, 70% of its data was randomly missing, and therefore this intro-

duced a high degree of uncertainty in the data.

At this stage one could be arguing about the effectiveness and applicability of Bayesian net-

works as appropriate decision models for process mining. Bayesian networks have already

been used throughout the literature of business process management in many different scenar-

ios [46]. In the literature, Markov chains are the most commonly used models to represent

business processes [1]. However, Bayesian networks provide a different decision-making anal-

ysis in the sense that they enable the specification of evidence variables. In other words, they

provide the specification of some knowledge about the decision scenario. For example, sup-

pose that the only thing that we know about the state of the application process is that a credit

was approved. Then, we can ask the network what the probability is of a certain task occurring

(for instance, W_Filling In Information), given that we know that a credit was approved, Pr
(W_Filling In Information|A_CREDIT_APPROVED). These types of inferences are unique to

Fig 9. Example of learning a conditional probability table from an incomplete dataset and a known network

structure. The learning process consists in the application of statistical methods that assume that events are distributed

according to a Gaussian distribution (the Expectation/Maximisation algorithm).

https://doi.org/10.1371/journal.pone.0207806.g009
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Bayesian networks and provide an interesting type of analysis that is not commonly performed

in such type of decision scenarios. For instance, when we observe the state of the random vari-

able A_CREDIT_APPROVED = present, then we know with certainty that the following events

took place: A_START_APPLICATION! A_PREACCEPTED! A_ACCEPTED! A_FINAL-
IZED! O_OFFER_SENT!W_Filling_In_Information!W_Calling_After_Sent_Offers!
W_Assessing_the_application! O_ACCEPTED! A_CREDIT_APPROVED (Fig 12).

In the next section, we will formally present how to perform such types of probabilistic

inferences both on classical and quantum-like Bayesian networks.

Fig 10. Resulting Bayesian network representing the business process of the financial institution with the conditional probability tables learned with 70% of the

data missing.

https://doi.org/10.1371/journal.pone.0207806.g010
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4 Exact inference in classical and quantum-like Bayesian network

Since the event logs of the bank are stored by their execution time, describing thus a causal

sequence between events, we will explore the applicability and effectiveness of quantum-like

Bayesian networks [33] in the prediction of several events from the loan application process.

A quantum-like Bayesian network can be defined as an acyclic directed graph in which each

Fig 11. Resulting Bayesian network representing the business process of the financial institution with the conditional probability tables learned using the sull

dataset.

https://doi.org/10.1371/journal.pone.0207806.g011
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node represents a random variable. Each edge represents a direct influence from the source

node to the target node and uses probability amplitudes, which will be responsible for the

emergence of interference effects. Moreover, Bayesian Networks allow us to deal with uncer-

tainty: each task can either be present or absent in the business process. Therefore, it is possible

to perform an analysis that will enable the computation of the probability of some task of the

Fig 12. Impact of probabilistic inferences over Bayesian networks for process mining. Bayesian networks enables the specification of observed variables (evidence

variables) and the specification of unobserved variables. In the figure, the only thing that was observed (piece of information provided) is that the variable

A_CREDIT_APPROVED was observed to be present. With this piece of information, we can know the entire workflow of the company with 100% certainty.

https://doi.org/10.1371/journal.pone.0207806.g012
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business process occurring, given that we do not know which tasks have already been per-

formed [47].

4.1 Classical Bayesian networks

A classical Bayesian network can be defined by a directed acyclic graph structure in which

each node represents a different random variable from a specific domain and each edge

represents a direct influence from the source node to the target node. The graph represents

independence relationships between variables and each node is associated with a condi-

tional probability table which specifies a distribution over the values of a node given each

possible joint assignment of values of its parents. This idea of a node depending directly

upon its parent nodes forms the core of Bayesian networks. Once the values of the parents

are known, no information relating directly or indirectly to its parents or other ancestors

can influence the beliefs about it [6]. Fig 13 shows an example of a classical Bayesian

network.

4.1.1 Classical full joint distributions. In classical probability theory, the full joint distri-

bution over a set of N random variables Pr(X1, X2, . . ., XN) corresponds to the probability

distribution assigned to all of these random variables occurring together in the same sample

space [6]. The full joint distribution of a Bayesian network, where Xi is the list of random vari-

ables and Parents(Xi) corresponds to all parent nodes of Xi, is given by Eq 4 [49]

PrðX1; . . . ;XnÞ ¼
Yn

i¼1

PrðXijParentsðXiÞÞ ð4Þ

4.1.2 Classical marginalization. Given a query random variable X and let Y be the unob-

served variables in the network, the marginal distribution of X is simply the probability distri-

bution of X averaging over the information about Y. The marginal probability for discrete

random variables, can be defined by Eq 5. The summation is over all possible y, i.e., all possible

combinations of values of the unobserved values y of variable Y. The term α corresponds to a

normalization factor for the distribution Pr(X) [49].

PrðX ¼ xÞ ¼ a
X

y

PrðX ¼ xjY ¼ yÞPrðY ¼ yÞ; where a ¼
1

P
x2XPrðX ¼ xÞ ð5Þ

Fig 13. General example of a classical Bayesian network. Each node represent a random variable and each edge

represents a direct influence from a source node to a target node. Each node is followed by a conditional probability

table, which specifies the probaility distribution of a node given its parents.

https://doi.org/10.1371/journal.pone.0207806.g013
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4.2 Quantum-like Bayesian networks

A quantum-like Bayesian Network can be defined by a directed acyclic graph structure in

which each node represents a different random variable and each edge represents a direct

influence from the source node to the target node. The graph can represent independence rela-

tionships between variables, and each node is associated with a conditional probability table

that specifies a distribution of probability amplitudes over the values of a node given each pos-

sible joint assignment of values of its parents. In other words, a quantum-like Bayesian Net-

work is defined in the same way as a classical network with the difference that probability

values are replaced by probability amplitudes (as we remarked before those amplitudes are

complex valued) [33]. Fig 14 shows an example of a classical Bayesian network.

4.2.1 Quantum-like full joint distribution. The quantum-like full joint probability distri-

bution can be defined in the same way as in a classical setting with two main differences: (1)

the probability values are replaced by probability amplitudes and; (2) the probability value is

given by applying the squared magnitude of a projection. In this sense, the quantum-like full

joint probability amplitude distribution over a set of N random variables ψ(X1, X2, . . ., XN) cor-

responds to the probability distribution assigned to all of these random variables occurring

together in a Hilbert space. Then, the full joint probability amplitude distribution of a quan-

tum-like Bayesian Network is given by

cðX1; . . . ;XNÞ ¼
YN

j¼1

cðXjjParentsðXjÞÞ ð6Þ

Note that, in Eq 6, Xi is the list of random variables (or nodes of the network), Parents(Xi)
corresponds to all parent nodes of Xi and ψ(Xi) is the probability amplitude associated with the

random variable Xi. The probability value is extracted by applying Born’s rule, that is, by mak-

ing the squared magnitude of the joint probability amplitude, ψ(X1,. . ., XN)

PrðX1; . . . ;XNÞ ¼ jcðX1; . . . ;XNÞj
2 ð7Þ

4.2.2 Quantum-like marginalization. The quantum-like marginalization formula is the

same as the classical one with two main differences: (1) the probability values are replaced by

probability amplitudes; (2) the probability is obtained by applying Born’s rule. More formally,

given a query random variable X and let Y be the unobserved variables in the network, the

Fig 14. General example of a quantum-like Bayesian network. Each node represent a random variable and each edge

represents a direct influence from a source node to a target node. Unobserved nodes can produce quantum

interference effects, which can disturb the final probability outcomes.

https://doi.org/10.1371/journal.pone.0207806.g014
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marginal distribution of X is simply the probability amplitude distribution of X averaging over

the information about Y. The quantum-like marginal probability for discrete random variables

can be defined by Eq 8. The summation is over all possible y, i.e. all possible combinations

of values of the unobserved values y of variable Y. The term γ corresponds to a normalization

factor. Since the conditional probability tables used in Bayesian networks are not unitary oper-

ators with the constraint of double stochasticity (like it is required in other works of the litera-

ture [50, 51]), we need to normalize the final scores. In classical Bayesian inference, on the

other hand, normalization is performed due to the independence assumption made in Bayes’

rule

PrðXjeÞ ¼ g
X

y

YN

k¼1

cðXkjParentsðXkÞ; e; yÞ

�
�
�
�
�

�
�
�
�
�

2

ð8Þ

Note that double stochasticity of a square matrix requires that each row and each column of

non-negative real numbers adds up to one. Expanding Eq 8 will lead to the quantum-like mar-

ginalization formula [52], which is composed of two parts: one representing the classical prob-

ability and the other representing the interference term (which corresponds to the emergence

of destructive / constructive interference effects)

PrðXjeÞ ¼ g
XjYj

i¼1

YN

k

cðXkjParentsðXkÞ; e; y ¼ iÞ

�
�
�
�
�

�
�
�
�
�

2

þ 2 � Interference ð9Þ

Interference ¼

XjYj� 1

i¼1

XjYj

j¼iþ1

YN

k

cðXkjParentsðXkÞ; e; y ¼ iÞ

�
�
�
�
�

�
�
�
�
�
�
YN

k

cðXkjParentsðXkÞ; e; y ¼ jÞ

�
�
�
�
�

�
�
�
�
�
�cos ðyi � yjÞ

Note that, in Eq 9, if one sets (θi − θj) to π/2, then cos(θi − θj) = 0. This means that the inter-

ference term is canceled and the quantum-like Bayesian network collapses to its classical coun-

terpart. In other words, one can see the quantum-like Bayesian Network as a more general

and abstract model of the classical network, since it represents both classical and quantum-like

behaviour. Setting the angles to right angles means that all cosine similarities are either 0 or 1,

transforming a continuous-valued system to a Boolean-valued system. Moreover, if the Bayes-

ian network has N binary random variables, we will end up with 2N free θ parameters, which is

the size of the full joint probability distribution.

It remains an open question to come up with a formal method to assign values to interfer-

ence terms. However, some work has already been done in that direction [33, 34, 53]. In this

paper, we will use the heuristic developed in the work of [33] in order to set the interference

parameters.

4.3 Interference terms

So far, we presented a general quantum-like Bayesian network model, which performs quan-

tum-like probabilistic inferences. In the recent work of [33], the authors propose a similarity

heuristic, which proves to be effective in paradoxical scenarios that are violating the Sure

Thing Principle [54]. The Sure Thing principle plays a key role in the Ellsberg paradox we

mentioned in section 1 of this paper. Note that a heuristic is simply a shortcut that generally

provides good results in many situations (in this case, for violations to the Sure Thing Princi-

ple), but at the cost of occasionally not giving us very accurate results [55].
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Probabilistic inferences are computed by selecting from the full joint probability distribu-

tion the appropriate assignments. Following the example in Fig 15, if we want to compute the

probability of the random variable A being true, Pr(A = true), then one selects from the full

joint probability distribution all the entries where A = true and all entries where A = false.
These entries correspond to the marginal probability distribution, and if we sum the values of

the vectors and normalize them, we will end up with a classical probability to the query

PrðA ¼ trueÞ ¼ a
XN

i¼1

li;

where α is the normalization factor. If we add an interference term to this formula, then we

will end up with a quantum-like probability answer to the same query, γ being the normaliza-

tion factor

PrðA ¼ trueÞ ¼ g
XN

i¼1

li þ 2
XN� 1

i¼1

XN

j¼iþ1

ffiffiffiffi
li

p ffiffiffiffi
lj

q
Cosðyi � yjÞ

 !

The interference parameters θ are obtained by extracting the similarity values between the

marginal distribution vectors. This is achieved by computing the cosine similarity between

them, which is a widely used similarity function in information retrieval [56]. Following Fig

15, the cosine similarity will gives us three degrees of similarity between the vectors: θA, θB
and θC. In the work of [33], the authors created the similarity measure ϕ, which is given by the

ratio between the angles of the probability vectors

� ¼
ðyC � yBÞ

yA

Note that ϕ is obtained based on the marginal probability distribution of the data. It mea-

sures the relation between two probability values, because we are considering binary random

variables, and nothing else.

Just like ‘learning’ algorithms need to learn the distribution of the data, in the quantum-like

Bayesian network we also need to perform an analysis of the data in order to set the interfer-

ence terms. Usually, one needs to have prior knowledge of the outcome of a decision scenario

and only then can one manually adjust the interference effects [31, 50, 51]. This is feasible for

Fig 15. Example of how to compute the similarity heuristic proposed in the previous work of [33].

https://doi.org/10.1371/journal.pone.0207806.g015
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very small and controlled decision scenarios, however when we move to large scale and com-

plex decision scenarios with millions of parameters to set, this approach is intractable.

The similarity heuristic proposed by [33] requires the definition of some threshold values

based on the similarity measure ϕ. In their work, the authors were able to obtain proper

thresholds to predict many different experiments, which were violating the Sure Thing Princi-

ple. Since we are not dealing with violations to the Sure Thing Principle in this paper, we per-

formed a preliminary analysis of the data in order to establish and learn the thresholds (or

boundaries) of the heuristic function. The function devised is represented in Eq 10.

hy ¼

1:5408 if � < � 2

1:5178 if � >¼ � 2 && � <¼ 0

p if � >¼ 0:15

0 otherwise

8
>>>>>><

>>>>>>:

ð10Þ

It is important to note that both classical and quantum-like models have the same amount

of information: they only use the marginal probability distribution. The difference relies in the

fact that classical probability uses real numbers and quantum-like models use complex num-

bers, which will lead to the emergence of the interference effects that can be anything in a

given range of values. This is also a reason why we need to specify these thresholds in the heu-

ristic function, otherwise we would have no control over the interference terms. Appendix B

presents in more detail how to compute the similarity heuristic for quantum-like inferences.

5 Comparison between classical and quantum-like Bayesian

networks

After learning the conditional probabilities of the Bayesian network and after presenting the

inference process in Bayesian networks (both classical and quantum-like), we will now proceed

with a comparison of the probabilistic inferences obtained in both classical and quantum-like

Bayesian networks in the scenario where 70% of the data from the event log is missing.

We want to emphasize the point that randomly removing 70% of the data is akin to simulat-

ing a real world situation. Although the full dataset was kindly provided by a Dutch bank, we

have argued in this paper that in real world scenarios, financial data suffers from the problem

of incomplete data [57]. This also provides for a rationale why there is an increasing need to

use machine learning algorithms to generalize information based on a sample of data [58].

In order to compare classical probabilistic inferences with quantum-like inferences in the

Bayesian network with missing data, we queried each variable of the Bayesian network and

compared the outcome with a Bayesian network whose conditional probability tables were

learned using the full data of the event log.

The results of comparing the probabilistic inferences performed in a Bayesian network with

classical and quantum-like inferences are detailed in Table 4.

The results show that the quantum-like inferences were able to adjust the probabilistic

inferences of the classical network in scenarios with high levels of uncertainty (no variables

observed). One can interpret quantum-like probabilistic inferences as an additional layer to

the classical inferences that allows for a non-linear parameterisation of the data.

It is interesting to note that quantum-like inferences either outperform classical inferences

or, in a worst case scenario, have the same performance as a classical network. This issue has

already been noticed and pointed out in the previous studies of [33, 52, 59]. The queries per-

formed over the random variables A_FINALIZED, A_CANCELLED and
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W_FixingIncomingLead were the ones with higher errors, but they had nearly the same perfor-

mance as the classical network. The quantum-like model achieved a mean error of 17.86%

compared with the 13.78% mean error obtained in a classical setting. The general results

show that the average error over the 19 random variables was, in scenarios where nothing is

observed, for the quantum-like Bayesian network 5.90% compared to a 22.85% error in the

classical network.

A statistical analysis was also performed where we used a paired t-test to attest the signifi-

cance of the results. Table 5, shows that the probabilistic inferences obtained in the quantum-

like Bayesian Network were statistically significant for a confidence level of 95%.

Although much more research needs to be done, this study suggests that quantum-like

inferences could be used as a way to complement inferences in classical models. This can have

high impact in several domains where machine learning plays an important role (for instance,

in medical decision-making or even in portfolio optimisation [60]).

5.1 Advantages and disadvantages of quantum-like Bayesian networks

It is straightforward that quantum-like Bayesian networks suffer the same problem of the

exponential increase of complexity (expressed as the dimension of the state space) as the classi-

cal Bayesian networks. Indeed, in what concerns the complexity of the inference problem,

Table 4. Comparison between quantum-like and classical inferences over a Bayesian network learned using an incomplete dataset (with 70% of missing data). The

results show that quantum-like inferences achieved an average error of 5.90% when compared to the 22.85% error obtained in the classical inference. The column COM-

PLETE DATA BN represents the control network, which was learned using the full dataset.

MISSING DATA BN COMPLETE DATA BN

Inferences Error (%) Inferences

Quantum Classical Quantum Classical Classical (baseline)

Pr(A_PREACCEPTED = present) 0.0787 0.3298 1.14 26.25 0.0673

Pr(A_ACCEPTED = present) 0.0292 0.3152 1.75 26.85 0.0467

Pr(A_CREDIT_APPROVED = present) 0.0110 0.1674 2.01 13.86 0.0311

Pr(A_DECLINED = present) 0.5325 0.5325 3.88 3.88 0.5713

Pr(A_FINALIZED = present) 0.0286 0.1786 1.73 13.28 0.0458

Pr(O_SENT_BACK = present) 0.1022 0.4115 7.31 38.24 0.0291

Pr(O_CANCELLED = present) 0.1760 0.4160 17.23 41.23 0.0037

Pr(O_DECLINED = present) 0.0431 0.4070 3.81 40.20 0.0050

Pr(O_ACCEPTED = present) 0.0110 0.1674 2.01 13.86 0.0311

Pr(O_OFFER_SENT = present) 0.0588 0.1014 1.39 5.71 0.0449

Pr(W_Assessing_the_Application = present) 0.0643 0.4160 1.98 37.15 0.0445

Pr(W_Calling_After_Sent_Offers = present) 0.0405 0.4177 0.44 37.28 0.0449

Pr(W_Calling_To_Add_Missing_Info = present) 0.0305 0.4297 0.77 40.69 0.0228

Pr(W_Fixing_Incoming_Lead = present) 0.4006 0.4792 1.25 9.11 0.3881

Pr(W_RATE_FRAUD = present) 0.0019 0.0082 0.55 0.08 0.0074

Pr(W_Filling_In_Information = present) 0.5372 0.4706 21.40 14.74 0.3232

Pr(A_CANCELLED = present) 0.0749 0.1260 31.63 26.52 0.3912

https://doi.org/10.1371/journal.pone.0207806.t004

Table 5. Paired sample t-test of the inference computed by the classical BN compared to the inferences computed by the quantum-like BN. Results show that the aver-

age inferences computed by the quantum-like BN were statistically significant for a confidence interval of 95%.

Mean St Deviation St Error Mean Conf. Inter. 95% t-value p-value Significant?

0.1695 15.7620 3.8228 [8.845; 25.0530] 4.434 0.0004 < 0.05 yes

https://doi.org/10.1371/journal.pone.0207806.t005
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Bayesian networks (either classical or quantum-like) will always be NP-Hard. This means that

exact inference on Bayesian networks are part of a class of problems that are extremely hard

for a computer to solve, because it takes an exponential number of computational steps to per-

form the computations. The hardness of the exact inference comes precisely in the computa-

tion of the full joint probability distribution, which takes at most 2N − 1 (N being the number

of nodes in the network) computational steps assuming that all random variables of the net-

work are binary. This gives a complexity of O(2N). If random variables are not binary, then the

exact inference process becomes even worse with a complexity of O(MN), where M is the num-

ber of assignments that the random variables can have.

The initial analysis that we performed in this paper enabled us to identify redundant tasks

in a bank. With the help of a preliminary analysis, we were able to decrease the number of

tasks in the business process from 25 events to 19. In order to gain some idea of the impact of

this identification in the inference problem, we can say the following. If we used all tasks that

were identified in the event log, we would end up with a full joint probability distribution of

6 × 223 = 50, 331, 648 entries, which corresponds to the AMOUNT random variable (which

contains 6 different assignments) and 23 binary random variables (which contains 223 different

assignments). Under a classical setting, this is computationally intractable and in order to deal

with this situation we could not use exact inference mechanisms. An alternative approach

would be the use of approximative inference methods, such as the belief propagation algorithm

originally proposed by [47]. However, quantum-like versions of this algorithm have not been

heavily explored in the literature. With the identification of the redundant tasks, we were

able to reduce the state space to 6 × 219 = 3, 145, 728 entries, which is already computationally

tractable.

The quantum-like Bayesian network suffers from the same problem as the classical network

in terms of the exponential increase of the full joint probability distribution. However, it also

enables a new set of free parameters, which are the consequence of the interference effects.

These interference effects can be seen as an additional non-linear parametrical layer that is

added to classical inferences in order to refine probabilistic inferences. A preliminary analysis

of the data needs to be performed in order to refine the boundaries that are required for the

heuristic proposed in [33]. The computation of these quantum interference effects can be per-

formed in quadratic time with an addition of m(m + 1)/2m operations, where m is the size of

the marginal probability distribution. In the end, we lose a little bit of performance, but we are

able to get a decision model which relative to the classical network, provides for a better repre-

sentation of a decision scenario under high levels of uncertainty.

All simulations, the Bayesian networks and the code to perform classical and quantum-like

inferences that we used in the experimental findings of this work will be made freely available

for researchers (https://github.com/catarina-moreira/bpmn).

6 Conclusions

In this paper, we investigated how classical probabilistic models are affected by incomplete

event logs and we explored quantum-like probabilistic inferences as an alternative mathemati-

cal model to classical probability. We presented a pioneering study which studies the impact

of interference terms in a real life, large scale decision scenario. This work also showed that

Bayesian Networks provide an interesting analysis of a business process, since it represents the

uncertainty differently from the traditional models of the literature (like Markov Chains or

Petri Nets). While in Markov Chains business processes are modelled as a chain of events that

are observed to occur, under a Bayesian Network perspective, this does not apply: each task

can either be present or absent in the business process. Therefore, Bayesian Networks allows
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the modelling of uncertainty associated with a business process by performing a different anal-

ysis that will enable the computation of the probability of some task of the business process

occurring, given that we do not know which tasks have already been performed.

We analysed a loan applications dataset from a Dutch bank. We were able to discover the

underlying processes that make up the bank’s business processes and we optimised the work-

flow by identifying redundant tasks and insignificant sequences of tasks. Data is usually miss-

ing or unreliable and, in the absence of data, statistical methods cannot come up with a general

model representative of the data. For this reason, it is important to employ novel methods that

are capable of dealing with incomplete datasets and uncertainty.

Quantum-like models have proven throughout the literature that they are capable of repre-

senting uncertainty in a more general way than classical models, due to the usage of quantum

interference effects. These interference effects can be seen as an additional non-linear parame-

trical layer that is added to classical inferences in order to refine probabilistic inferences. The

drawback is that a preliminary analysis of the data needs to be performed in order to refine the

boundaries that are required for the similarity parameter in the heuristic we discussed. Also,

the computation of these quantum interference effects can be performed in quadratic time.

We lose a little bit of performance, but we gain in terms of accuracy. So far, quantum-like

models have only been applied in very small and controlled experiments. The study conducted

in this paper represents a first attempt to assess the effectiveness of quantum-like models in

real life scenarios. From this work, we verified that under large and complex decision scenarios

with high levels of uncertainty, quantum-like inferences were able to outperform classical

inferences.

Appendix

A Inferences in quantum-like Bayesian networks

The quantum-like Bayesian Network proposed in [33] is built in a similar way as a classical

network, with the difference that it uses complex amplitudes to specify the conditional proba-

bility tables, instead of real probability values. As a consequence, the quantum-like Bayesian

Network will give rise to interference effects, which can act destructively or constructively if

the interferences are negative or positive, respectively.

Algorithm 1 describes the main steps to compute quantum-like inferences. Basically, a

probabilistic inference consists of two major steps: the computation of the full joint probability

distribution of the network and the computation of the marginal probability distribution with

respect to the variable being queried.

The algorithm starts by receiving a Bayesian network represented by a set of factors speci-

fied by probability amplitudes instead of probability values. A factor is a function that takes as

input a set of random variables and returns all the assignments corresponding to that random

variable. For instance, the full joint probability distribution of a network can be seen as a fac-

tor. The algorithm also receives a set of observed variables if some conditional probability is

being queried. The random variable to be queried is also received as input.

Given a Bayesian network represented as a set of factors, the algorithm first checks if there

are any observed variables. More specifically, if the probabilistic inference is conditioned on

some observed variable(s), then, for computational reasons, we set the values of the conditional

probability tables, which are not consistent with the observed variables to 0. By doing so, we

are computing just the probabilities of the joint probability distribution that matter for the

inference process, instead of computing the entire full joint probability distribution table.
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Next, we compute the full joint probability distribution. This corresponds to the application

of the full joint probability distribution formula described in Eq 6. Basically, this function per-

forms the product for each assignment of all random variables of the network. One needs to

guarantee that the full joint probability distribution obeys the normalization axiom, making all

entries of the distribution sum to one.

Having the full joint distribution factor, we can perform the probabilistic inference by com-

puting the classical marginal probability distribution and the interference term. The function

FactorMarginalization corresponds to the selection of all entries of the full joint probability

distribution that match the query variable and the evidence variables (if given). It returns two

vectors: (1) one corresponding to the entries of the full joint probability where the query vari-

able is observed to occur (we address these probabilities as PositiveProb); and (2) another one

corresponding to the entries of the full joint probability where the query variable is observed

to not occur (NegativeProb). The classical probability corresponds to a normalized summation

of these vectors.

Having the vectors with the positive and negative probabilities resulting from the marginali-

zation process, we can also compute the quantum-like probabilities (Algorithm 2). The quantum

interference formula in Eq 9 is given by the set of two summations over the marginal probability

vector. Due to normalization purposes, we will need to compute the quantum interference term

corresponding both to the positive and negative probability measures (when the query variable

occurs and not occurs). The quantum interference parameter θ is computed according to the

similarity heuristic and will be addressed with more detail in Section B of this Appendix.

B The similarity heuristic for interference effects

The goal of the similarity heuristic is to determine an angle between the probabilistic vectors

associated with the marginalization of the positive and negative assignments of the query vari-

able. In other words, when performing a probabilistic inference from a full joint probability

distribution table, we select from this table all probabilities that match the assignments of the

query variable. If we sum these probabilities, we end up with a final classical probability infer-

ence. If we add an interference term to this classical inference, we will end up with a quantum-

like inference. In this case, we can use these probability vectors to obtain additional informa-

tion to compute the interference parameters. The general idea of the similarity heuristic is to

use the marginal probability distributions as probability vectors and measure their similarity

through the law of cosines formula, which is a similarity measure well known in the Computer

Science domain and widely used in Information Retrieval [56]. According to this degree of

similarity, we will apply a mapping function with a heuristic nature, which will output the

value for the interference parameter θ by taking into consideration a previous study of the

probabilistic distribution of the data of several experiments as reported in the literature.

Algorithm 1 Quantum-Like Bayesian Network
Require: F, factor structure

ObservedVars, list of observed variables,
QueryVar, identifier of the variable to be queried,

Ensure: Factor Q, corresponding to the quantum inferences,
Factor C, corresponding to the classical inferences

1: /� A factor is a structure containing three lists:
var, corresponds to an identifier of a random variable. It also

contains the list of the parent vars.
card, corresponds to the cardinality of each random variable in

var.
val, corresponds to the respective conditional probability

table. �/

Process mining with real world financial loan applications: Improving inference on incomplete event logs

PLOS ONE | https://doi.org/10.1371/journal.pone.0207806 December 31, 2018 26 / 31

https://doi.org/10.1371/journal.pone.0207806


2: Q  struct(0var0, QueryVar,0 card0, 2, val, {}); // initialise
output factor

structure for quantum network
3: C  struct(var, QueryVar,0 card0, 2, val, {}); // initialise

output factor
structure for classical network
4: // Observe evidence: set to 0 all factors in F that do not corre-

spond to the evidence variables
5: F  ObserveEvidence(F, ObservedVars);
6: // Compute the Full Joint Probability Distribution of the Network:
7:

cðX1; . . . ;XNÞ ¼
YN

j¼1

cðXjjParentsðXjÞÞ

8: Joint  ComputeFullJointDistribution (F);
9: // Marginalise the full joint probability distribution. Select the

positive and negative assignments of QueryVar:
10: [PositiveProb, NegativeProb]  FactorMarginalization(Joint,

QueryVar);
11: // Compute classical probability factor by applying Eq 5
12: C.val  ComputeClassicalProb(PositiveProb, NegativeProb);
13: // Compute quantum probability factor according to Algorithm 2
14: Q.val  ComputeQuantumProb(PositiveProb, NegativeProb);
15: return [Q, C];

When performing quantum-like probabilistic inferences, two steps are required: (1) the

computation of a quantum-like full joint probability distribution and; (2) the computation of

the quantum-like marginal distribution. The superposition vector, comprising all possible

events, is given by the full joint probability distribution already presented in Eq 6.

Algorithm 3 presents the pseudo-code of the proposed heuristic. Given two vectors: (1) one

corresponding to the entries of the full joint probability where the query variable is observed

to occur (we address these probabilities as PositiveProb) and; (2) another one corresponding to

the entries of the full joint probability where the query variable is observed to not occur (Nega-
tiveProb). Then, one can compute the similarity heuristic in the following way.

Algorithm 2 ComputeQuantumProbability
Require: PositiveProb, vector of marginal probabilities when QueryVar

occurs,
NegativeProb, vector of marginal probabilities when QueryVar

does not occur,
Ensure: List Q with probabilistic inference using quantum theory
1: interference_pos  0;
2: length_assign  length(PositiveProb);
3: // For all probability assignments,
4: for i = 1; 1i � length_assign − 1; i = i + 1 do
5: for j = i + 1; j � length_assign; j = j + 1 do
6: // Compute the quantum interference parameter θ according to a

given heuristic function
7: heurs  SimilarityHeuristic(PosAssign, NegAssign)
8: // Apply quantum interference formula:
9:

XjYj� 1

i¼1

XjYj

j¼iþ1

YN

k

cðXkjParentsðXkÞ; e; y ¼ iÞ

�
�
�
�
�

�
�
�
�
�
�
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�
YN

k

cðXkjParentsðXkÞ; e; y ¼ jÞ

�
�
�
�
�

�
�
�
�
�
� cos ðyi � yjÞ;

10: // Compute the interference term related to the positive
assignments

11: interference_pos  interference_pos + 2PosAssign [i] PosAssign
[j] heurs

12:
13: // Compute the interference term related to the negative

assignments (for normalisation)
14: interference_neg  interference_neg + 2NegAssign [i] NegAssign

[j] heurs
15: end for
16: end for
17: // Compute quantum-like probabilities: classicalProb +

interference.
18: α = (sum(PosAssign) + sum(NegAssign))−1

19: classicalProb  [α PosAssign, α NegAssign];
20: probPos  classicalProb[1] + interference_pos;
21: probNeg  classicalProb[2] + interference_neg;
22: // Normalise the results in order to obtain a probability value
23: γ  (probPos + probNeg)−1

24: Q  [γ probPos, γ probNeg]
25: return Q;

First, one computes the euclidean distances between both vectors. Having the distances,

one can use the law of cosines measure to determine the angles between all these vectors. With

all this information, one can compute the similarity measure φ of the vectors and get the out-

put of the interference parameter. In the end, the algorithm returns the cosine of this value.

Algorithm 3 SimilarityHeuristic
Require: PositiveProb, vector of marginal probabilities when QueryVar

occurs,
NegativeProb, vector of marginal probabilities when QueryVar

does not occur,
Ensure: inter f, Quantum Interference term
1: // Compute Euclidean distances between vectors
2: normc  norm(PosProb − NegProb, 2);
3: norma  norm(PosProb, 2);
4: normb  norm(PosNeg, 2);
5: // Compute angles between vectors using the law of cosines

6: ya  ACos norm2
b � norm

2
aþnorm

2
c

2 normc normb

� �
;

7: yb  ACos norm2
a � norm

2
bþnorm

2
c

2�normc�norma

� �

8: yc  ACos norm2
aþnorm

2
b � norm

2
c

2�norma�normb

� �
;

9: // Compute de similarity measure φ
10: � 

yc
ya
�

yb
ya

;

11: // Apply heuristic using the thresholds according to Eq 10
12: inter f  0;
13: if � < −2 then
14: inter f  1.5408;
15: end if
16: if � > = −2 && � < = 0 then
17: inter f  1.5178
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18: end if
19: if � > = 0.15 then
20: inter f  π
21: end if
22: return Cos(inter f);
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