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A novel immunogenomic
 prognostic signature in
lung squamous carcinoma
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Abstract
Lung squamous carcinoma (LUSC) is a common subtype of lung cancer with limited available therapy and is thus associated with
poor survival. Immune infiltrating cells and immune-related genes (IRGs) play a key role in the clinical outcomes of LUSC. In the
present study, we aimed to develop a potential immunogenomic prognostic signature for patients with LUSC. The transcriptional
profiles of 501 LUSC samples from The Cancer Genome Atlas (TCGA) and 2498 IRGs from the ImmPort database were used to
develop the signature by Cox regression analysis. Ten differentially expressed and survival-associated IRGswere used to develop the
risk signature, which could serve as an independent prognostic and predictive factor for patients with LUSC. Furthermore, this risk
signature correlated with overall survival and clinical features, including age, in patients with LUSC. In addition, we identified 25
transcription factors that may regulate 15 survival-associated IRGs, using a regulatory network. Collectively, this immunogenomic
signature could be a robust prognostic tool for patients with LUSC and holds great promise as individualized immunotherapy for
LUSC.

Abbreviations: APLN = apelin, CTLA-4 = cytotoxic T lymphocyte-associated antigen-4, DEGs = differentially expressed genes,
FDR = false discovery rate, FGFR4 = fibroblast growth factor receptor 4, IRGs = immune-related genes, KEGG = Kyoto
Encyclopedia of Genes and Genomes, LUSC = lung squamous carcinoma, NSCLC = non-small cell lung cancer, OS = overall
survival, PD-1 = programmed death 1, SEMA4C = semaphorin 4C, TCGA = The Cancer Genome Atlas, TF = transcription factors,
TIME = tumor immune microenvironment.
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1. Introduction
Lung cancer is the most commonly diagnosed cancer and the
leading cause of cancer-related mortality worldwide.[1] Nonsmall
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cell lung cancer (NSCLC) accounts for approximately 85% of
lung cancer cases, of which lung squamous carcinoma (LUSC) is a
common type.[2] Although recommended first-line therapy for
LUSC involves combination chemotherapy, the survival benefit
from specific chemotherapy remains unclear.[3] In addition, the
advantages of targeted therapies against adenocarcinomas are
limited in the treatment of LUSC. Thus, shifting concepts and
innovative approaches are needed to detect, manage, and
monitor this disease.
Recently, next-generation sequencing technology has uncov-

ered genomic profiles of lung cancers, including LUSC. Patients
with LUSC and known smoking habits show a high rate of
genetic alteration,[4] and thus, are potentially immunogenic and
show promise for treatment with novel immunotherapeutic
agents. For example, immune checkpoint inhibitors such as
programmed death 1 (PD-1) and cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) have demonstrated safety and
efficacy in the treatment of LUSC.[5,6] These findings highlight
the potential of the tumor immune microenvironment (TIME)
in establishing clinical biomarkers and developing individual-
ized medicine. Numerous studies have underpinned the
importance of immune infiltrating cells with regard to survival
outcomes in patients with LUSC.[7–9] However, there is a lack of
prognostic signatures in LUSC based on the immunogenomic
landscape.
In this study, we employed transcriptome data from The

Cancer Genome Atlas (TCGA) to construct an immunogenomic
prognostic signature for LUSC. Furthermore, we explored the
regulatory mechanisms of key immune-related genes (IRGs).
Finally, we analyzed the correlation between the risk index and
clinical features to evaluate the clinical significance of this
signature.
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2. Materials and methods

2.1. Sample data

The transcriptomic and clinical data were downloaded from
TCGA (https://portal.gdc.cancer.gov/). RNA-seq data, including
501 LUSC and 49 control samples, were obtained from TCGA to
construct an immunogenomic prognostic signature. All the data
of this paper were obtained from the open-access online database,
Figure 1. The differentially expressed genes. (A) Heatmap of differentially express
IRGs in lung squamous carcinoma. (C) Volcano plot of differentially expressed genes
differentially expressed IRGs between lung squamous carcinoma and non-tumor
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and we did not get these data from patients directly, nor intervene
these patients. So, the ethical approval was not necessary.
2.2. Differentially expressed IRGs

IRGs were downloaded from the ImmPort database (https://
immport.niaid.nih.gov).[10] Differentially expressed genes
(DEGs) from the datasets were analyzed using the edgeR
ed genes in lung squamous carcinoma. (B) Heatmap of differentially expressed
between lung squamous carcinoma and non-tumor tissues. (D) Volcano plot of
tissues. IRGs= immune-related genes.
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Figure 2. Functional enrichment analysis of differentially expressed IRGs. (A) Significantly enriched GO terms based on the biological process. (B) Significantly
enriched GO terms based on the cellular component. (C) Significantly enriched GO terms based on molecular function. (D) Significantly enriched KEGG pathway.
GO=gene ontology, IRGs= immune-related genes, KEGG=Kyoto Encyclopedia of Genes and Genomes.
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package (http://bioconductor.org/packages/edgeR/). Differential-
ly expressed IRGs were intersected with IRGs and DEGs. The
absolute value of log fold change greater than 1 and a false
discovery rate (FDR) value less than 0.05 were considered
differentially expressed IRGs. Functional enrichment analysis
was performed using the DAVID database to explore the
molecular mechanisms of the identified genes.
2.3. Survival-associated IRGs

Differentially expressed IRGswith an FDR value of less than 0.01
were screened for the next analysis. Univariate Cox analysis was
used to assess the relationship between identified IRGs and
overall survival (OS) using the R survival package and visualized
as a forest plot. In addition, genetic alteration of survival-
associated IRGs was performed using cBioPortal for Cancer
Genomics (http://www.cbioportal.org) database.[11]
2.4. Regulatory network of survival-associated IRGs

Transcription factors (TFs) are important molecules that directly
regulate gene expression. Transcription-related genes were
obtained from the Cistrome Cancer database (http://cistrome.
org),[12] a comprehensive resource for predicted TF targets in
cancers. Next, differentially expressed transcription-related genes
were intersected from DEGs. The criteria were set as log fold
change greater than 1 and FDR value less than 0.05.
Furthermore, correlation analysis between differentially
expressed TFs and survival-associated IRGs was performed
using the R psych package, and a correlation coefficient greater
3

than 0.4 was considered significant. Finally, the regulatory
network of identified IRGs and potential TFs was constructed
using Cytoscape (version 3.7.1).
2.5. Construction of the immune-based risk signature

The risk score was calculated based on a linear combination of
the Cox coefficient and gene expression. Patients were divided
into high- and low-risk groups based on the median risk score,
and survival curves were obtained using R survival and survminer
packages. To validate the prognostic capability of the immune-
related risk model, we analyzed the area under the curve (AUC)
with the R software survivalROC package to evaluate survival
differences between high- and low-risk groups. Univariate and
multivariate Cox analyses were performed to assess the
independent prognostic ability of the immune-related risk model.
2.6. Clinical utility of immune-based risk signature

Differences between the risk score and clinicopathological
features, including age, sex, pathologic stage, and TNM stages,
were performed. Tumor-infiltrating immune cells were down-
loaded from the TIMER database.[13] The relationship between
tumor-infiltrating immune cells and risk score was assessed in
tumor samples.
2.7. Construction and validation of the nomogram

A nomogram was constructed using the “rms,” “Hmisc,”
“lattice,” “Formula,” and “foreign” R packages, and the
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Figure 3. Characteristics of differentially expressed IRGs. (A) Forest plot of hazard ratios showing the survival-related IRGs. (B) Genetic alterations of survival-
related IRGs. IRGs= immune-related genes.
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corresponding calibration map was built to evaluate the
prognostic performance of the nomogram. To validate the
constructed novel nomogram, we performed decision curve
analysis (DCA) to quantify its clinical applicability by analyzing
the clinical outcomes of nomogram-based decisions.
4

2.8. Statistical analysis
Student t test was used to perform a statistical comparison. DEGs
were visualized as a heatmap and volcano plot using the R
heatmap and ggplot2 packages. Statistical significance was
defined as an FDR < 0.05.



Figure 4. Construction of regulatory network. (A) Heatmap of differentially expressed TFs in lung squamous carcinoma. (B) Regulatory network constructed based
on potentially relevant TFs and IRGs. IRGs= immune-related genes, TFs= transcriptional factors.
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3. Results

3.1. Identification of differentially expressed IRGs

We identified 8468 DEGs, including 5993 upregulated and 2575
downregulated genes (Fig. 1A and C). From the DEG set, 593
differentially expressed IRGs, including 307 upregulated and 286
downregulated genes, were screened (Fig. 1B and D). Functional
enrichment analysis revealed that the identified IRGs were mostly
enriched in immune response, plasma membrane, growth factor
activity, and cytokine-cytokine receptor interaction in terms of
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways (Fig. 2).

3.2. Identification of survival-associated IRGs

To establish prognostic biomarkers at the molecular level, we
investigated IRGs associated with survival in LUSC samples. A
forest plot showed that 24 IRGs significantly correlated with OS,
and most of these genes were risk factors with a hazard ratio
greater than 1.0 (Fig. 3A). In addition, the percentages of genetic
alterations in LUSC ranged from 0% to 12%, mostly including
amplification and deep deletion (Fig. 3B).

3.3. Construction of the regulatory network

To explore the regulatory mechanisms of identified survival-
associated IRGs at the transcriptional level, we collected 111
differentially expressed transcription-related genes between
LUSC and control samples from the Cistrome database
(Fig. 4A). Among these genes, 25 TFs positively regulated the
15 survival-associated IRGs in patients with LUSC and were
visualized as regulatory networks (Fig. 4B).

3.4. Development of the immune-based risk signature

To determine the prognostic risk in patients with LUSC, we
constructed an immune-based risk signature based on multivari-
5

ate Cox regression results (Fig. 5). The risk score was calculated
as follows: [(CXCL5)�0.0065] + [(PLAU)�0.0031] + [(RN-
ASE7)�0.0118] + [(IGHD3–22)�0.0091] + [(IGKV1-6)�
0.0004] + [(SEMA4C)�0.0146] +[(APLN)�0.0523] + [(TSLP)
� (� -0.2033)]+ [(FGFR4)�0.0456] + [(TRAV39)�0.3100].
The general characteristics of the IRGs in the risk signature are
presented in Table 1. This immune-based prognostic signature
could be a predictive tool for patients with LUSC based on
clinical parameters (Fig. 6A). For the receiver operating
characteristic (ROC) curve, the AUC was 0.661, suggesting a
moderate capability of this signature for LUSC-specific survival
(Fig. 6B). Univariate and multivariate Cox analyses revealed that
the immune-based risk signature could serve as an independent
predictor after adjusting for other clinicopathological features
(Fig. 6C and D). In addition, the clinical significance of these
identified genes was evaluated, and the differential expression of
APLN, FGFR4, PLAU,RNASE7, and SEMA4Cwas observed in
patients with various clinical features (Fig. 7).

3.5. Clinical significance of immune-based risk signature

To validate the clinical significance of the immune-based risk
signature, we assessed the association between the risk score and
clinicopathological features. The results showed that the high-
risk score positively correlated only with elderly patients (Fig. 8).
To explore the TIME, correlations between risk score and
immune cell infiltration were analyzed. The results indicated that
the risk score positively correlated with the infiltration of CD8+ T
cells, macrophages, neutrophils, and dendritic cells (Fig. 9).

3.6. Construction of a nomogram

As this novel IRG signature showed good predictive value for the
LUSC prognosis, a more convenient and sensitive nomogram
model, which included the IRG signature and pathological stage,
age, and sex, was developed (Fig. 10A). The AUC values for the 1-
, 3-, and 5-year OS predictions using the nomogram were 0.776,

http://www.md-journal.com


Figure 5. Development of the immune-based prognostic risk signature. (A) Rank of risk signature and distribution of groups. (B) Survival status of patients in low-
and high-risk groups. (C) Heatmap of the expression profiles of the included genes.

Table 1

General characteristics of the IRGs in the risk signature.

Differentially express Multivariate analysis

Gene symbol LogFC P FDR Coefficient HR P

CXCL5 �1.8119 3.29E-18 1.26E-17 0.0065 1.0065 .0217
PLAU 2.8381 7.23E-24 5.23E-23 0.0031 1.0031 .0003
RNASE7 5.6196 4.28E-18 1.63E-17 0.0118 1.0119 .0132
IGHD3-22 1.0962 .0258 0.0300 0.0091 1.0091 .0008
IGKV1-6 1.9339 .0007 0.0009 0.0004 1.0004 .0014
SEMA4C 1.0434 4.03E-15 1.19E-14 0.0146 1.0148 .0015
APLN �2.963 1.03E-19 4.53E-19 0.0523 1.0537 .0038
TSLP 1.3356 .0004 0.0005 �0.2033 0.8160 .0164
FGFR4 �2.9544 1.33E-29 4.96E-28 0.0456 1.0467 .0229
TRAV39 �1.0823 2.42E-09 4.75E-09 0.3100 1.3635 .0056
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Figure 6. The prognostic value of risk signature and Cox regression analysis of lung squamous carcinoma. (A) Patients in the high-risk group demonstrate shorter
overall survival. (B) Receiver operating characteristic (ROC) curve showing the prognostic value of the risk signature. (C) Univariate Cox regression analysis of
discrete clinical factors. (D) Multivariate Cox regression analysis of discrete clinical factors.
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0.787, and 0.762, respectively (Fig. 10B). Calibration plots based
on the training set revealed that the nomogram could accurately
predict 1-, 3-, and 5-year OS (Fig. 10C). In addition, DCA was
performed for the nomogram and TNM stage, indicating the
marked clinical usefulness of this model (Fig. 10D).

4. Discussion

LUSC is a heterogeneous disease with no effective treatments
owing to its complex genomic pattern. More recently, a key role
has been credited to the tumor immune response in the
pathogenesis and progression of LUSC.[14,15] From this perspec-
tive, some researchers have reported that a risk signature based
on immunogenomic or immune infiltrating cells could be an
independent prognostic factor for NSCLC, especially adenocar-
cinomas.[16–18] In the present study, we aimed to develop an
immunogenomic prognostic signature in LUSC and provide
evidence regarding the role of the immunogenomic signature to
predict clinical outcomes in this disease.
Ten IRGs (IGKV1-6, PLAU, SEMA4C, IGHD3-22, TRAV39,

RNASE7, TSLP, CXCL5, APLN, and FGFR4) were selected
from 24 survival-related IRGs to construct the risk signature. As
expected, this signature can distinguish high-risk patients with
LUSC and predict OS. Furthermore, this risk signature may act as
a reliable and independent prognostic factor. To investigate the
clinical utility of the risk signature based on IRGs, we analyzed
7

the differential expression of these 10 IRGs in patients with
various clinical features.
Apelin (APLN), a ligand of the APJ receptor that belongs to the

G protein coupled receptor family, is considered an angiogenic
factor and has a potential role in tumor angiogenesis.[19]

Accumulated evidence has demonstrated that APLN over-
expression significantly correlates with worse OS in patients
with NSCLC.[20,21] Fibroblast growth factor receptor 4 (FGFR4)
plays an essential role in the tumor microenvironment and is
linked to oncogenesis, which is associated with prognosis in
LUSC.[22–24] Semaphorin 4C (SEMA4C) reportedly regulates
immune cell interactions, angiogenesis, and tumor growth.[25] A
previous study has shown that SEMA4C knockdown inhibits
NSCLC cell proliferation and reverses epithelial-mesenchymal
transition.[26] In the present study, APLN expression was
significantly elevated in LUSC patients aged > 65 years, and
the levels of FGFR4 and SEMA4C were increased in male LUSC
patients without metastasis. Combined with previous studies,
these 3 genes may act as risk factors for LUSC. The levels of
unexplored genes (PLAU and RNASE7) significantly correlated
with age, tumor stage, and TNM status. In addition, the
expression of these genes can be regulated by transcription
factors, such as Foxp3, which plays a crucial role in the
maintenance of cancer immune homeostasis.[27] These results
suggest that identified IRGs or TFs could be novel biomarkers or
therapeutic targets for LUSC. The risk signature was significantly

http://www.md-journal.com


Figure 7. The differential expression of immune-based IRGs in patients with varied clinical features such as age, gender, tumor stage, and TNM status. IRGs=
immune-related genes.

Hou and Zhong Medicine (2021) 100:2 Medicine
associated with age, suggesting a robust prognostic tool for
elderly patients.
To explore the underlying molecular mechanisms of IRGs,

functional enrichment analysis revealed that IRGs were mainly
enriched in the immune response, inflammatory response, and
cytokine-cytokine receptor interaction. Growing evidence has
demonstrated that coordinating adaptive or innate immune
responses is a promising therapy against various tumors, and
benefits from immunotherapy have been achieved in patients
with cancer.[28,29] It is well-established that inflammatory
cytokines are actively involved in the tumorigenesis, aggression,
and metastasis of LUSC, suggesting that these cytokines could act
as clinical biomarkers for monitoring disease or therapeutic
targets.[30,31] Furthermore, the majority of IRGs present genetic
alterations, including amplification and deep deletion, and these
genomic discoveries were found to be associated with clinical
outcomes.[32]

Emerging evidence has revealed that cancer immune infiltrat-
ing cells are closely correlated with clinical outcomes.[33,34] In this
study, we investigated the correlation between risk signature and
immune infiltrating cells. Notably, the risk score positively
correlated with the infiltration of CD8+ T cells, macrophages,
8

neutrophils, and dendritic cells, indicating that the levels of these
four immune cells might be elevated in high-risk patients and that
the signature could be a predictor for immune cell infiltration.
Previously, a study has reported that early proliferative CD8 T+

cell responses are associated with favorable prognosis in NSCLC
patients with PD-1 targeted therapy.[35] Tumor-immune infil-
trating cells are mostly composed of macrophages, which
demonstrate distinct effects on oncogenesis depending on their
polarization within the TIME.[36] Studies have consistently
reported that macrophage density and phenotype are closely
associated with survival in patients with LUSC.[37,38]

Nonetheless, there are some limitations to the present study.
The risk signature was constructed based on retrospective data
and was not validated using another independent cohort. Thus,
clinical validation using prospective samples is needed to test the
potential of this signature. Moreover, the molecular functions of
the included IRGs require further biological experiments.
Collectively, this novel signature could be used as a prognostic

tool for LUSC and a potential predictor of the immune status in
patients with LUSC. Large-scale, well-controlled translational
studies are needed to evaluate the therapeutic implications of
immunogenomics.



Figure 8. The relationships between the immune-based risk signature and (A) age; (B) gender; (C) tumor stage; (D) TNM stage; (E) lymph node metastasis; and (F)
distant metastasis. ns, no statistical significance;

∗
P< .05.

Figure 9. The correlation between the immune-based risk signature and immune infiltrating cells, including B cells, CD4+ T cells, CD8+ T cells, macrophages,
neutrophils, and dendritic cells.
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Figure 10. Construction of a nomogram based on the IRG signature. (A) Nomogram based on the IRG signature and clinical information of patients with LUSC. (B)
ROC curves of the nomogram for predicting OS. (C) Calibration plot of the nomogram for predicting OS. (D) DCA of the nomogram for predicting OS. DCA=
decision curve analysis, IRG= immune-related genes, LUSC= lung squamous carcinoma, OS=overall survival, ROC= receiver operating characteristic.
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