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1  |  INTRODUC TION

Inflammation, a natural biological response, could be activated by 
multiple stimuli such as pathogens, chemical agents, and autoim-
mune responses (Fujiwara & Kobayashi, 2005). Normally, inflamma-
tory response maintains an equilibrium between anti- inflammatory 
and proinflammatory cytokines. However, a growing body of re-
search has found that modern dietary patterns, including high- 
fat and high- sugar diets, could trigger off systemic inflammation 

(Jamar et al., 2020). The excessive production of proinflammatory 
mediators has been proved to play a vital role in the progress of 
chronic inflammatory- related diseases, such as cancers (Mantovani 
et al., 2008), metabolic syndromes (Hotamisligil, 2006), atheroscle-
rosis, dermatitis, asthma, and inflammatory bowel diseases (Wan 
et al., 2019). Therefore, controlling inflammation is an important 
means to prevent such diseases.

Substantial evidence has shown that macrophages play a cen-
tral role in high- sugar diet and high- fat diet- induced low- grade 
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Abstract
In this study, the anti- inflammatory and antioxidant activities and mechanism of bur-
dock leaf flavonoids (BLF) on LPS- stimulated inflammation in RAW264.7 macrophage 
cells were explored. We have observed that BLF and main effective components 
morin and quercetin 3- O- rhamnoside pretreatment significantly inhibited LPS- 
stimulated inflammatory activation of RAW264.7 cells by lowering the levels of NO, 
PGE2, TNF- α, and IL- 6 production (p < .05). At the same time, BLF not only had potent 
free radical scavenging ability in vitro (DPPH: 2025.33 ± 84.15 μmol Trolox/g, ABTS: 
159.14 ± 5.28 μmol Trolox/g, and ORAC: 248.72 ± 9.74 μmol Trolox/g) but also effec-
tively ameliorated cellular oxidative stress status by restoring the decreased activity 
of antioxidant enzymes (SOD, CAT, and GSH- Px) and decreasing the elevated levels of 
ROS and TBARS in LPS- stimulated macrophages (p < .05). The western blot analysis 
indicated that BLF and main components morin and quercetin 3- O- rhamnoside mainly 
inhibited LPS- stimulated inflammation by reducing the iNOS and COX- 2 protein ex-
pression, decreasing cellular ROS, and blocking the activation of NF- κB signaling path-
way in macrophages. Our results collectively imply that BLF could be used as a new 
type of functional factor for the development of antioxidant and anti- inflammatory 
foods.
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inflammation in the body (Jamar et al., 2020). A number of studies 
confirmed that macrophages are activated upon consumption of a 
high- fat diet. Once activated, macrophage triggers inflammatory re-
sponse, which is an important cause of insulin resistance in adipo-
cytes (Kawanishi et al., 2010; Lumeng et al., 2007). Studies have found 
that reduction in macrophage activation could effectively ameliorate 
diet- induced insulin resistance (Xiong et al., 2018; Ye et al., 2016). 
Recent studies have found that many antioxidants can effectively 
improve the inflammatory state of the body by inhibiting the activa-
tion of macrophages (Reshmitha & Nisha, 2021; Zhang et al., 2016). 
Based on the above research results, we suppose that a novel anti- 
inflammatory effector, as a functional factor adding in foods, is in 
great request for improving diet- induced chronic inflammation.

Burdock (Arctium lappa L.) is a kind of traditional Chinese me-
dicinal herb and an edible plant. The seeds and roots of burdock are 
often used to cure inflammation- related diseases, including arthral-
gia and throat infections. The anti- inflammatory activity may lie in 
that the flavonoids possess high anti- inflammatory and antioxidant 
properties, which has highly free radical scavenging ability (Chen 
et al., 2019; Lin et al., 2021). However, burdock leaves are often 
discarded as a useless by- product after burdock harvesting. In our 
previous study, we found that burdock leaves contain a large num-
ber of flavonoids, which have many beneficial biological activities 
(Cui et al., 2021). Despite burdock leaves possess antioxidant and 
antibacterial activities, little is known about their anti- inflammatory 
activity. In order to develop the utilization value of burdock leaves, 
it is necessary to study the anti- inflammatory activity of burdock 
leaves. Therefore, the objective of the present research is to provide 
data assistance in the exploitation of a natural food functional fac-
tor with anti- inflammatory and antioxidant activities. The findings of 
the present study are valuable for using burdock leaf flavonoids as a 
supplement in health food or functional food.

2  |  MATERIAL S AND METHODS

2.1  |  Materials and reagents

DPPH, ABTS, Trolox, fluorescein sodium salt, and lipopolysaccha-
rides (LPS, from Escherichia coli O111:B4) were purchased from 
Sigma– Aldrich. Morin, quercetin 3- O- rhamnoside, kaempferol, api-
genin 7- O- glucoside, and apigenin 7- O- rutinoside were purchased 
from Shanghai Yuanye Biotechnology Co., Ltd.. TNF- α and IL- 6 ELISA 
kits were purchased from Beijing Solarbio Technology Co., Ltd.. NIO 
detection kit were purchased from Beyotime Biotechnology Co., 
Ltd.. The antibodies for β- actin, p65, p- p65, IκB, p- IκB, iNOS, COX- 2, 
and HO- 1 were supplied by Proteintech.

2.2  |  Extraction and purification

Burdock leaf flavonoids extraction, purification, and composition 
characterization were performed according to our previous research 

(Cui et al., 2021). In brief, burdock leaf powder was extracted with 
60% ethanol in an ultrasonic bath (40 kHz, 200 W) for 40 min at 
room temperature. The concentrated extract of BLF was purified 
by a macroporous resin AB- 8 column, and the 70% ethanol eluate 
of extract was collected, concentrated, lyophilized, and used for 
compositional analysis and activity evaluation. Flavonoid composi-
tions of BLF were detected using an UPLC– QTOF system. The major 
components were characterized by comparing the current mass 
data and retention time, and the peak area was used to calculate the 
relative content of each compound. Seven main flavonoids in BLF 
were identified, including apigenin 7- O- apiosyl- glucoside (10.23%), 
apigenin 7- O- glucoside (8.27%), apigenin 7- O- rutinoside (14.89%), 
morin (16.77%), kaempferol (9.13%), kaempferol 3,7- O- diglucoside 
(5.50%), and quercetin 3- O- rhamnoside (8.44%), and these flavo-
noids account for 73.23% of the BLF.

2.3  |  Total flavonoid content of BLF

Total flavonoid content of crude BLF and purified BLF were deter-
mined according to one previous method with few modifications 
(Bajalan et al., 2016). 2.7 ml of sample solution and 0.15 ml of so-
dium nitrite solution (5%, w/v) were blended, and the reaction mix-
ture was cultured at 37°C for 6 min in the dark. After incubation, 
the reaction system was incubated for 6 min after adding 0.15 ml 
of aluminum nitrate solution (10%, w/v). Subsequently, 2 ml of so-
dium hydroxide (1 mol/L) was added into the mixed solution and in-
cubated for 10 min. Finally, the absorbance of the reaction solution 
was detected at 510 nm, and the flavonoids content of samples was 
showed as mg of rutin equivalent (RE) per gram of the freeze- dried 
BLF sample using a rutin calibration curve.

2.4  |  DPPH and ABTS free radicals 
scavenging assay

The scavenging activities of BLF on DPPH and ABTS free radi-
cal were examined according to the previous method (Bajalan 
et al., 2016; Tyagi et al., 2021). Trolox was used for positive control, 
and the results of free radical scavenging assay were indicated as 
Trolox equivalent relative to sample (μmol Trolox/g).

2.5  |  Oxygen radical absorbance capacity assay

Oxygen radical absorbance capacity (ORAC) assay was examined 
based on one previous method with some modifications (Rodríguez- 
Bonilla et al., 2017). In brief, 20 μl of sample solutions for different con-
centrations, 20 μl of sodium fluorescein solution (63 nmol/L), and 20 μl 
of PBS buffer (0.075 mol/L, pH 7.4) were mixed and added to a 96- well 
microplate. The mixed solutions were incubated at 37°C. After incuba-
tion for 15 min, 140 μl of AAPH solution (20 mmol/L) was added to the 
reaction system. The fluorescence values of the reaction system were 
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detected every 2 min until all the fluorescence values were extinction. 
ORAC value of samples was showed as Trolox equivalent relative to 
sample (μmol Trolox/g) using Trolox as a positive control.

2.6  |  Cell culture and cytotoxicity assay

Murine macrophage cell RAW264.7 was purchased from the Cell 
Bank of the Chinese Academy of Sciences (Shanghai, China) and cul-
tured in DMEM added 10% FBS and streptomycin/penicillin (100 U/
ml) at 37°C in a 5% CO2 incubator. The RAW264.7 cells (1 × 105 
cells/well) were incubated with samples at different concentrations 
at 37°C. After culturing for 20 h, the CCK- 8 solution (Beyotime) was 
added to the culture solution, and the RAW264.7 cells were further 
cultured for another 4 h. Finally, the absorbance of the cell culture 
medium was read at 450 nm.

2.7  |  Nitric oxide determination

The nitric oxide (NO) concentrations of cell supernatant were 
detected using the Griess method as described previously (Qu 
et al., 2018). RAW264.7 cells were cultivated in a cell cultured plate 
(1 × 105 cells/well) for 24 h. After culturing for 12 h, the cells were 
pretreated with BLF at different concentrations for 2 h, and the cells 
were activated with LPS (1 μg/ml) for 24 h at 37°C, respectively. 
Dexamethasone (1 μmol/L) was used as a positive control. After incu-
bation for 24 h, to determine the NO levels, 100 μl of cell supernatant 
and 100 μl of Griess reagent were mixed, and the absorbance of the 
mixture was detected at 540 nm. The nitrite concentration was cal-
culated according to the regression equation of the standard curve.

2.8  |  Determination of oxidative stress status

The RAW264.7 cells were cultured in a six- well plate and pretreated 
with different concentrations of BLF (12.5 and 25 μg/ml), morin (5 
and 20 μmol/L), and quercetin 3- O- rhamnoside (5 and 20 μmol/L) 
for 2 h, respectively. The cells were activated with LPS (1 μg/ml) for 
24 h. After culturing for 24 h, the activities of superoxide dismutase 
(SOD), catalase (CAT), and glutathione peroxidase (GSH- Px) were 
measured using assay kits, respectively, following the manufac-
turer's instructions (Nanjing Jiancheng). The enzyme activities were 
indicated as unit/mg protein. To assess the level of lipid oxidation in 
the cells, the thiobarbituric acid reacting substance (TBARS) of the 
cells were measured using assay kits, following the manufacturer's 
instructions (Elabscience).

2.9  |  Intracellular ROS levels assay

The levels of intracellular ROS for RAW264.7 cells were meas-
ured using DCFH- DA staining. After pretreatment, the cells were 

incubated with DCFH- DA for 20 min and washed twice with PBS. 
The fluorescence value of the cells was measured using a fluores-
cence spectrophotometer (Synergy HT, Bio- Tek).

2.10  |  Inflammatory cytokines and PGE2 
production determination

The levels of IL- 6, TNF- α, and PGE2 of supernatant for the cells were 
measured using ELISA kits (Solarbio), respectively, according to the 
manufacturer's instructions.

2.11  |  Western blotting analysis

After treatment, the cells were lysed with RIPA solution mixed with 
phosphatase and protease inhibitors. After centrifugation, the su-
pernatant was quantified using the Bradford method. The protein of 
the cells was separated with 10% SDS- PAGE and transferred to the 
NC membrane. The NC membrane was blocked using skim milk for 
2h and incubated with a primary antibody (Proteintech), including 
β- actin, COX- 2, iNOS, HO- 1, p- IκB, IκB, NF- κB p65, and NF- κB p- 
p65 at 4°C overnight. After incubation, the membrane was washed 
with TBST and incubated with secondary antibody (Proteintech) for 
2 h. The protein bands were inspected using a ECL kit (Millipore), 
and the bands image was captured with a ChemiDoc imaging sys-
tem and quantified by densitometry using ImageJ software (National 
Institutes of Health) with β- actin as the loading control.

2.12  |  Statistical analysis

All experiments in this study were repeated at least three times and 
the results were expressed as means ±standard deviations (SD). 
One- way analysis of variance (ANOVA) to evaluate statistical signifi-
cance of differences and Tukey post- hoc tests were performed with 
GraphPad Prism V.8.0 (GraphPad Software Inc.).

3  |  RESULTS AND DISCUSSION

3.1  |  Flavonoid content and in vitro antioxidant 
activities of BLF

To evaluate the antioxidant activity of BLF, firstly, the flavonoids 
content and the scavenging capacities of crude BLF and purified BLF 
on DPPH and ABTS free radical in vitro were investigated. The fla-
vonoids content of crude BLF and purified BLF were 73.28 ± 3.15 
and 239.94 ± 10.52 mg RE/g, respectively. The scavenging capaci-
ties of DPPH and ABTS radical for crude BLF and purified BLF were 
expressed as Trolox equivalents. The result of the DPPH assay 
showed that purified BLF (2025.33 ± 84.15 μmol Trolox/g) showed 
higher scavenging activity than crude BLF (577.10 ± 23.62 μmol 
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Trolox/g). The result of the ABTS assay showed that purified BLF 
(159.14 ± 5.28 μmol Trolox/g) exhibited higher activities than crude 
BLF (49.31 ± 2.36 μmol Trolox/g). In the same way, ORAC values of 
crude BLF and purified BLF were evaluated to be 73.26 ± 3.27 and 
248.72 ± 9.74 μmol Trolox/g, respectively. The results of free radi-
cal scavenging activity and flavonoids content indicated that purified 
BLF showed stronger antioxidant activity and flavonoids content than 
crude BLF, implying that the antioxidant activities in vitro increased 
as the concentrations of flavonoids content increased (Table 1).

3.2  |  BLF reduced PGE2 and NO production of 
LPS- activated RAW264.7 cells

Nitric oxide is a critical signaling molecule that is generated by 
nitric oxide synthase, and it has been confirmed to play a vital 
role in the development of inflammatory- related diseases (Xue 
et al., 2020). Therefore, in the present study, anti- inflammatory 
activities of BLF were estimated by detecting NO production of 
LPS- stimulated RAW264.7 cells. Firstly, the cytotoxic effect of 
BLF was evaluated at different concentrations on LPS- activated 
RAW264.7 cells. Results of cell viability following treatment 
with various concentrations for 24 h were showed in Figure 1. 
As shown in Figure 1a, no manifest decrease in cell viability was 
observed after treatment with BLF at the tested concentration, 
indicating that BLF had no cytotoxic effects on RAW264.7 cells 
within the tested concentration. To evaluate the inhibiting activity 
of BLF on NO secretion levels, the NO concentrations in the cell 
supernatant were measured by Griess assays (Figure 1b). BLF can 
dose dependently suppress the NO production of LPS- stimulated 
macrophages (p < .01). To elucidate the effective ingredients of 
BLF, the compound composition and the inhibiting activity of the 
main ingredients of BLF on NO secretion levels of LPS- stimulated 
RAW264.7 cells were estimated. The results of UPLC- QTOF 
showed that the main components in BLF included morin, several 
apigenin glycosides, quercetin glycoside, kaempferol, and its gly-
coside. The inhibiting activity of main ingredients of BLF on NO 
secretion levels showed that the NO production was significantly 
decreased by quercetin 3- O- rhamnoside and morin at 20 µmol/L 
(p < .01), while the inhibitory effects of apigenin glucosides were 
not significant. To further substantiate the anti- inflammatory ef-
fects of quercetin 3- O- rhamnoside (Q3R) and morin, the NO and 
PGE2 concentrations in the cell culture medium were measured. 
As shown in Figure 1d,e, pretreatment of cells with morin, Q3R, 
and BLF at tested concentrations dose dependently inhibited 
NO (p < .05) and PGE2 (p < .001) production of LPS- activated 

RAW264.7 cells, suggesting that Q3R and morin could be the main 
anti- inflammatory ingredients in BLF.

3.3  |  BLF inhibited ROS and TBARS production of 
LPS- activated RAW264.7 cells

Several studies have confirmed that reactive oxygen species (ROS) 
are closely related to the pathogenesis of chronic inflammatory dis-
eases (El- Kenawi & Ruffell, 2017). As shown in Figure 2a, the results 
of ROS production indicated that pretreatment of RAW264.7 cells 
with BLF, morin, and Q3R at tested concentrations significantly in-
hibited LPS- stimulated ROS excessive production (p < .05). TBARS, 
the product of lipid peroxidation for unsaturated fatty acids after 
the free radical attack, is commonly used as a biomarker of oxidative 
stress (Tsikas, 2017). In this study, the extent of lipid peroxidation in 
cells was analyzed by TBARS, and the results of TBARS showed that 
supplementation of morin, Q3R, or BLF effectively suppressed LPS- 
stimulated TBARS concentration elevation (Figure 2b). The TBARS 
contents of morin (5 µmol/L), Q3R (5 µmol/L) and BLF (12.5 µg/ml) 
groups effectively decreased to 6.92, 7.23, and 5.36 µmol/g prot, 
respectively. Twenty µmol/L of morin and Q3R, and 25 µg/ml of BLF 
pretreatment groups significantly decreased the TBARS generation 
down to 6.35, 6.41, and 4.47 µmol/g prot, respectively (p < .05), sug-
gesting that BLF could effectively eliminate LPS- stimulated ROS 
production and lipid peroxidation in cells.

3.4  |  BLF improved activity of antioxidant enzymes 
in LPS- activated RAW264.7 cells

SOD, CAT, and GSH- Px are important enzymes for ROS scaveng-
ing in cells, and these enzymes could eliminate LPS- stimulated ROS 
production and lessen cell damage induced by oxidative stress (Liu 
et al., 2011). In this study, LPS induced a decrease for vitalities of 
SOD, CAT, and GSH- Px. BLF, morin, and Q3R pretreatment re-
stored activities of all the tested enzymes. As shown in Figure 3a– 
c, the vitalities of SOD, CAT, and GSH- Px in control groups were 
detected to be 102.5, 28.5, and 106.3 U/mg, while the enzymatic 
activities of the LPS groups decreased to 46.2, 14.4, and 48.1 U/mg, 
respectively. Pretreatment with BLF, morin, and Q3R significantly 
restored the vitalities of all the tested enzymes in LPS- activated 
RAW 246.7 cells (p < .01), respectively. The above results implied 
that scavenging of excessive ROS and restoring the activity of anti-
oxidant enzymes may be the important pathways for BLF to inhibit 
the inflammatory activation induced by LPS in RAW246.7 cells.

Total flavonoids 
content (mg RE/g)

DPPH
(μmol Trolox/g)

ABTS
(μmol Trolox/g)

ORAC
(μmol Trolox/g)

Crude BLF 72.38 ± 3.15 577.10 ± 23.62 49.31 ± 2.36 73.26 ± 3.27

Purified BLF 239.94 ± 10.52 2025.33 ± 84.15 159.14 ± 5.28 248.72 ± 9.74

TA B L E  1  Total flavonoid content and 
antioxidant activity in vitro of BLF
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3.5  |  BLF decreased the level of inflammatory 
cytokines in LPS activated RAW264.7 cells

Previous researches have confirmed that LPS stimulation can pro-
mote the generation of IL- 6, TNF- α, and other inflammatory cy-
tokines. These inflammatory cytokines play a crucial role in the 
initiation and development of inflammation (Lee et al., 2017; Wellen 
& Hotamisligil, 2005; Xu et al., 2020). TNF- α, a proinflammatory cy-
tokine secreted by activated macrophages, can activate NF- κB sign-
aling pathway to regulate the expression of a series of inflammatory 

factors (Cheon, 2017). IL- 6 is produced by activated macrophages, 
and dysregulated continual production of IL- 6 plays a vital role 
in chronic inflammatory response and autoimmunity (Mohamad 
et al., 2018). To assess the impact of BLF on the generation of in-
flammatory cytokines in RAW264.7 cells, the concentrations of 
TNF- α and IL- 6 were detected by ELISA. As shown in Figure 4, BLF, 
morin, and Q3R markedly inhibited RAW264.7 macrophages from 
releasing TNF- α and IL- 6 within the tested concentrations (p < .01). 
Compared with the LPS treatment group, when macrophages were 
treated with 20 µmol/L of morin, the concentrations of TNF- α 

F I G U R E  1  BLF and its main components reduced PGE2 and NO production of LPS- activated RAW264.7 cells. (a) Cytotoxic effect of BLF 
on RAW264.7 cells. (b) Inhibitory effect of BLF on NO production of LPS- activated RAW264.7 cells. **p < .01, ***p < .001 in comparison 
with LPS- treated cells. (c) Inhibitory effect of main components for BLF on NO production of LPS- activated RAW264.7 cells. *p < .05, 
**p < .01 in comparison with LPS- treated cells. (d) Inhibitory effect of morin, quercetin 3- O- rhamnoside (Q3R), and BLF on NO production 
of LPS- activated RAW264.7 cells. ##p < .01 in comparison with untreated cells. (e) Inhibitory effect of morin, Q3R, and BLF on PGE2 
production of LPS- activated RAW264.7 cells. ###p < .001 in comparison with untreated cells

F I G U R E  2  BLF, morin, quercetin 
3- O- rhamnoside (Q3R) inhibited ROS 
and TBARS production of LPS- Induced 
RAW264.7 Cells. (a) ROS content of the 
RAW264.7 Cells (b) TBARS content of the 
RAW264.7 Cells. ##p < .01 in comparison 
with untreated cells. *p < .05, **p < .01 in 
comparison with LPS- treated cells
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F I G U R E  3  BLF, morin, and Q3R 
improved the activity of antioxidant 
enzymes in LPS- activated RAW264.7 
cells. (a) SOD activity of the RAW264.7 
Cells (b) CAT activity of the RAW264.7 
Cells (c) GSH- Px activity of the RAW264.7 
Cells

F I G U R E  4  BLF, morin, and Q3R 
inhibited the production of TNF- α 
and IL- 6 in LPS- activated RAW264.7 
cells. (a) The TNF- α concentration of 
supernatant for the RAW264.7 Cells. (b) 
IL- 6 concentration of supernatant for the 
RAW264.7 Cells

F I G U R E  5  Protein expression levels 
of iNOS, COX- 2, and HO- 1 of the 
RAW264.7 cells. (a) The protein bands 
photograph of the RAW264.7 cells. (b) 
Relative protein expression of iNOS for 
the RAW264.7 cells. (c) Relative protein 
expression of COX- 2 for the RAW264.7 
cells. (d) Relative protein expression of 
HO- 1 for the RAW264.7 cells. ##p < .01, 
###p < .001 in comparison with untreated 
cells. **p < .01, ***p < .001 in comparison 
with LPS- treated cells
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and IL- 6 were significantly decreased to 22.59 and 2.37 ng/ml, re-
spectively. Similarly, Q3R has shown effective inhibition of inflam-
matory factor secretion. As compared with the LPS group, when 
macrophages were treated with 20 µmol/L of Q3R, the concentra-
tions of TNF- α and IL- 6 were decreased significantly, being 26.70 
and 2.64 ng/ml, respectively. Similar results were reported by those 
who found that morin could significantly eliminate monosodium 
urate crystal- stimulated inflammatory response in RAW264.7 cells 
(Dhanasekar et al., 2015). Likewise, several studies have substanti-
ated the anti- inflammatory activities of morin (Case lli et al., 2016; 
Guerra et al., 2006; Li et al., 2016, 2020; Tianzhu et al., 2014; Wang 
et al., 2016). These studies demonstrated that morin is an effective 
anti- inflammatory agent that inhibits most effectors involved in in-
flammation by inhibiting activated macrophages, both in vitro and in 
vivo. Based on the above results, it can be suggested that BLF could 
significantly suppress LPS- induced generation of TNF- α and IL- 6 for 
activated macrophages, and morin and Q3R may be the key active 
components of BLF.

3.6  |  BLF inhibited activation of the NF- κB 
signaling pathway induced by LPS

Based on the results of the BLF- induced reduction in PGE2 and NO 
generation, we detected the protein expression levels of COX- 2 and 
iNOS. COX- 2 and iNOS are the important downstream factors of the 
NF- κB signaling pathway and the crucial enzymes of NO and PGE2 
generation (Liu et al., 2017). As shown in Figure 5a,b, pretreatment 
with BLF significantly reduced the LPS- induced elevation of COX- 2 
(p < .001) and iNOS protein (p < .01), indicating that BLF- inhibited 
LPS- stimulated generation of PGE2 and NO in RAW264.7 cells by 

downregulating protein expression levels of COX- 2 and iNOS at the 
translation levels. Similarly, the two key active components in BLF, 
including Q3R and morin, also decreased protein levels of COX- 2 and 
iNOS protein, indicating that morin and Q3R may be the key active 
components for the anti- inflammatory activity of BLF.

Nuclear factor (erythroid- derived 2)- like 2 (Nrf2) is a pivotal 
eukaryotic redox- active effector, and HO- 1 is an important down-
stream effector protein of Nrf2, which is expressed to protect cells 
against ROS attack (Loboda et al., 2016). Therefore, we assessed ox-
idative stress status by detecting HO- 1 protein levels in RAW 264.7 
cells. As shown in Figure 5c, LPS stimulation significantly increased 
the expression of HO- 1 protein, indicating that LPS stimulation can 
increase the level of intracellular ROS, resulting in oxidative stress. 
Pretreatment with BLF significantly reduced the LPS- induced eleva-
tion of HO- 1 protein (p < .001), suggesting that BLF does not play 
a protective role by stimulating Nrf2- HO- 1 signaling pathway, but 
alleviates LPS- induced oxidative stress in RAW264.7 cells by elim-
inating redundant ROS.

NF- κB is a pivotal signaling pathway controlling the synthe-
sis and release of proinflammatory cytokines and mediators, such 
as iNOS, PGE2, TNF- α, and IL- 6, in the inflammatory response (Liu 
et al., 2017). Under normal conditions, in the absence of inflamma-
tory stimulation, NF- κB is inactivated by entanglement in the cyto-
plasm to form a complex with its inhibitor IκB. When stimulated by 
inflammation, IκBα is phosphorylated and degraded, resulting in the 
release of NF- κB p65. NF- κB p65 is an important subunit in charge 
of promoter binding and transcriptional regulation of multiple in-
flammatory genes. When IκBα is phosphorylated and degraded, p65 
is phosphorylated and transferred into the cell nucleus to initiate 
transcription of multiple proinflammatory mediators and cytokines. 
Therefore, phosphorylation of IκB- α and p65 is important for the 

F I G U R E  6  Protein expression levels 
of IκBα, p- IκBα, p65, and p- p65. (a) 
The protein bands photograph of the 
RAW264.7 cells. (b) Relative protein 
expression of p- IκBα/IκBα for the 
RAW264.7 cells. (c) Relative protein 
expression of p- p65/p65 for the 
RAW264.7 cells. #p < .05, ###p < .001 in 
comparison with untreated cells. *p < .05, 
**p < .01, ***p < .001 in comparison with 
LPS- treated cells
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expression of cytokines and inflammatory mediators. To explore 
the mechanism of BLF inhibiting macrophage activation, protein ex-
pression levels of IκBα, p- IκBα, p65, and p- p65 were determined. As 
shown in Figure 6, LPS stimulation effectively elevated protein lev-
els of p- IκBα/IκBα (p < .001) and p- p65/p65 (p < .05) of RAW264.7 
cells, indicating that LPS activation effectively promotes activation 
of NF- κB signaling pathway. Simultaneously, BLF pretreatment re-
markably reduced protein levels of p- IκBα/IκBα and p- p65/p65 
(p < .001), implying that BLF could inhibit the gene expressions and 
release inflammatory cytokines and proinflammatory mediators by 
inhibiting LPS- activated NF- κB signal pathway activation. Similar 
results were reported by those who found that morin inhibits the 
activity of the transcription factor NF- kB by stabilizing IkBα, thus 
reducing the expression of inducible form of iNOS, as well as of the 
COX- 2, IL- 6, and TNF genes (Manna et al., 2007).

The above results suggested that BLF could effectively allevi-
ate the LPS- promoted inflammatory reaction in RAW264.7 cells 
by inhibiting NF- κB signaling pathway activation. The main anti- 
inflammatory components of BLF are Q3R and morin.

4  |  CONCLUSIONS

In the present study, we proved that BLF treatment could remark-
ably alleviate LPS- stimulated oxidative stress and inflammatory re-
sponse in RAW264.7 cells by restoring the activity of antioxidant 
enzymes, reducing intracellular ROS content, and blocking NF- κB 
signal pathway activation. Q3R and morin are the most important 
antioxidant and anti- inflammatory factors of BLF. This study offers a 
theoretical basis for the development of BLF as a natural and effec-
tive antioxidant and anti- inflammatory food additive.
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