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arachidonic acid-derived epoxyeicosatrienoic acids (EETs) 
to dihydroxyeicosatrienoic acids (DHETs). Significantly 
higher DHETs/EETs ratios were found in mEH E404D 
liver, urine, plasma, brain and cerebral endothelial cells 
compared to WT controls, suggesting a broad impact 
of the mEH mutant on endogenous EETs metabolism. 
Because EETs are strong vasodilators in cerebral vascu-
lature, hemodynamics were assessed in mEH E404D and 
WT cerebral cortex and hippocampus using cerebral blood 
volume (CBV)-based functional magnetic resonance imag-
ing (fMRI). Basal CBV0 levels were similar between mEH 
E404D and control mice in both brain areas. But vascular 
reactivity and vasodilation in response to the vasodilatory 
drug acetazolamide were reduced in mEH E404D forebrain 
compared to WT controls by factor 3 and 2.6, respectively. 
These results demonstrate a critical role for mEH E404D in 
vasodynamics and suggest that deregulation of endogenous 
signaling pathways is the undesirable gain of function asso-
ciated with the E404D variant.
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Introduction

Microsomal epoxide hydrolase is a xenobiotic-metaboliz-
ing enzyme, which hydrolyzes potentially genotoxic epox-
ides to less reactive dihydrodiols. Key features of mEH 
comprise a broad substrate spectrum and almost ubiqui-
tous expression in all body tissues, with particularly high 
expression in liver and kidney—consistent with a cen-
tral role in detoxification (Guengerich 1982; Seidegard 
and DePierre 1983). mEH substrates comprise epoxides 
metabolically formed from environmental toxins such as 
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benzene and polycyclic aromatic hydrocarbons (Gonzalez 
et  al. 1982; Jerina 1983; Oesch 1983; Wood et  al. 1983) 
and those from drugs such as phenytoin (Martz et al. 1977) 
and carbamazepine (Kaneko 1991). In few cases mEH 
also contributes to the formation of genotoxic metabolites 
(Bauer et al. 2003; Miyata et al. 1999).

Despite largely unnoticed, mEH is also capable of 
metabolizing endogenous compounds including epoxy 
steroids (Fandrich et  al. 1995; Vogel-Bindel et  al. 1982) 
and arachidonic acid-derived lipid signaling molecules, 
so-called epoxyeicosatrienoic acids (EETs) (Marowsky 
et  al. 2009). In a cytochrome P450(CYP)-catalyzed reac-
tion, four EETs regioisomers can be generated, 5,6-, 8,9, 
11,12- and 14,15-EETs, which are hydrolyzed by epoxide 
hydrolases to their respective diols, dihydroxyeicosatrie-
noic acids (DHETs). DHETs are presumably less biologi-
cally active or exert different biological activity than their 
parent molecules (Froemel et  al. 2012; Spector 2009). 
EETs have been implicated in a variety of physiological 
functions, ranging from vasodilation (Campbell and Flem-
ing 2010), angiogenesis (Webler et  al. 2008; Yang et  al. 
2009), cell proliferation (Panigrahy et al. 2013) and inflam-
mation (Node et al. 1999) to pain (Spector 2009; Terashvili 
et al. 2008; Wagner et al. 2011). In brain, EETs can directly 
dilate cerebral arteries (Amruthesh et al. 1992; Ellis et al. 
1991) and contribute importantly to neurovascular con-
trol (Iliff et  al. 2009; Peng et  al. 2002). EETs-generating 
cells in the CNS comprise neurons (Qu et al. 2001), astro-
cytes (Alkayed et al. 1996), and endothelial cells (Medhora 
et  al. 2001). While astrocyte-derived EETs are thought to 
play a pivotal role in neurovascular control, endothelium-
derived EETs seem to contribute to the endo-dependent 
modulation of vasomotor tone by agonists such as brady-
kinin (Gebremedhin et  al. 1998). The role of mEH in 
endogenous lipid metabolism is largely neglected, because 

the bulk of EETs are metabolized by the more rapid sister 
enzyme, soluble epoxide hydrolase (sEH). Although mEH 
displays higher affinity for EETs compared to sEH, in par-
ticularly for the 8,9- and 11,12-regioisomer, sEH clearly 
outperforms mEH in terms of maximal velocity (Vmax) 
(Marowsky et al. 2009).

Vmax of mEH can be substantially modulated by specific 
amino acid exchanges. A dramatic increase in mEH activ-
ity is caused by an amino acid replacement in the catalytic 
triad (Fig. 1) of the enzyme (Arand et al. 1999). While in 
most species including humans and all other vertebrates, 
mEH proteins contain a glutamic acid at the position equiv-
alent to amino acid 404 in the human enzyme, a few taxo-
nomically lower species, in particular several insects and 
some molds of the Aspergillus genus, carry an aspartic acid 
at this site. When introduced into the rat mEH protein, this 
amino acid exchange Glu404Asp (mEH E404D) showed a 
23-fold and 39-fold enhancement in Vmax for the substrates 
styrene-7,8-oxide and 9,10-epoxystearic acid, respectively 
(Arand et al. 1999). The amino acid at position 404 forms 
a charge relay system together with H431, which activates 
water through proton abstraction, with the mutation E404D 
quickening this second, rate-limiting step of the enzymatic 
reaction (Arand et al. 1999) (Fig. 1).

In humans, two functional polymorphisms in the EPHX1 
gene in exon 3 and 4 have been shown to alter enzyme 
activity, probably due to enhanced stabilization of the 
enzyme rather than a substantial change in enzyme kinetics 
as in mEH E404D (Hassett et al. 1994a, b; Omiecinski et al. 
2000). Specifically, a decrease in enzymatic mEH activity, 
linked mostly to the H113 allele, was reported to increase 
the risk for several types of cancer such as colon, ovarian, 
lung and liver cancer (Erkisi et al. 2010; Goode et al. 2011; 
Harrison et al. 1999; Lee et al. 2011; Zhong et al. 2013a, 
b). By contrast, the high activity genotype has been related 

Fig. 1   The two-step enzymatic 
mechanism of microsomal 
epoxide hydrolase. In the first 
step, mEH forms a covalent 
bond to its substrate (for the 
sake of simplicity, only the 
epoxide core of the substrate is 
depicted in the scheme). The 
resulting ester is subsequently 
hydrolyzed in step 2. Note that 
step 2 is rate limiting and that it 
is substantially accelerated by 
changing E404 to D
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to pre-eclampsia, a life-threatening hypertension affecting 
pregnant women (Groten et al. 2014; Pinarbasi et al. 2007; 
Zusterzeel et al. 2001). This disease is almost exclusive to 
humans and characterized by abnormal maternal uterine 
vascular remodeling (Pennington et al. 2012).

The absence of the mEH E404D variant in higher ani-
mals suggests that in humans an elevated detoxification rate 
would come with a high price. We hypothesized that mEH 
is critically involved in the metabolism of endogenous 
compounds such as vasoactive EETs and that an increased 
activity level of the enzyme would negatively affect EETs-
controlled vascular processes. To test this notion, we gen-
erated mice harboring the rapid mEH E404D variant and 
assessed them for detoxification efficiency and physiologi-
cal aberrations.

Materials and methods

See supplemental informations.

Results

Generation and characterization of mEH E404D mice

For the generation of the mEH E404D mice, a single point 
mutation was introduced into the last exon of the mEH 
gene of murine embryonic stem cells via homologous 

recombination that resulted in the desired amino acid 
exchange E404D in the enzyme protein. From these geneti-
cally modified stem cells, a mouse line was generated on a 
genetic C57BL/6 background (for details on the construc-
tion see Supplemental Information, Fig. S1).

The mEH E404D mice displayed no obvious differ-
ences in size, weight, development and general behav-
ior compared to WT littermates, thus exhibiting no overt 
phenotype. In particular, litter sizes were indistinguish-
able between mEH E404D × mEH E404D and WT × WT 
control breeding pairs, arguing against the occurrence of a 
spontaneous preeclampsia-like pathology in female preg-
nant mEH E404D mice (Ahmed et  al. 2010). To assess 
the detoxification efficacy of the mutant, liver microsomes 
from mEH E404D and WT animals were incubated with 
phenanthrene-9,10-oxide, a genotoxic, mEH-selective sub-
strate. Enzymatic activity of mEH E404D microsomes was 
increased threefold compared to WT microsomes (Fig. 2a), 
demonstrating that the mEH variant displayed in fact sig-
nificantly higher turnover. To rule out that increased mEH 
expression levels underlie the observed acceleration in turn-
over, hepatic mEH protein levels were quantified. Immuno-
blotting using an anti-mEH antibody revealed a significant 
downregulation of mEH E404D protein content to 65  % 
of mEH protein level found in WT liver, indicating strong 
compensatory adaptations (Fig.  2b) and an actually 4.5-
fold faster detoxification of the mutant as compared to the 
WT enzyme under our assay conditions. In kidney, mEH 
E404D protein was also significantly downregulated to 
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Fig. 2   Enhanced detoxification capacity of the mEH E404D mutant. 
a Liver microsomes from mEH E404D detoxifies phenanthrene-
9,10-oxide significantly faster than microsomes from WT. Prepa-
rations from both genotypes (n =  3, each) were incubated with the 
genotoxic substrate, and turnover was analyzed spectrophotometri-
cally as described under “Materials and methods” section (see Sup-
plementary Information). Results are presented as mean  ±  SD. b 
mEH E404D protein levels are reduced to 65 ± 4 % of mEH WT pro-

tein levels in mouse liver, as demonstrated by ratiometric comparison 
with GAPDH expression in immunoblot analysis. Purified recombi-
nant mouse mEH (+) and microsomes from mEH (−/−) mice (KO) 
served as the positive and the negative control for the specificity of 
the immune detection. Precise quantification was achieved using an 
Odyssey® infrared fluorescence imager. Results are expressed as the 
mean (n = 4 per genotype) ± SEM. **P < 0.01
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68 % of the corresponding WT level, but no such changes 
in expression levels were noted in lung and cerebral cortex 
from mEH E404D compared to WT control animals (data 
not shown).

Contribution of mEH E404D to arachidonic acid 
metabolism in liver

Liver is also crucial for the metabolism of endogenous 
compounds, including fatty acids and EETs (Sacer-
doti et  al. 2003). To assess the impact of mEH E404D 
on arachidonic acid metabolism, mEH E404D and WT 
liver homogenates were incubated with arachidonic acid 
(AA; 30  µM, 60  min) and metabolites were determined 
via LC–MS/MS. Compared to WT, the mEH variant 
showed clearly enhanced DHET levels for the 8,9- and 
11,12-regioisomers, while total EETs levels remained 
similar across genotypes (Fig.  3a, Supplementary Tab. 
S1). Consequently, the DHETs/EETs ratio was sig-
nificantly enhanced in mEH E404D liver compared to 
WT (Fig.  3b). sEH activity was the same in both geno-
types, as evidenced by 14,15-EET turnover rates of 
60.5  ±  8.8  nmol/mg/min in mEH E404D liver cytosol 
and of 65.8  ±  10.5  nmol/mg/min in WT liver cytosols 

(n =  5 per genotype; P =  0.412). Therefore, the accel-
erated turnover rate of EETs was due to the enhanced 
mEH activity—despite of the marked downregulation of 
mEH E404D protein (Fig.  2b). Furthermore, the sum of 
total EET and DHET levels was higher in mEH E404D 
liver relative to WT (Fig.  3a), indicative of increased 
CYP activity in the mEH variant. Likewise, levels of the 
CYP4A/4F-product, 20-HETE, were also increased in 
mEH E404D liver, whereas levels of 5-HETE, a product 
of the competing lipoxygenase pathway (LOX pathway), 
remained unchanged (Fig.  3c). Morphology and histol-
ogy of mEH E404D liver were normal (data not shown). 
Taken together, mEH E404D liver showed enhanced 
EETs turnover, a specific increase in CYP epoxygenase 
and CYP ω-hydroxylase activity and unchanged activity 
for the 5-LOX pathway and sEH-mediated EET hydroly-
sis relative to WT controls.

Analysis of EETs and DHET levels in plasma and urine 
also revealed consistently higher DHETs/EETs ratios in 
mEH E404D compared to WT samples, primarily due to 
increased turnover of 8,9- and 11,12-EETs (see Supple-
mentary Tab. S1), demonstrating a systemic rather than 
a liver-specific effect on EETs metabolism by the mEH 
variant.
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Fig. 3   mEH E404D liver tissue homogenate shows substantially 
higher EETs turnover compared to WT control despite significant 
downregulation of mEH E404D protein. a Incubation with 30 μM 
arachidonic acid leads to similar EETs, but significantly higher 
DHETs levels in mEH E404D liver compared to WT control (n = 5 
per genotype). Consequently, the sum of [EETs + DHETs] is higher 
in mEH E404D, pointing toward an increase in epoxygenase activ-

ity. b A significantly higher DHETs/EETs ratio in mEH E404D liver 
compared to WT indicates accelerated turnover by the mEH variant. 
c The CYP product 20-HETE, a strong vasoconstrictor, is generated 
in higher amounts in mEH E404D compared to control. 5-HETE, 
a product of the LOX pathway, is generated in similar amounts 
in both genotypes (n  =  5 per genotype). Results are presented as 
mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001
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Comparison of enzymatic properties between purified 
mEH WT, sEH and mEH E404 protein

Comparison of EETs/DHETs ratios between mEH E404D 
and WT controls for liver, plasma and urine pointed toward 
an E404D-specific regioisomer profile. Indeed, when mEH 
E404D and WT liver microsomes were incubated with a 
mixture of 8,9-, 11,12- and 14,15 EETs (10  µM each) in 
the presence of the sEH inhibitor tAUCB (10 μM), mEH 
E404D showed highest turnover rates with 8,9-EETs, fol-
lowed by 11,12 > 14,15 EETs (Table 1). This is different 
to mEH WT, which shows similar rates for the 8,9- and 
11,12-regioisomer. For a more detailed analysis of the 
enzymatic profile of mEH E404D, we compared the activ-
ity of purified murine sEH, mEH WT and mEH E404D 
protein with the different EETs regioisomers as substrates. 
These turnover assays revealed that purified sEH clearly 
outperforms mEH WT with regard to maximal velocity 
(Vmax) and catalytic efficiency (kcat/Km), irrespective of the 
regioisomer (Table 1). However, the E404D point mutation 
boosted the catalytic efficacy of the WT enzyme fivefold 
for 8,9-EETs and threefold for 11,12-EETs, respectively, 
with the result, that purified sEH and mEH E404D were 
equally efficient in metabolizing 8,9-EETs.

Role of mEH E404D in acetazolamide‑induced 
vasodilation in cerebral cortex and hippocampus

Despite an increase in EETs turnover by mEH E440D in 
liver, urine and plasma, we did not observe any gross physi-
ological aberrations. Because phenotypes often manifest 
themselves only after a challenge, we searched for a para-
digm where the observed alterations in enzyme character-
istics should have an impact. EETs are strong vasodilators 
in cerebral blood vessels, and mEH is expressed in cerebral 
vascular and perivascular structures (Marowsky et al. 2009). 
Therefore, we focused our investigations on cerebral hemo-
dynamics. Brain mEH and sEH expression did not differ 
between mEH E404D and WT, and strong mEH immuno-
reactivity (IR) was detected throughout cerebral endothelial 
cells, a subpopulation of cortical astrocytes and in specific 

neuronal subtypes (Fig. 4). sEH IR was found in astrocytes 
with particularly strong expression in the forebrain. We 
chose cortex and hippocampus as regions of interest (ROIs), 
because they show similar sEH, but different mEH expres-
sion. Specifically, in hippocampus mEH is found in princi-
pal neurons (CA1-CA3 pyramidal cells), whereas in cortex 
mEH-positive neurons are absent. To study the effect of the 
mEH mutant on AA metabolism in brain, cortex and hip-
pocampal tissue homogenates from mEH E404D and con-
trol animals were incubated with AA (30  μM, 60  min). 
Similar to liver, DHETs levels and DHETs/EETs ratios were 
elevated by factor 1.3 and 2.9 in mEH E404D hippocampus 
and cortex, respectively, compared to WT (Fig. 5a−c, Sup-
plementary Tab. S1). Concentrations of 20-HETE, an essen-
tial vasoconstrictor, were similar across genotypes (Fig. 5c, 
Supplementary Tab. S1). sEH activity was reduced in E404D 
compared to WT cortex samples, indicated by lower hydrol-
ysis of 14,15-EETs in cortical cytosol (Fig.  5d), implying 
that higher turnover is primarily due to mEH E404D activity.

Results obtained in tissue homogenates have the dis-
advantage that EET- and DHET-producing cells are not 
identified. As endothelial cells express CYP epoxygenases, 
generating EETs, as well as mEH, we studied their meta-
bolic profile in more detail. Cerebral endothelial cells were 
isolated from total WT and mEH E404D brains and EETs/
DHETs levels analyzed. EETs-to-DHET levels were sub-
stantially shifted with similar total [EET + DHET] levels, 
suggesting similar CYP epoxygenase activity, but 3.6 times 
higher DHET/EET ratio in mEH E404D compared to WT 
cells (Supplementary Tab. S1).

To test whether the altered EETs metabolism in mEH 
E404D has a functional impact, we studied the vasodila-
tory response in mEH E404D and WT brain to a pharma-
cological stimulus, the carbonic anhydrase inhibitor aceta-
zolamide (AZ). Quantitative analysis of fMRI signals was 
carried out in the somatosensory cortical and hippocam-
pal ROIs, for which AA metabolism rate had been deter-
mined before. Prior to AZ administration (i.v.), basal CBV0 
were analyzed for a genotype-specific difference. CBV0, 
which reflects vascular architecture and tonus, did not dif-
fer between mEH genotypes in both brain areas (Fig. 6c). 

Table 1   Regiopreference 
and kinetic constants of WT 
and mEH E404D with EET 
regioisomers

a  Turnover of a mixture of EET regioisomers (10 μM each) with equal amounts of either WT or E404D 
mEH liver microsomes in the presence of the sEH inhibitor tAUCB

*p ≤ 0.05, **p ≤ 0.01, Student’s t-test

Turnovera (%) Vmax (nmol/mg/min) Km (µM) kcat/Km 
(M−1 × s−1) × 103

WT E404D WT E404D sEH WT E404D sEH WT E404D sEH

8,9-EET 52 ± 6 88 ± 1** 120 3000 2400 0.85 4.5 2 120 600 500

11,12-EET 61 ± 6 78 ± 1* 67 4300 11,000 0.22 4.5 0.6 275 860 5000

14,15-EET 18 ± 1 34 ± 4* 20 260 20,000 0.18 3.4 2 100 68 5000
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Following AZ injection, we observed a rapid increase in 
relative CBV values in WT somatosensory cortex and 
hippocampus, reaching a stable plateau after 15 min with 
ΔCBV% values of 24.9 ± 0.5 % in somatosensory cortex 
and 16.8 ± 0.3 % in hippocampus (average intensity in the 
time interval 15–30 min after AZ injection). By contrast, the 
CBV response in the mEH mutant was markedly decreased 
with ΔCBV% values of 11.1 ±  0.7 and 4.8 ±  0.4  % for 

cortex and hippocampus, respectively (Fig. 6a, b). Statisti-
cal analysis of ΔCBV % versus time profile in response to 
AZ administration revealed a significant genotype-specific 
difference for both brain areas. Functional maps reflected 
the results derived from the intensity profiles. Here, early 
CBV changes (ΔCBV% at 3 min) comprise the initial slope 
as a measurement for vascular reactivity, while maximum 
CBV changes (ΔCBV% at 13  min) reflect the maximum 
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Fig. 6   Acetazolamide injection leads to significantly lower CBV 
responses in two frontal brain areas of mEH E404D animals com-
pared to WT controls. Relative changes of CBV of mEH E404D 
(open symbols) and WT control (filled symbols) in the hippocam-
pal (a) and somatosensory (ss) cortical (b) ROI measured by fMRI. 
Black arrows indicate i.v. infusion of AZ. WT animals show ΔCBV% 
of comparable magnitude in both brain areas, compared to which 
those of mEH E404D animals are distinctly lower. Comparison over 
the entire CBV intensity curve after AZ injection (0–30 min) reveals 
a highly genotype-specific difference for both brain areas (repeated-
measures ANOVA, ss cortex p =  0.0027, hippocampus p  <  10–6). 
Data are presented as mean ±  SEM. c Absolute baseline CBV val-
ues (CBV0) measured by fMRI vary with brain region, but are simi-

lar between genotypes. d Vascular reactivity is severely compromised 
in mEH E404D brains compared to WT controls. e Color-coded 
CBV maps with representative images for WT controls (left) and 
mEH E404D (right) brains illustrate the genotype-specific response 
to AZ injection. Anatomical MR reference images are shown in the 
top row. Color-coded CBV maps superimposed on the anatomical 
scans represent (from upper to lower row) baseline ΔCBV% values, 
early changes in ΔCBV% (3  min post-AZ injection) and maximum 
ΔCBV% values (13 min post-AZ injection). For each genotype rows 
from left to right correspond to Bregma −2.92, −2.06 and +0.62, 
respectively. Hippocampus is visible in the first and second row, ss 
cortex in the third row for each genotype. *P < 0.05; **P < 0.01
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vessel dilatation in response to AZ (Fig. 6e). Quantitative 
analysis of the vascular reactivity [initial slope, (dΔCBV%/
dt)t=0] yielded significantly lower values for mEH E404D 
animals compared to WT in both brain areas (Fig. 6d). Fur-
thermore, the functional maps illustrated that CBV changes 
in the somatosensory cortex were representative for the 
entire cortex in both genotypes. To exclude the possibility 
that the reduced CBV-fMRI response in mEH E404D ani-
mals was due to a reduced sensitivity of the pharmacologic 
target of the AZ challenge, namely the carbonic anhydrase, 
transcutaneous ptcCO2 values were measured in drug-naïve 
WT and mEH E404D animals (Princz-Kranz et al. 2010). 
Injection of AZ led to a significant augmentation of ptcCO2 
in both genotypes and no genotype-specific difference in 
CO2 levels could be detected (see Supplementary Tab. S2). 
Taken together, the AZ-induced hemodynamic response in 
cortex and hippocampus of mEH E404D brain was severely 
compromised compared to WT, evidenced by significantly 
lower values for ΔCBV% and vascular reactivity.

Discussion

In the present paper, we demonstrated that enhancement of 
mEH activity significantly improves hepatic detoxification, 
but at the same time shifts the ratio DHET:EET to higher 
values in vivo due to an enhanced turnover of EETs. As a 
probable consequence of this imbalance, cerebral vasodila-
tion is strongly attenuated after AZ injection relative to WT. 
Gross pathological changes on morphological and histo-
logical levels were not observed in mEH E404D mice, but 
several strong tissue-specific adaptations in enzyme levels 
occurred, which presumably counteracted or at least dimin-
ished the effects of the powerful mEH E404D. In liver (and 
kidney, data not shown), mEH E404D protein levels were 
decreased by one-third. Hepatic CYP epoxygenase activ-
ity was upregulated, such that EETs levels were unchanged 
in mEH E404D relative to WT, and only DHET levels dif-
fered between genotypes. Finally, cortical sEH activity was 
substantially reduced in mEH E404D animals.

We used AZ as pharmacological stimulus and fMRI-
based analysis as technique-of-choice, because it allows 
for simultaneous analysis of CBV changes throughout 
the brain, including deeper cortical layers and hippocam-
pus. In both brain areas, AZ-induced increase in CBV was 
blunted in mEH E404D compared to control animals. AZ 
has a well-documented effect on cerebral hemodynamics 
and is used in clinical settings to evaluate cerebrovascular 
reactivity and reserve in patients with occlusive cerebro-
vascular diseases at risk for cerebral ischemia (Imaizumi 
et al. 2004; Vagal et al. 2009). Mechanistically, AZ acts by 
selectively inhibiting carbonic anhydrase and induction of 
hypercapnia (Taki et al. 1993), which leads to an increase 

in cerebral blood flow and CBV (Frankel et al. 1992; Zhou 
et  al. 2009). On the molecular level, an involvement of 
EETs in AZ-induced CBV change seems likely. Specifi-
cally, the molecular targets identified in AZ action overlap 
with those reported for EETs. Both EETs and protons, the 
latter generated by AZ-induced acidosis, were shown to 
activate KATP channels (Wang et  al. 2003). Furthermore, 
EETs and protons both modulate BK channel activity via 
ryanodine receptor-modulated calcium waves in vascu-
lar smooth muscle cells (Dabertrand et  al. 2012; Earley 
et al. 2005; Knot et al. 1998). In our study the AZ-induced 
CBV changes correlate well with the DHET/EETs ratios in 
E404D and WT brain tissue without any indication for a 
genotype-specific difference in the hypercapnic effect. This 
strongly suggests a downstream cross-talk between these 
signaling pathways.

mEH has long been regarded as mainly, if not exclu-
sively, xenobiotic-metabolizing enzyme. This notion was 
based on the fact that its sister enzyme sEH, in purified 
form and under optimized conditions, is orders of magni-
tude faster than mEH in the turnover of fatty acid epox-
ides (Chacos et al. 1983). In contrast, our present findings 
strongly suggest a prominent role of mEH E404D in con-
trol of EET levels and thus of EET-dependent signaling 
pathways, exemplarily shown in this study for the cerebral 
hemodynamics.

The question remains if mEH-mediated EETs turno-
ver only becomes significant after genetic acceleration or 
if already the WT enzyme plays a significant role in EET 
metabolism. There are several arguments supporting the lat-
ter concept. First, although Vmax of WT mEH is by orders of 
magnitudes lower than that of sEH, its catalytic efficacy, the 
physiologically relevant parameter, is, with 0.2 ×  106 per 
molar and second, in a range compatible with physiologi-
cal turnover of EETs. Second, the KM of the WT enzyme 
with EETs is very low (sub-micromolar), indicating a high 
(apparent) affinity of EETs as mEH substrates. Third, mEH 
has a kinetic advantage over sEH due to its (sub)cellular 
localization: mEH and CYP epoxygenases are co-expressed 
in endothelial cells at least throughout the murine brain and 
in a subpopulation of cortical astrocytes. Furthermore, both 
are ER-resident with their catalytic domains facing toward 
the cytosol (Holler et  al. 1997). Such physical proxim-
ity might favor direct interaction or “substrate channeling” 
from CYP epoxygenases to mEH, thus bypassing the cyto-
sol-residing sEH. In this scenario the latter might only come 
into play, once the enzymatic capacity of mEH is saturated. 
mEH WT and mEH E404D differ distinctly in this parame-
ter with saturation levels shifted to higher substrate concen-
trations by one order of magnitude in the accelerated variant 
relative to WT (Arand et al. 1999).

The hepatocyte is one cell type that simultaneously 
displays high expression levels of all three entities, i.e. 
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AA-epoxygenating CYPs, mEH and sEH. Hepatocytes 
constitute more than 90 % of the liver mass and thus domi-
nate our AA turnover experiments with liver homogenates. 
sEH expression in mouse liver is substantially higher than 
that of mEH and so is its catalytic efficacy (see Table  1) 
with all three EET regioisomers. Nevertheless, a relatively 
moderate enhancement of the mEH catalytic efficacy pro-
duced a significant shift in the DHET-to-EETs -ratio for 
the 11,12-regioisomers. This demonstrates that the close 
proximity of mEH to epoxygenases in conjunction with its 
high affinity for EETs is clearly able to compensate for its 
comparatively lower catalytic efficacy (for a more exten-
sive discussion including quantitative aspects see Supple-
mentary Information).

The EPHX1 gene can be found throughout almost all 
kingdoms of live (Cavalier-Smith 2010), including bacte-
riae, protozoae, chromistae, fungi and animals, with the 
interesting exception of plants. A dedicated search for 
E404D-like variants throughout all living organisms reveals 
its actual presence in a small percentage of species, in par-
ticular in a few bacteria, insects, nematodes and in some 
molds of the Aspergillus genus, but, so far, a complete 
absence in the around 200 vertebrate species for which 
EPHX1 sequence data have been deposited (M. Arand, 
unpublished observation). If present in insects and molds, 
this apparently goes along with at least one second EPHX1 
gene in the given species that harbors a glutamic acid resi-
due in the charge relay system [see, for example, multiple 
mEHs in the red flour beetle (Tsubota et  al. 2010)]. This 
strongly suggests that higher species—with the exception 
of plants—depend on the presence of the glutamic acid 
variant of mEH with its—in terms of Vmax—restricted 
turnover rate, most likely to allow a controlled fine tuning 
of epoxide-related signaling molecules. Finally, the com-
mon human EPHX1 polymorphisms indicate a potential 
involvement of mEH in the regulation of vascular tone: 
distinct human EPHX1 polymorphisms associated with 
slightly enhanced enzymatic activity predispose its car-
rier to pre-eclampsia, a pregnancy-related pathology with 
hypertension as a leading symptom (Groten et  al. 2014; 
Pinarbasi et al. 2007; Zusterzeel et al. 2001).

An obvious question that remains is why we do not have 
the fast mEH404D variant in lower amounts? On first sight, 
this seems much more economical. Yet one needs to keep 
in mind that only the second step of catalysis is faster with 
the mEH E404D, while the first step, the formation of the 
enzyme-substrate ester, is as fast as in the WT enzyme. 
This first step already detoxifies reactive substrates of the 
enzyme. In the liver, where the bulk of xenobiotic metabo-
lism takes place, the high expression level of mEH creates 
the unusual situation of this enzyme often being in excess 
over its substrates. This allows for the efficient detoxifica-
tion by just forming the metabolic intermediate with the 

substrate without the need of immediate hydrolysis. Less 
enzyme, even when regenerated much faster as would be 
the case with the mEH E404D mutant, would result in 
higher steady-state concentrations of toxic epoxides, based 
on the law of mass action (Arand et al. 2003) rather than in 
more efficient detoxification.
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