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Abstract

Organisms maintain competitive fitness in the face of environmental challenges through

molecular evolution. However, it remains largely unknown how different biophysical factors

constrain molecular evolution in a given environment. Here, using deep mutational scan-

ning, we quantified empirical fitness of >2000 single site mutants of the Gentamicin-resistant

gene (GmR) in Escherichia coli, in a representative set of physical (non-native tempera-

tures) and chemical (small molecule supplements) environments. From this, we could infer

how different biophysical parameters of the mutations constrain molecular function in differ-

ent environments. We find ligand binding, and protein stability to be the best predictors of

mutants’ fitness, but their relative predictive power differs across environments. While pro-

tein folding emerges as the strongest predictor at minimal antibiotic concentration, ligand

binding becomes a stronger predictor of mutant fitness at higher concentration. Remarkably,

strengths of environment-specific selection pressures were largely predictable from the

degree of mutational perturbation of protein folding and ligand binding. By identifying struc-

tural constraints that act as determinants of fitness, our study thus provides coarse mecha-

nistic insights into the environment specific accessibility of mutational fates.

Author summary

Environmental conditions are known to shape natural selection. However, their influence

on molecular evolution is still largely unclear. Here, we use a high throughput mutational

scanning approach to investigate how representative physical and chemical environments

alter mutational fates of an antibiotic resistant gene. From co-culture bulk competitions

with purifying selection carried out under different test environments, we obtained
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INSERM U1001, FRANCE

Received: January 11, 2018

Accepted: May 16, 2018

Published: May 29, 2018

Copyright: © 2018 Dandage et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. Raw sequencing data is available at Sequence

Read Archive (SRA) as a BioProject:

PRJNA384918.

Funding: KC acknowledges Council for Scientific

and Industrial Research (CSIR) for funding through

BSC0124 project and infrastructural support from

CSIR-Institute of Genomics and Integrative Biology

(IGIB). RD acknowledges University Grants

Commission (UGC) for graduate funding. DB was

https://doi.org/10.1371/journal.pgen.1007419
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1007419&domain=pdf&date_stamp=2018-06-08
https://doi.org/10.1371/journal.pgen.1007419
https://doi.org/10.1371/journal.pgen.1007419
http://creativecommons.org/licenses/by/4.0/


empirical fitness of individual single site mutants of the gene. Mutant fitness was found to

differ across environments. In order to gain mechanistic insights into the observed envi-

ronmental influence on mutational effects, we analyzed relative strengths of protein level

structural constraints in determining the fitness effects. Remarkably, this analysis revealed

a high degree of predictability: overall strengths of environment-specific selection pres-

sures were determined by the degree of mutational perturbation of protein folding and

ligand binding. Overall, our results show that these structural constraints act as determi-

nants of environment specific mutational fates.

Introduction

Environmental conditions shape natural selection and drive rates of organismal adaptation

through Genotype-by-Environment Interactions (GEI) and alterations of the genotype-pheno-

type map linking DNA sequence variation to the expression of quantitative traits [1]. Depend-

ing on the environment, such interactions can thus predispose a particular genotype to

alternative fates and divergent evolutionary trajectories [2–7]. While the roles of standing vari-

ation and de novo mutation in adaptation to new environments have received much theoreti-

cal and empirical consideration [8–11], these sources of genetic variation are also likely to

differ in fundamental ways. In particular, GEI based on standing variation may differ from

GEI from de novo mutation as the former are shaped by selection [12] while the latter will be

so to a much lesser extent [13]. Indeed, while the Distribution of Fitness Effects (DFE) of

mutations has fundamental consequences for rates of evolution, little is known generally about

their environmental specificity [9,14–16].

Chemical and physical properties exercise fundamental constraints on enzymatic reactions

and protein function, and in extension, organismal fitness [17]. Thus, in-depth knowledge

about environmental influences on biochemical properties and molecular features underpin-

ning phenotypic traits may bring considerable insights and predictive power of organismal

adaptation and evolutionary trajectories in heterogeneous and complex environments. Indeed,

maintenance of proteostasis is key to survival in stressful environments [18,19] and many dis-

eases are associated with dysfunctional proteostasis machinery [20]. Hence, investigating

whether and to what extent proteostasis in terms of intracellular protein folding and stability

play a role in determining GEI and environment-specific DFE may be a key step in predicting

mutational fates and thereby understanding molecular basis of environmental influences on

the genotype-phenotype map.

Monitoring of environment-specific DFEs is greatly enhanced by prospective mutational

scanning of single mutants which provide a rapid means to study single steps of molecular evo-

lution, as compared to spontaneous mutations which occur at a very low rate [21]. Deep

sequencing based high throughput approaches such as deep mutational scanning [22,23] have

now rendered large scale assessment of mutational effects on gene function possible [24];

allowing comprehensive analysis of the sequence-space of a gene. Resultant DFEs of the muta-

tions provide a continuous series of fitness effects ranging from strongly deleterious to benefi-

cial, and represent a valuable resource for quantitative genetic research [25]. In recent years,

exploration of environmental influence on the DFE of mutations with large-scale genotype to

phenotype data has resulted in the identification of environment-specific mutational effects

[16,26]. However, qualitative and quantitative identification of determinants of these muta-

tional fitness effects has been challenging [27,28]. Therefore, mechanistic understanding of
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GEI and environment-specific DFE is much needed in order to increase the robustness in cur-

rent approaches of predicting genotype-phenotype relationships [29,30].

In this study, we monitored the fitness landscape of the Gentamicin (Gm) resistant gene—

GmR (aminoglycoside 3-N-acetyltransferase (aacC1)) under different sets of physical and

chemical environments. We utilized a single site mutation (SSM) library (>2000 mutants) of

the gene, heterologously expressed in E. coli. We acquired relative fitness of single site mutants

of GmR, by carrying out co-culture bulk competition assays that select for the gene’s function,

under predominantly purifying selection in different environmental conditions. Adopting a

deep mutational scanning approach, preferential enrichments of the mutants were monitored

via deep sequencing. The physical environments investigated in this study include growth tem-

peratures; lower (30˚C) or higher (42˚C) than the optimal growth temperature (37˚C) of E.

coli. High temperature is known to severely impair protein folding of temperature-sensitive

mutants [31], while low temperature has been shown to induce reversible effects on protein

folding [32]. Hence, the influence of temperature on the fitness landscape of GmR may allow

us to understand how the requirement of proteostasis limits the gene sequence space available

for evolution. Among chemical environments, we studied effects of TMAO (Trimethylamine

N-oxide) and glycerol, which are known to act as chemical chaperones that may buffer muta-

tional effects by assisting protein folding via alternative mechanisms [33] [34]. Assessment of

the role of such solvent-protein interactions in guiding mutational fates is of particular impor-

tance, considering that the solvent accessible surface area of proteins are strong predictors of

protein evolution rate [35–37].

The assessed mutational effects depended strongly on the acting environmental conditions,

a hallmark of mutational GEI. Moreover, molecular constraints such as protein stability and

ligand binding were identified to be common across all test environments. The selection pres-

sures imposed by physical and chemical environments, at minimal concentration of antibiotic,

were largely mediated via folding constraints, and hence, could be predicted. For instance, ele-

vated temperature imposed stronger purifying selection against mutants whereas chemical

chaperones were found to increase mutational robustness, alleviating deleterious fitness effects

(buffering effect). Collectively, through mutational scanning of a conditionally essential gene,

this study uncovers how environments guide molecular evolution and assigns a central role to

underlying molecular constraints in form of protein folding and ligand binding in determin-

ing mutational fates in different environments.

Results

Deep mutational scanning of GmR

In order to assess survival and competitive fitness of individual single site mutants, we carried

out deep mutational scanning [22,23] of GmR, by carrying out co-culture bulk competitions of

a single site mutants (SSM) library (see Materials & Methods). Since antibiotic resistance of

GmR is dosage dependent (S1A Fig), the strength of purifying selection (i.e. the concentration

of Gentamicin (Gm)) in competition assays was optimized at ~4 fold lower than the inhibitory

concentration for wild type GmR while still being higher than the inhibitory concentration for

the host (E. coli K-12) alone (S1B Fig). This moderate purifying selection allows detection of a

diverse set of mutants rather than only ’quick fix’ outcomes that would be detected at stringent

purifying selection [38]. If not mentioned otherwise, 12.5 μg/mL of Gm is therefore used in

subsequent deep mutational scanning experiments.

For obtaining relative fitness, which would be a proxy for the catalytic activity of the

mutants, two parallel co-culture bulk competitions were carried out—one in presence of Gm

(selected pool) and another in absence of Gm (unselected pool) (Fig 1A). Optimal growth
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temperature of E. coli i.e. 37˚C was designated as a reference environment (if not otherwise

stated). At the end of bulk competitions, ultra-deep sequencing provided counts of mutants

(see Materials & Methods)–that correlated strongly among independent biological replicates

(S2 Fig); signifying low inherent noise in the measurements and absence of emergent muta-

tions during the selection process.

Fig 1. Deep mutational scanning of GmR. (A) Experimental strategy for monitoring survivabilities and competitive fitness of the

library of single site mutants of GmR (See Materials & Methods). (B) Comparison between distributions of effect sizes obtained at Gm

concentration of 12.5μg/mL (reference) and at 25μg/mL (test). Fi denotes fitness score, s denotes mean viability selection coefficient.

Significant differences between the viability selection coefficient in a specific test environment compared to the reference environment

(37˚C, 12.5μg/mL) was evaluated by Bayesian MCMC resampling (���, P< 0.001, See Materials & Methods). ΔF is relative change in

average fitness. ρ is a mutational robustness score. Distributions are fitted by kernel density estimation. Boxplots show median ± 50 &

95% of the distributions.

https://doi.org/10.1371/journal.pgen.1007419.g001
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Next, relative fitness scores of mutants were calculated by preferential enrichments, i.e. log

fold differences between counts of the mutants in the selected pool versus the unselected pool–

generating a mutational matrix of fitness effects for each environment (S3 Fig). Note that cata-

lytic fitness scores obtained by this strategy represent maximum asymptotes of mutants’

growth which are different from ‘canonical’ relative fitness estimated from growth rates. Also,

completely eliminated highly deleterious mutants were assigned a null fitness. Therefore,

unless otherwise mentioned, subsequent analysis of fitness scores is carried out with surviving

mutants alone. Upon estimating thresholds for statistically neutral fitness effects (See Materials

& Methods, S4 Fig), it was evident that fitness effects of synonymous mutants across all the

environmental conditions studied in this work were mostly neutral (S5 Fig). Therefore, subse-

quent analysis is mainly focused on the fitness effects of non-synonymous mutants.

In order to test whether our experimental system is able to capture the catalytic activities

of mutants, we first assessed dosage dependent survival of the mutants. Expectedly, bulk com-

petitions carried out at high dosage of the antibiotic (25 μg/mL Gm) indeed showed a skew

towards lower fitness scores (Fig 1B). The fitness effects of mutants in a given environment

were captured through following 4 parameters (S1 Table). (1) Mean viability selection coeffi-

cient (s) against non-synonymous mutations: s = 1 –[vnon/vsyn], where, vnon and vsyn are mean

viabilities of the non-synonymous and synonymous mutants respectively. A higher value of s
thus indicates decreased relative survival of all non-synonymous mutants in the given envi-

ronment. (2) Change in average fitness (ΔF) equals Ftest- Fref, where, Ftest and Fref are average

fitness of all mutants of a given test environment and that of the corresponding reference

environment respectively. A lower value of ΔF would indicate a relative decrease in average fit-

ness. (3) In order to capture mutational robustness in a given environment, a rank correlation

coefficient (ρ) between fitness scores of all mutants in a given environment and that in the cor-

responding reference environment was determined. A high value of ρ indicates higher muta-

tional robustness. Lastly, (4) the ratio of the number of mutants with positive and negative

fitness effects (npos/nneg) relative to the reference environment is estimated (see Materials &

Methods). Among these 4 parameters, the mean viability selection coefficient (s) is a direct

estimate of the mean strength of selection against non-synonymous mutations for a given

environmental condition, while the remaining 3 parameters are estimated relative to the refer-

ence environment.

Deleterious fitness effect of high Gm-dosage was well captured through the set of 4 parame-

ters. Firstly, selection coefficient (s) showed an increase (s = 0.164) compared to the reference

concentration of 12.5 μg/mL Gm (s = 0.048). In terms of relative parameters, average fitness

decreases (ΔF = -0.380), mutational robustness is compromised (ρ = 0.869) and a greater num-

ber of mutants cause deleterious fitness effects (npos/nneg = 0.035; See Materials & Methods).

This dosage dependent deleterious fitness effect is consistent with previous reports from muta-

tional scanning of other antibiotic resistant genes [39–41]. This dosage dependence taken

together with a positive correlation between fitness scores and predicted evolutionary rates per

site (S6 Fig) signify that the empirical fitness scores indeed capture catalytic activities of GmR

mutants.

Environmental conditions induce variable fitness effects

Next, we tested the two sets of environmental conditions using our experimental system.

Firstly, among physical environments, lower (30˚C) and higher (42˚C) temperature were

found to confer moderate (s = 0.103) and considerable (s = 0.338) increase in mean viability

selection respectively, compared to the reference environment of 37˚C (s = 0.048). For surviv-

ing non-synonymous mutants, strong negative effects at 42˚C (npos/nneg = 0.14) can be

Genotype-environment interactions in molecular evolution
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explained by potentially pronounced protein misfolding at high temperature [42]. Note that

here the increase in average fitness of surviving mutants (ΔF = 0.19) at 42˚C is due to the com-

plete elimination of highly deleterious mutants.

Chemical chaperones–TMAO and glycerol–comprising a set of chemical environments,

have relatively weak effects on mean viability selection (s = 0.066 and s = 0.023 respectively)

relative to the reference environment (s = 0.048), with positive fitness effects on growth (npos/

nneg = 2.00 and npos/nneg = 33.60 respectively) (Fig 2). Additionally, mutational robustness

scores were higher in both the environments (ρ = 0.961 for TMAO and ρ = 0.900 for glycerol)

than in the absence of these chemical chaperones. To examine the extent of these positive

effects, we analyzed the bulk competitions at high Gm dosage (25 μg/mL) too. There we find

that, unlike TMAO (s = 0.219), glycerol is still able to provide mutational robustness (s = 0.036)

(S7 Fig). Collectively, therefore, among the two chemical environments, glycerol seems to exert

more pronounced positive effects than TMAO. A possible explanation for this difference may

lie in the two chemical chaperones’ alternative mechanisms of aiding protein folding [33].

Having characterized effects of individual environments, we next explored how combina-

tions of environments (complex environments) influenced mutational fitness. Environments

with significant and opposing effects on mutational fitness i.e. high temperature in combina-

tion with one of the two chemical chaperones–were simultaneously applied in the bulk compe-

titions. There were evident increases in selection relative to the reference environment (37˚C:

s = 0.048) in both cases (s = 0.270 and s = 0.142 for 42˚C + TMAO and 42˚C + glycerol, respec-

tively), demonstrating a major effect contributed by high temperature. However, selection was

alleviated, and mutational robustness increased, as compared to when high temperature was

applied alone (s = 0.338). This demonstrates mutational buffering conferred by the chemical

Fig 2. Environmental conditions induce variable fitness effects. Comparative analysis of distributions of effect sizes

obtained under various test environments with reference environmental condition i.e. 37˚C. Fi denotes fitness scores. s
denotes mean viability selection coefficients against non-synonymous mutants. Significant differences between the

viability selection coefficient in a specific test environment compared to the reference environment (37˚C, 12.5μg/mL)

was evaluated by Bayesian MCMC resampling (��, P< 0.01, ��� P< 0.001, See S6 Table and Materials & Methods).

ΔF is relative change in average fitness. ρ is the mutational robustness score. Distributions are fitted by kernel density

estimation. Boxplots show median ± 50 & 95% of the distributions.

https://doi.org/10.1371/journal.pgen.1007419.g002
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chaperones, which is consistent with an earlier finding [34]. Noticeably, TMAO went from

causing a slight increase in the strength of purifying selection at 37˚C, to having a buffering

effect at 42˚C, demonstrating environmental-specificity in the fitness consequences of this

chemical chaperone.

Contextualizing environmental effects in terms of molecular constraints

In order to gain insights into the mechanistic basis underlying the environmental influence on

mutational fitness effects, we scanned a comprehensive set of molecular features of the single

site mutations (see Materials & Methods and S2 Data) and correlated these features with the

mutants’ fitness score in each of the test environments (Fig 3 and S2 Table). From the Euclid-

ean clustering of these correlation coefficients, it is apparent that the correlations roughly sepa-

rate the environments with high selection pressure (s) from the ones with low selection

pressure. This thus suggests that information encoded in the molecular features, to some

extent, can predict the selection pressures imposed by each environment.

Among the set of molecular features, evolutionary rate per site (predicted from ConSurf

[43]) was found to most strongly correlate with the fitness scores; indicating that even in differ-

ent environmental conditions, inherent mutational tolerance of a gene is still conserved. How-

ever, this feature summarizes individual contributions of various interrelated features.

Therefore, in order to gain finer mechanistic understanding, correlations with nearly indepen-

dent individual structural features are required. Among folding related features– ΔΔG (pertur-

bation of protein stability, predicted from PoPMusic [44]) and residue depth (distance of a

residue from the surface of the protein, calculated using MSMS libraries [45]) were negatively

correlated with the fitness scores (P<0.0001). Here, residue depth can be considered as a fold-

ing feature because mutations at buried sites are known to cause more stability perturbation

Fig 3. Correlative analysis for identifying environment-specific molecular constraints. A heatmap of Spearman’s rank correlation coefficients for correlations

between fitness scores and molecular features (rows) of surviving mutants in each test environment (columns). Each box shows Spearman’s rank correlation

coefficient (rs) between fitness scores of mutants in an environment (in column) and mutational features (in row). s is mean viability selection coefficient. Euclidean

clustering along rows and columns is based on the Spearman’s rank correlation coefficients. �: P< 0.05, ns: non-significant.

https://doi.org/10.1371/journal.pgen.1007419.g003
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than mutations at the surface [46]. Effectively, mutations at buried sites of the protein (high

ΔΔG) are more likely to be associated with decreased fitness compared to mutations at the sur-

face of the protein (low ΔΔG).

The Distance of mutated residues from active sites of the protein, serving as proxies for

potential perturbation of ligand binding, show positive correlations (P<0.05) with fitness scores

of surviving mutants across all environments. This suggests that mutations near active sites are

more likely to bear fitness costs. Other molecular features were more weakly related to fitness

of the surviving mutants in the different environments. Distances of mutation sites from the

dimer interface also show positive correlations with fitness scores across all environments, sug-

gesting that dimer formation is an essential condition for proper functionality of the enzyme. In

addition, residue flexibility, Δ(logP) per substitution and Δ(Solvent Accessible Surface Area) per

substitution were mostly negatively and relatively weakly correlated with the fitness scores.

Note that the relatively weak correlations may arise from the combination of uncertainty in esti-

mations of structural and predicted features and also possible interactions among structural fea-

tures. Therefore, in the subsequent analysis, we focus mainly on the prominent folding and

binding constraints that are likely to suffer the least from these potential uncertainties.

Folding and binding act as strong constraints

Protein folding and ligand binding are known to act as spandrels underlying mutational fitness

effects [47,48]. Here we demonstrate that the two factors act as strong constraints on fitness of

GmR mutants. In order to further understand the influence of these two coupled constraints,

we created four subsets of mutants with unique combinations of protein folding and ligand

binding states: (1) both proper (i.e. non-compromised) folding and binding (FB), (2) compro-

mised folding and proper binding (cFB), (3) proper folding and compromised binding (FcB)

and (4) both compromised folding and binding (cFcB). Here, F and B denote proper folding

(low ΔΔG) and proper binding (high distance from active site) respectively, whereas cF and cB

denote compromised folding (high ΔΔG) and compromised binding (low distance from active

site) respectively. Median values of ΔΔG and distance from active site for all mutants are used

as cut-offs in assigning the subsets. Additionally, in order to reduce influence of the uncertain-

ties involved in the estimations of the structural features, mutants whose values lie within 10

percentiles around the median cut-off were excluded.

In order to understand how environmental sensitivity of folding and binding perturbations

affect mutational GEIs, cross-environment correlations of fitness scores were carried out

through Bayesian resampling for each of the four mutant subsets separately (S8A Fig, S3 Table

and S1 Text). The correlations between 30˚C and 37˚C were strong and close to unity and did

not differ between the four subsets (all PMCMC > 0.2, S8A Fig), recapitulating the similarity in

selection pressures across these temperatures. However, the correlations between 42˚C and the

other two test temperatures were significantly lower for the subsets of mutants with compro-

mised folding or binding (cFB and FcB compared to FB; all PMCMC < 0.001, S8B & S8C Fig),

again pinpointing folding and binding constraints as central in determining environmental

specificity of mutational fitness effects. Next, subset wise mean viability selection coefficients

were determined for all the environments (S4 Table). Across all the environments, a pro-

nounced trend of increased mean viability selection with compromised folding and binding is

evident: ‘FB< FcB< cFB< cFcB’. Folding constraints in particular impose the largest and sta-

tistically significant (P<0.05) increase in mean viability selection coefficients; implying that it

may act as a stronger constraint among the two (Fig 4).

Further, utilizing the predictability of folding and binding constraints in determining muta-

tional fitness, we visualized the environmental effects in the form of low-dimensional fitness

Genotype-environment interactions in molecular evolution
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landscapes (Fig 5). Outlined by the constraints, regimes at the corners of the landscapes repre-

sent the four subsets of mutants i.e. FB, FcB, cFB and cFcB. The fitness landscape in the refer-

ence environment seems to be shaped by folding constraint, producing a pronounced fitness

cliff at ΔΔG~2 kcal/mol separating high and low fitness mutants (Fig 5A). In contrast, at the

stringent Gm concentration, mutations close to the active site (i.e. cB subsets) show a promi-

nent decrease in fitness (Fig 5B), corroborating the observed dosage dependent effects

reported above. Indeed, the imposed higher load of Gm seems to generate an additional pro-

nounced fitness cliff along the binding axis–at a ~15Å distance from the active site.

Among the physical environments, the fitness landscape at the low temperature condition

(Fig 5C) show no clear difference from that of the reference environment; echoing the earlier

noted weak environmental effect on selection. Contrastingly, elevated temperature conditions

show reduced survival of mutants, especially at cFB and cFcB regimes (Fig 5D), signifying a

strong influence of folding constraints. Among chemical environments, the mutational robust-

ness conferred by TMAO and glycerol at 37˚C is evident from the close similarity of these

fitness landscapes and that of the reference environment (Fig 5E and 5G). At 42˚C though,

partial assistance is evident in FB subset (Fig 5F and 5H). Notably, across all the fitness land-

scapes, the common existence of fitness cliffs along the folding axis suggests that folding

constraint is universally strong among all the environments. This in turn also explains the con-

formity between the anticipated alteration of protein folding by each environment and corre-

sponding selection pressures. Overall, visualizing the complex environmental effects on fitness

Fig 4. Folding and binding act as strong constraints. Subset-wise mean viability selection coefficients (s)

(median ± 50 & 95% of the distribution) across environments. Significance of differences between subset FB and rest of

the subsets (FcB, cFB and cFcB) were determined by one-sided Mann-Whitney U tests where mean viability selection

in each environment was considered as one paired observation for the four groups (�, P< 0.05, ns, non-significant).

https://doi.org/10.1371/journal.pgen.1007419.g004
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of GmR mutants through the perspective of molecular constraints reveals a shaping of muta-

tional fates that is closely dependent on the inherent strengths of the molecular constraints.

Discussion

Large-scale elucidations of genotype-by-environment interactions (GEI) and the environmen-

tal specificity of mutational fitness effects enabled by high throughput mutational scanning

[22] have opened up new possibilities to comprehensively assess fundamental questions in

molecular evolution. Here, we linked environment-specific competitive fitness of mutants to

the underlying molecular basis of GEI, by deep mutational scanning of the antibiotic resistant

gene GmR.

Upon monitoring empirical fitness of a library of single site mutants of the gene, under sets

of physical and chemical environments, we characterized corresponding selection pressures.

In line with earlier findings [16,26,49], we demonstrate that the environment can significantly

change selection and the fitness consequences of de novo mutations (Fig 2). Among physical

environments, elevated temperature (42˚C) exerts strong selection against non-synonymous

mutations, underscoring overall temperature sensitivity [31] upon protein misfolding [42].

Fig 5. Unique environmental reshaping of fitness landscapes. Landscapes are plotted in the form of contour plots, outlined

by folding (ΔΔG (kcal/mol)) and binding (distance from active site) components with colors delimiting the fitness scores (Fi)

of surviving mutants. Contour surfaces are generated by nearest neighbor interpolation. Regimes at the corners of the fitness

landscapes represent subsets of mutants i.e. FB, cFB, FcB and cFcB. Colors of all contour plots are scaled according to the

colorbar associated with panel A. Streamlines on plots B-H are directed towards fitness maxima in each case: from high s (i.e.

highly deleterious) mutations to low s (~ neutral) mutations. The intensity of selection (magnitude of s) in each environment is

indicated by the darkness of the streamlines. Streamlines on landscapes with high s are colored in darker shades.

https://doi.org/10.1371/journal.pgen.1007419.g005
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Low temperature (30˚C), on the other hand, imposes comparatively weaker selection, con-

forming to known non-deleterious effects on protein folding at low temperature [50]. Among

chemical environments, chemical chaperones too exert weaker selection, while when applied

in combination with high temperature, they even alleviate selection pressure imposed by high

temperature; underscoring earlier results identifying mutational buffering properties [34]. The

alleviation of deleterious effects of elevated temperature by chemical chaperones also indicates

a partial additivity and therefore a degree of predictability in the action of complex environ-

ments. The reason for this degree of predictability can likely be attributed to the heterologous

expression of GmR that made mutant fitness directly dependent on the properties of a single

gene. This is in contrast with a previous study in which GEIs of an endogenous gene–Hsp90

were found to be largely unpredictable [16]. Participation of Hsp90 in dense signaling net-

works of stress response pathways [51] may have potentially obscured the predictability in that

case. For example, a candidate mutation that rendered Hsp90 inactive at high temperature

while maintaining activity at high salinity can be equally well explained by two alternative

hypotheses: either the Hsp90 mutant misfolded specifically at high temperature, or the temper-

ature-specific signaling through Hsp90 was abrogated. By contrast, our work pinpoints the for-

mer factor as the main contributor mutational effects and illustrates the utility of the used

experimental system for the study of evolution of structure and function in the context of envi-

ronmental change. The next step will be to integrate protein-protein interactions and signaling

networks to define environmental effects on higher levels of GEIs.

The correlative analysis (Fig 3) identified protein stability perturbations (ΔΔG) and pertur-

bations of ligand binding (distance from active site) as strong molecular constraints on fitness,

and hence determinants of environment-specific mutational fitness effects. This finding is in

line with the proposed spandrel-like properties of these two constraints [47,48]. Our measures

of fitness scores were highly repeatable (S2 Fig). Assuming the same accuracy in estimating the

structural features of the mutations, the generally weak (rs<0.5) correlations between these

two estimates indicate that fitness scores of only a fraction of mutants were explainable by any

individual structural feature. This may suggest that some of these molecular features (e.g. fold-

ing and binding) have interactive effects on fitness, necessitating accounting for this depen-

dence to better predict mutants’ fitness. Additionally, potential non-monotonic relationships

would also contribute in weakening the strengths of the correlations [27].

In this study, we extended the results of previous studies [7,39,52] to understand how the

effective contribution to molecular constraints change in different environments. The central

role of both constraints in shaping fitness effects in different environments was evident from

the subset-wise mean viability selection coefficients, where environmental effects are more

pronounced in subsets of mutants with compromised folding and binding (Fig 4). Among

the two constraints, however, folding seem to introduce a prominent limiting fitness cliff (at

ΔΔG = ~2 kcal/mol on the folding axis of Fig 5) across most of the environments. However,

the relative strengths of the constraints were context dependent. For example, we observed

that the binding constraint emerges to be stronger as the antibiotic concentration is elevated.

These results conform to other studies (e.g. [52]) showing that biophysical constraints dictate

mutational tolerance. Overall, our findings thus suggest that GEI associated with de novo mu-

tations can be understood in terms of environmental alteration of protein folding and binding

constraints, which is in alignment with their central role in molecular evolution [18,19].

Collectively, from a simple experimental system consisting of a conditionally essential gene,

we identify that environment-specific mutational fitness effects are dependent on the relative

strengths of underlying molecular constraints. The heterologous gene expression produced

relatively predictable GEIs that opened up possibilities to contextualize fairly complex GEIs of

endogeneous genes, as well as to forecast molecular evolution in complex environments,
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premises that only recently would have seemed a daunting and perhaps unrealistic task. A

mechanistic understanding of GEIs is arguably one of the most important challenges when

predicting evolution of complex traits [1] and innovations [53]. Information such as we pres-

ent here may considerably advance our understanding of the molecular underpinnings of the

genotype-phenotype map and how the materialization of molecular constraints shape pheno-

typic evolution in complex environments [49,54]. Moreover, including knowledge about how

the environment may induce phenotypic variability, or alter the fitness consequences of allelic

variants, can potentially increase the robustness and accuracy of predictions of phenotypic

outcomes of genomic variants [29,30]. In the future, the comprehensive approach utilized here

to elucidate environment-specific fitness landscapes can be extended to monitor intragenic

and intergenic epistasis.

Materials & methods

Minimal inhibitory concentration (MIC) assays

The primary culture was prepared by inoculating (1% v/v) E. coli (K-12) in culture media

(Luria-Bertani (LB) broth (HiMedia) containing 100μg/mL, ampicilin (Sigma) and 0.1% Arab-

inose (Sigma)) and incubating at 37˚C for 18 hrs. The primary culture was inoculated at

OD600 of 0.025 in culture media containing a range of Gm (Sigma) concentrations from 6.25

to 400 μg/mL with 2 fold increase at each increment (in 96-well storage plates). The assay

plates were incubated at 37˚C for 18 hrs before measuring growth (OD600) in Tecan microwell

plate reader.

Growth assays

E. coli (K-12) harboring pBAD-GmR is grown in culture media (LB media containing 100μg/

mL and ampicilin 0.1% Arabinose) for ~18 hr. The primary culture was used as an inoculum

(~0.01 OD) for the growth assays. Growth assays in different environments were carried out

using Bioscreen C kinetic growth reader. The growth parameters were obtained by fitting

absorbance data to a five parameter Logistic equation.

Co-culture bulk competition assay

An SSM library of GmR was constructed by PCR based site directed mutagenesis, using prim-

ers with degenerate codons (NNK). For detailed information regarding the mutagenesis,

please refer to Supporting methods described in Bandyopadhyay et al. [34]. For co-culture

bulk competition assays, the mutation library cloned in pBAD vector was transformed into E.

coli (K-12). Primary culture was prepared by inoculating pool of SSM library (1% v/v) in cul-

ture media (LB media containing 100μg/mL ampicilin and 0.1% Arabinose) at 37˚C for 18 hrs.

A competition was carried out at the secondary culture where primary culture in inoculated at

OD600 of 0.025 and incubated for 18 hrs. Physical environmental conditions were created by

carrying out the bulk competitions at 30˚C (low temperature) or 42˚C (elevated temperature).

Chemical environmental conditions were created by supplementing either TMAO (250mM)

or glycerol (250mM) in the culture media of competition assay. Biological replicates were

made by carrying out independent co-culture bulk competitions of the mutant libraries. For

measuring fitness of mutants in a particular environmental condition, bulk competition under

Gm selection (selected pool) (as shown in Fig 1A) was carried out. An independent bulk com-

petition was carried out at 37˚C in the absence of Gm (unselected pool) which serves as a refer-

ence for calculating preferential enrichments.
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Deep sequencing

At the end of bulk competition assays, cells are pelleted and plasmid is purified. Amplicons

were generated by a short PCR (initial denaturation: 95˚C for 3 min, denaturation: 95˚C for 1

min, annealing: 60˚C for 15 sec, extension: 72˚C for 1 min, final extension: 72˚C for 10 min)

using high fidelity KAPA HiFi DNA polymerase (cat. no. KK2601). High template concentra-

tion (1 ng/μl) and 20 cycles were used to reduce potential PCR bias. Multiplexing was carried

out using flanking barcoded primers (4 forward, 4 reverse, sequences in S5 Table). Amplicons

of barcoded samples were grouped in equimolar concentration and gel purified. A dual index

library for each such set was prepared using Truseq PCR-free DNA HT kit (Illumina Inc. Cat

no. F-121-3003) and sequenced using paired end (300 X 2) chemistry on Illumina Miseq plat-

form. Raw sequencing data is available at Sequence Read Archive (SRA) as a BioProject:

PRJNA384918.

Estimation of fitness scores from deep sequencing data

Analysis of sequencing data was carried out by using dms2dfe [55]—a comprehensive analysis

pipeline exclusively designed for analysis of deep mutational scanning data. Through dms2dfe
workflow, output files from the sequencer (.fastq) were demultiplexed using ana0_fastq2dplx
module of dms2dfe. Average read depth of each demultiplexed sample was ~1X105. Next,

though dms2dfe’s modules namely ana0_fastq2sbam, sequence alignment was carried out

using Bowtie2 [56], followed by variant calling through ana1_sam2mutmat module which uti-

lizes pysam libraries [57]. A variant is called only if average Q-score of the read and that of the

mutated codon is more than 30. Additionally a cut off of 3 reads per variants is used to filter

out anomalous low counts. As a result a codon level mutation matrix of counts of mutations is

generated. Codon level mutation matrix is then translated to amino acid level (based on the

codon usage bias of the E. coli). For each experimental condition, counts of ~2000 individual

mutants were quantified (S1 Data). Raw sequencing data is available at Sequence Read Archive

(SRA) as a BioProject: PRJNA384918.

Through ana2_mutmat2fit module of dms2dfe, counts of mutants are first normalized by

the depth of sequencing at each position of the gene. Then preferential enrichments which are

log (base 2) fold change of counts of the mutants in pool selected in presence of Gm against

unselected (0 μg/mL Gm) reference pool were estimated. Here, preferential enrichment of a

mutant serves as a proxy for its relative fitness and hence we simply refer it as ‘fitness’ (S1

Data).

Upper and lower thresholds for statistically neutral fitness effects were defined by adopting

a strategy from a similar previous study [41]. As shown in S4 Fig, the thresholds were obtained

as mean ± two SD from a distribution of Fi obtained from unselected condition.

Comparison of environment specific fitness effects

We analyzed the survival of all 2104 non-synonymous mutants (S1 Data), in each of the seven

environments, as a binomial response (presence/absence) in logistic regression using Bayesian

Markov Chain Monte Carlo simulations in the MCMCglmm package [58] for R [59]. Temper-

ature (30, 37 or 42˚C), treatment (reference, glycerol or TMAO) and their interactions were

included as fixed effects. We ran the model with residual variance fixed to 1 and a flat prior on

the probability scale for the fixed effects, recommended when the number of observations in

some cells are low [60] (as for mutant absence in some environments; S1 Data) and the data

show near complete separation [61]. The model ran for 2000000 simulations preceded by

200000 burn-in simulations that were discarded. We stored every 2000th simulation, resulting

in 1000 uncorrelated posterior estimates of mean mutant survival in each environment. As
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30˚C was only applied using reference media, we analyzed differences between 30 and 37˚C

separately. Similarly, as the Gm25 treatment only was applied across the different media at

37˚C, the comparison between Gm 25μg/mL and 12.5μg/mL was analyzed in a separate

model.

To formally estimate the influence of environment on the magnitude of fitness effects and

the strength of selection on de novo mutation we compared the viability of the non-synony-

mous mutants to that of the 157 synonymous mutants. Hence, mean viability selection coeffi-

cients (s) against the non-synonymous mutations in each environment (i) was estimated as:

s ¼ 1 � ½vnon
i =vsyn

i �

where vi
non and vi

syn is the mean survival of the non-synonymous and synonymous mutants,

respectively, in environment i. We utilized the 1000 stored Bayesian posterior estimates of

mean viability of the non-synonymous mutants (vi
non) (S6 Table), and then generated 1000

matching estimates of vi
syn by applying the equivalent Bayesian analysis described above to the

synonymous mutant data. We then used these two posterior distributions to calculate s per

environment and tested if the generated posterior distributions of s differed significantly across

environments at an alpha level of 0.05.

In addition to these selection coefficients, we provide three relative measures of fitness

effects for comparison with reference environment.

1. Relative change in average fitness scores (ΔF) was calculated as the difference between aver-

age fitness of a given environment and reference environment.

2. Mutational robustness score (ρ) was quantified as the rank correlation coefficient between

fitness scores of a given environment and the reference environment.

3. Ratios of the number of mutants undergoing positive (npos) and negative (nneg) effects com-

pared to the reference environment (i.e. npos /nneg) were determined. To achieve this, statis-

tical thresholds were assigned to demarcate inherent noise within replicates of both test and

reference environment conditions. If μtest and μreference are means and σtest and σreference are

standard deviations of fitness changes ‘within replicates’ for test and reference environ-

ments, the statistical thresholds for noise was determined to be equal to

mtestþmcontrol
2

� 2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

testþs2
control

2

q

. Mutants that have a fitness change ‘between environments’

which is greater than the threshold are considered to undergo ‘positive’ effects. Likewise,

mutants that have fitness change across environments which is lesser than the threshold,

are considered to undergo ‘negative’ effects.

Values of all four parameters for all the environments are included in S1 Table.

Structural features of GmR

Mutant stability perturbations (ΔG) are predicted by PoPMusic [44] server. Evolutionary rate

per site (conservation score) is acquired from ConSurf (7) server. MSMS libraries [45] were

used for calculations of residue depth from surface of protein. Distances between atoms of

GmR are measured using various modules of Biopython package [62]. Distances of residues

(mutation sites) from active site residue D147 are estimated. Here, minimum distance between

the atoms of the D147 and C-alpha atom of a given residue is used to ensure maximum sensi-

tivity. Physico-chemical properties of the amino acids such as logP and pI were retrieved from

PubChem [63] and ChemAxon (http://www.chemaxon.com). Structural features of mutations

used in the study are included in S2 Data.
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Supporting information

S1 Fig. Optimizing Gm concentration for co-culture bulk competition assays. (A) Growth

kinetics of wild type GmR (pBAD-GmR) under a range of dosages of Gentamicin are shown.

Maximum asymptote values were obtained by fitting growth curves to five parameter logistic

equation. (B) Extent of growth of E. coli K-12 with (pBAD-GmR) and without (Untrans-

formed) wild type GmR obtained by minimal inhibitory concentration (MIC) assay.

(TIF)

S2 Fig. Reproducibility among biological replicates. Correlations among counts of mutants

(log-scaled) from independent biological replicates are shown. r is the Pearson’s correlation

coefficient.

(TIF)

S3 Fig. Mutation map under reference environment i.e. 37˚C at 12.5 μg/mL Gm. Fi is fitness

level of individual mutant. Each row in the heatmap represents mutated amino acid while each

column represents reference amino acid. The values of heatmap are scaled by the fitness score

(Fi). In the panel representing secondary structures, H denotes Helix, E denotes beta-sheets, T

denotes turns and S denotes bends. Mutated amino acids in rows are grouped by similarities.

The groups of amino acids and corresponding colors are as follows. Non polar: red, neutral:

green, neutral polar: blue, positively charged: orange, negatively charged: magenta, aromatic:

cyan. Mutations for which data is not available are denoted by ‘
’ symbol. Synonymous muta-

tions are marked by ‘+’ symbol.

(TIF)

S4 Fig. Estimation of cut-offs for classification of mutants as enriched or depleted. These

are determined from a distribution of preferential enrichments between replicates of unse-

lected pools (0μg/mL). μ and σ are the mean and standard deviations of the distribution

respectively. Fi is fitness score.

(TIF)

S5 Fig. Distributions of fitness scores of synonymous mutations across different test envi-

ronments. Fi is fitness score. μ is mean and σ is standard deviation.

(TIF)

S6 Fig. Correlation between conservation scores and fitness of mutants under reference

environment i.e. 37˚C at 12.5 μg/mL Gm. Fi is fitness score of individual mutant. Hex colors

are scaled according to distance of the mutation site from the active site of the protein.

(TIF)

S7 Fig. Comparison of DFEs obtained for the treatment of chemical chaperones at 25μg/

mL Gm with 37˚C 25μg/mL Gm. Fi denotes fitness score, s denotes mean viability selection

coefficient. Significant differences between the viability selection coefficient in a specific test

environment compared to the control environment (37˚C, 12.5μg/mL) was evaluated by

Bayesian MCMC resampling (���, P< 0.001, ��, P< 0.01, See Materials and Methods). ΔF is

relative change in average fitness. ρ is a mutational robustness score. Distributions are fitted by

kernel density estimation. Boxplots show median ± 50 & 95% of the distributions.

(TIF)

S8 Fig. Environmental specificity of folding and binding constraints. (A,B and C) Bayesian

posterior estimates (median ± 50 & 95% of the distribution) of mutational correlations across

the three temperatures for the four subsets of mutants based on their binding (B/cB) and fold-

ing (F/cF) constraints. Bayesian posterior estimates (and 95% credible intervals) of correlations
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are included in S3 Table.

(TIF)

S1 Table. Metrics of the distributions of fitness under different environmental conditions.

nnon, nsyn: total non-synonymous and synonymous mutants survived respectively. vnon, vsyn:

fraction of non-synonymous and synonymous mutants survived respectively

v ¼
n

total number of mutants in the library

� �

:

total number of non-synonymous mutants in the library = 2104

total number of synonymous mutants in the library = 157

s: mean viability selection coefficient.

npos/nneg: ratio of counts of total number of mutants undergoing positive and negative effects

respectively with respect to reference environment i.e. 37˚C.

ΔF: Difference between average fitness of mutants in the given environment and reference

environment i.e. 37˚C.

ρ: Rank correlation coefficients between fitness scores of a given environment and reference

environment.

(XLSX)

S2 Table. Correlations between fitness scores of mutants and molecular features. ����:

P< 0.0001, ���: P < 0. 001, ��: P< 0.01, �: P < 0.05, ns: non-significant.

(XLSX)

S3 Table. Bayesian posterior estimates (and 95% credible intervals) of mutational correla-

tions across the three temperatures, for four subsets of mutants.

(XLSX)

S4 Table. Subset-wise mean viability selection coefficients.

(XLSX)

S5 Table. Barcoded primers used to multiplex amplicons of GmR. 7 nucleotide long bar-

codes sequences are highlighted in bold.

(XLSX)

S6 Table. Comparison of posterior distributions to assess significant differences in fitness

effects of non-synonymous mutations between environments. Posterior means and Bayes-

ian P-values (pMCMC) are given as marginal contrasts where fitness effects at 37˚C and Gm

12.5 μg/mL is taken as the model intercept to which all other main effects are compared. Sig-

nificant higher order interactions (e.g. 42˚C + TMAO) indicate that the mutational fitness

effects are significantly different in the test environment than what would have been predicted

given the mutational fitness effects observed in each of the environments (i.e. 42˚C and

TMAO) in isolation.

(XLSX)

S1 Text. Supporting methods.

(DOCX)

S1 Data. Fitness scores of mutations in different environments.

(XLSX)
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S2 Data. Structural features of mutations.

(XLSX)
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