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Abstract

The Hodgkin-Huxley model, decades after its first presentation, is still a reference model in

neuroscience as it has successfully reproduced the electrophysiological activity of many

organisms. The primary signal in the model represents the membrane potential of a neuron.

A simple representation of this signal is presented in this paper. The new proposal is an

adapted Frequency Modulated Möbius multicomponent model defined as a signal plus error

model in which the signal is decomposed as a sum of waves. The main strengths of the

method are the simple parametric formulation, the interpretability and flexibility of the param-

eters that describe and discriminate the waveforms, the estimators’ identifiability and accu-

racy, and the robustness against noise. The approach is validated with a broad simulation

experiment of Hodgkin-Huxley signals and real data from squid giant axons. Interesting dif-

ferences between simulated and real data emerge from the comparison of the parameter

configurations. Furthermore, the potential of the FMM parameters to predict Hodgkin-Hux-

ley model parameters is shown using different Machine Learning methods. Finally, promis-

ing contributions of the approach in Spike Sorting and cell-type classification are detailed.

Introduction

Neuroscience is an interdisciplinary science that studies the cellular, functional, behavioral,

evolutionary, computational, molecular, and medical aspects of the nervous system. Many spe-

cialists from different areas of knowledge, such as physicists, chemists, mathematicians, com-

puter engineers, and psychologists, have contributed to the field. The mathematical approach

is one of the most preferred ones, particularly in studying the electrophysiological activity

between neurons. The signal that has received most of the attention is the neuron membrane

potential, which is the difference in electric potential between the cell’s interior and exterior.

This signal is composed of various Action Potential curves (APs). A single AP lasts a few milli-

seconds and consists of 3 stages: depolarization, repolarization, and hyperpolarization. For

researchers, APs are of special importance: they are the informational unit between neurons,

and their number and shape determine the morphological, functional, and genetic profile of

the cell. For more detail see, [1–5].
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According to their dynamic behavior, neurons can be classified as excitable (generate an

individual AP) or oscillatory (generate repetitive APs). Neurons that do not generate APs are

called non-excitable. Neuronal cells of a similar type habitually exhibit similar behaviors. For

instance, cardiac myocytes are usually oscillatory, while cortical neurons are mostly excitable.

Furthermore, oscillatory neurons have been sub-classified in this work by the observed num-

ber of APs. A signal where several APs are observed is known as a Spike Train.

The most broadly considered mathematical model for describing AP dynamics is the Hodg-

kin-Huxley (HH) model, presented in [6]. More than a half-century later, this model remains

key in neuroscience due to its innovative concept of modeling neuronal dynamics as a system

of Ordinary Differential Equations (ODE) and its accurate representation of the electrophysio-

logical neuronal activity. Specifically, the neuron’s membrane potential is stated to behave like

an electrical circuit with various currents associated with three types of ions: sodium (Na+),

potassium (K+) and another which is a non-specific leak current, mainly due to the influx of

chlorine (Cl−). However, the HH model lacks identifiability as various parameter configura-

tions can lead to the same observed signal. In addition, the model is not robust as minor

manipulations of the values of the parameters can change its output completely ([7, 8]).

Many models that have been developed afterward are either simplifications or extensions of

the HH model. Some emulate the HH model as biophysically realistic, whereas others seek

more simple models. Among the first group are the Hopfield model and the Van der Pol oscil-

lator’s extensions, such as the FitzHugh-Nagumo model. In the second group, some popular

choices are the family of leaky integrate-and-fire models and the Izhikevich model. Some basic

references about these models are [9–13]. All the above are mechanistic models. The counter-

part of the mechanistic models is the data-driven approach. Models based in data science, sta-

tistics and Machine Learning are in ever-rising popularity due to the increase in data

availability and quality as noted in [14]. Our proposal can be framed within this class of

models.

The Frequency Modulated Möbius (FMM) approach and others, such as the Fourier

method, are encompassed in the amplitude modulated-frequency modulated decompositions.

A general overview on these decompositions and time-frequency signal analysis can be found

in [15, 16]. In particular, the FMM decomposition assumes a constant amplitude and a fre-

quency that is modeled as a Möbius transformation. The monocomponent FMM model is pre-

sented in [17]. It shows how it accurately fits a wide variety of oscillatory patterns. The

multicomponent FMM model is introduced in [18] and, in this, its potential in neuroscience is

concisely demonstrated. Moreover, an exciting application for the automatic analysis of elec-

trocardiograms is presented in [19].

This paper’s main goal is to show that the FMM model faithfully represents the AP signals

waveforms derived from an HH model. To that end, a new FMM model is presented, denoted

as FMMST, where ST stands for Spike Train. It is an FMM multicomponent model with

restrictions on the parameters. Expressly, the model assumes that the Spike Train is the concat-

enation of a fixed number of successive spikes with the same shape, each one described with a

bi-component FMM.

The approach is validated with a broad simulation experiment and real data. In the first

case, a total of 5000 HH signals, corresponding to a wide variety of parameter configurations,

has been generated according to a factorial design for the most relevant HH parameters. It is

shown how the FMMST model accurately predicts the simulated signals across all the parame-

ter configurations. In the second case, signals from the Squid Giant Axon Membrane Potential

(SGAMP) database, originally from [20], have been analyzed. These signals have been chosen

because they inspired originally the HH model definition [6]. Interesting differences between

the simulated and real data emerge from the comparison of the parameter configurations.

PLOS ONE A simple parametric representation of the Hodgkin-Huxley model

PLOS ONE | https://doi.org/10.1371/journal.pone.0254152 July 22, 2021 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0254152


Furthermore, the simulated data is used to illustrate the potential of the FMM parameters

to predict HH model parameters using different Machine Learning methods. It is shown how

specific HH parameters, with relevant physiological interpretation, can be accurately predicted

from the FMM parameters, which is important in real scenarios where the underlying HH

model is unknown.

Methods

HH model

The presentation in this section follows those in [21, 22]. The notation for HH variables and

parameters is slightly changed from the one used in these papers to avoid confusion with other

terms introduced later in the paper.

The HH model is defined, see Definition 1 below, by a nonlinear ODE system for four state

variables: the membrane potential (X) and the three opening probabilities of the ion gates (m,

n, h). Furthermore, X depends on the input stimulus I(t) generated by other neurons’ post-syn-

aptic currents. On their behalf, the variables m, n and h are referred to as voltage-gated chan-

nels as they depend on the membrane potential through the six ion gate transition functions

denoted by aj and bj, j 2 {m, n, h}, as explained in [12].

Definition 1. Hodgkin-Huxley (HH) model.
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The first equation in Definition 1 depends on the parameters of the cell capacitance (C), the

maximum conductances (gK, gNa, gL) and the equilibrium potentials (VK, VNa, VL) of the ionic

currents. The six ion gate transition functions increase the number of parameters to more than

twenty parameters. Hence, the parametric space of the model can be simplified by replacing

the ion gate transition functions am(X), an(X), ah(X), bm(X), bn(X), and bh(X) with the con-

stants ~am; ~an; ~ah;
~bm;

~bn; and ~bh, as done in [7, 5].

An interesting simplification of the HH parametric space is the pair ðS;KÞ that has been

recently considered in [7] and is defined as follows:

S ¼
gNa

gNa þ gK
K ¼

~an þ
~bm

~an þ
~bn þ ~am þ

~bm

: ð1Þ

The aforementioned paper explains the properties of the ðS;KÞ pair. In particular, they

claim that the neuron’s excitability phenomenon is essentially bidimensional, being deter-

mined by the structure of the neuron as a cell and its ionic current kinetics. While S captures

the neuron’s structural information, K represents the kinetics of the ionic gates. Moreover,

ðS;KÞ are less sensitive to slight changes in the signal than the primary HH parameters. How-

ever, such a drastic reduction in dimensions does not give a complete representation of the

model.
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FMM approach

Let ti, i = 1, . . ., n denote the vector of observed time points and X(ti) the observed data, which

in this paper is the potential difference across the neuron’s membrane. It is assumed that the

time points are in [0, 2π). Otherwise, consider t0 2 [t0, T + t0] with t0 as the initial time value

and T as the period. Transform the time points by t ¼ ðt0 � t0Þ2p
T .

Let, υ = (A, α, β, ω)0 be the four-dimensional parameters describing a monocomponent

FMM signal, defined as the following wave: W(t, υ) = Acos(ϕ(t, α, β, ω)), where A is the ampli-

tude and,

�ðt; a; b;oÞ ¼ bþ 2 arctan ðo tan ð
t � a

2
ÞÞ ð2Þ

is the phase. Particularly, the phase is defined in terms of α, β and ω, parameters that determine

the location, skewness and kurtosis respectively. More details about the parameters can be

found in [17].

The FMM approach relies upon a signal plus error model, as follows:

XðtiÞ ¼ M þ
Xm

J¼1

Wðti;υJÞ þ eðtiÞ; i ¼ 1; . . . ; n; ð3Þ

where the error term is assumed to be (e(t1), . . ., e(tn))0* Nn(0, σ2 I) and M is an intercept

parameter. Note that this parameter does not represent the signal’s baseline level but its level at

t0 minus the sum of waves values at t0.

The papers [19, 18] consider particular FMM models, show the broad type of signals that

the model represents, provide properties, and interpret the parameters as well as detail the

algorithm used to fit the models. In particular, in the second paper, its potential in neurosci-

ence is concisely shown.

Depending on the application, the waves of the model represent different physiological pro-

cesses. For instance, in the ECG case, the waves of the FMM model represent the five funda-

mental ECG upward and downward deflections, which are universally named P, QRS complex

(a wave complex), and T.

The AP signals are modeled using two (or three in some cases) waves, the first being much

more relevant than the rest. This wave, denominated dominant wave, identifies when the neu-

ron spikes, allows the AP’s approximate reconstruction in the presence of noise, and the detec-

tion and identification of overlapping spikes. Moreover, theoretical properties are derived for

the dominant wave. All of these is shown in [18].

Fig 1(A) shows FMM wave patterns by plotting W(t, υ) against t for different parameter

configurations υ. In Fig 1(B), (left) an AP signal from an excitable neuron (dots in grey) is rep-

resented along with the corresponding fitted FMM model (in red) whereas in Fig 1(B), (right),

W(t, υJ), J = 1, 2, is plotted against t.
The FMMST model is a particular multicomponent FMM model, where restrictions on the

parameters are imposed. The model is defined as follows:

Definition 2. FMMST Model

XðtiÞ ¼ M þ
Xs

S¼1

Wðti;υ
A
S Þ þWðtiυ

B
S Þ þ eðtiÞ; i ¼ 1; . . . ; n;

where,

• M 2 <; uAS ; u
B
S 2 <

þ � ½0; 2p� � ½0; 2p� � ½0; 1�; S = 1, . . ., s,
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• AA
S < AB

S ; S = 1, . . ., s

• p � aA
1
� aB

1
� aA

2
� aB

2
. . . � aAS � a

B
S � a

A
1
� p

• b
A
1
¼ b

A
S and b

B
1
¼ b

B
S ; S = 2, . . ., s.

• oA
1
¼ oA

S and oB
1
¼ oB

S ; S = 2, . . ., s.

• (e(t1), . . ., e(tn))0* Nn(0, σ2 I),

where s is the number of spikes that is assumed to be known and can be easily estimated

with a naive method as is detailed in the estimation algorithm section.

The model also assumes that each spike is modelled with two waves with parameters υA and

υB, respectively. Other parameters of interest in practice are the distance between the A and B
waves for a given AP, defined as cos ðaAS � a

B
S Þ; S ¼ 1; . . . ; s, and the distance between conse-

cutive APs, dAP
S ¼ 1 � cos ðaAS � a

A
Sþ1
Þ; S ¼ 1; . . . ; s � 1. The inclusion of restrictions between

the parameters is a specific feature of the FMM models, and their role is twofold. On the one

hand, parameter identifiability is attained including the restriction A> 0 in the monocompo-

nent case and, the restrictions between the αs and As in the multicomponent case, in addition.

According to that, the number of free parameters of FMMST model is 1 + 4s + 4. On the other

hand, restrictions on the ωs and βs, which represent the equal spike shapes, provide physiolog-

ically interpretable solutions.

Furthermore, depending on the application at hand, additional restrictions may be imposed

in order to use a simpler model. In particular, the following restrictions on the A parameters,

AA
1
¼ AA

S and AB
1
¼ AB

S ; S ¼ 2; . . . ; s ð4Þ

Fig 1. (A) FMM wave patterns for different parameter configurations. (B) Typical AP from an excitable neuron and corresponding fitted FMM model (left). Waves

composing the FMM model (right).

https://doi.org/10.1371/journal.pone.0254152.g001
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are suitable in signals without APs generated at the beginning and/or end of the stimulus appli-

cation, as these may exhibit different amplitudes than the rest of the APs. These restrictions

have been considered in the SGAMP data analysis. In this case, the number of free parameters

is reduced to 1 + 2s + 6.

Finally, in cases in which the distances between consecutive spikes are assumed to be con-

stant, for instance in controlled experiments without stimulus changes, it would be fair to

assume dAB
1
¼ dAB

S ; S ¼ 2; . . . ; s. Moreover, if the time lapse between the AP’s spike and the

end of the hyperpolarization is constant, an additional set of restrictions may be imposed:

dAP
1
¼ dAP

S ; S ¼ 2; . . . ; s � 1. The number of free parameters in the first case is 1 + s + 8

whereas, in the second is 1 + 1 + 8.

Estimation algorithm. The implementation of FMM models in the programming lan-

guage R, including applying the defined restrictions, is openly available in package FMM of

the programming language R, first presented in [23]. It is assumed that the segments to be ana-

lyzed represent complete spikes, in particular, X(t1)’ X(tn). s is easily determined by a naive

method based on a threshold as proposed [24]. This threshold is k = 2.5σX, σX being the sample

standard deviation of the observed data.

Occasionally, two different parameter configurations represent a given signal equally well.

However, one is physiologically more plausible. In that case, additional restrictions on the

parameters are needed to guarantee that the solution is the one expected. In the case of

SGAMP signals, it is assumed that a spike has a prominent dominant wave which means that

AA − AB> C, for a given threshold, C.

Validation measure. The goodness of fit of the model is measured with an R2 statistic,

which is the proportion of the variance explained by a model out of the total variance, as fol-

lows:

R2 ¼ 1 �

Pn
i¼1
ðXðtiÞ � X̂ðtiÞÞ

2

Pn
i¼1
ðXðtiÞ � �XÞ2

ð5Þ

where X̂ðtiÞ represents the fitted value at ti, i = 1, . . ., n. In this paper, R2
FMMST

, R2
FMMST�

, R2
FMMs�

R2
FMMs��

refer to the R2 value for the FMMST model, the FMMST model with restrictions on the

As, the FMMs model with restrictions on βs and ωs, and the FMMs� model with restrictions on

the As, respectively.

Machine Learning Supervised methods. Several Machine Learning Supervised methods

have been considered in the paper. At one end, the simple Linear Regression (LR) that serves

as a benchmark approach. At the other extreme, the complex and “black box” Support Vector

Machines of RBF Kernel (SVM) approach that has been proved to achieve excellent results in

neuronal dynamics, as seen in [7, 13], among others. Random Forest (RF) and Gradient Boost-

ing Machines (GBM) are complex methods that provide interpretable results between the

underfitting LR and the overfitting SVM, which have also been considered. [25, 26] are essen-

tial references to learn about the procedures. The R packages [27–30], and the auxiliary pack-

age for learning procedures caret [31] have been used to implement the procedures.

Programming languages. The simulation experiment has been developed combining the

programming languages Python and R, which are probably the most used programming lan-

guages in data science. Python is used for data acquisition and transformation, while R fits the

FMM models. Several solutions have been studied for the coupling between them that could,

at the same time, be computationally effective, robust, and simple. A basic outline on the mat-

ter is presented in [32]. While certain libraries provide tools for the coupling of the two lan-

guages, such as [33–35], these solutions are not sufficiently refined, and bash scripting was

finally used.

PLOS ONE A simple parametric representation of the Hodgkin-Huxley model

PLOS ONE | https://doi.org/10.1371/journal.pone.0254152 July 22, 2021 6 / 19

https://doi.org/10.1371/journal.pone.0254152


Results

Simulation experiment design

In the first stage, Python simulates AP signals using a modified HH model implementation

based on the one available in the Neurodynex package [21]. The original implementation

offers several features, such as a detailed evolution of the voltage-gated variables m, n, h, or the

application of input stimuli with different amplitude and shape. A modification was imple-

mented to facilitate changes in the model parameters. The analyzed signal spans 60 ms. A

short square input stimulus I, of just 1 ms, has been applied in the tenth ms of the simulation.

See [36] to learn about the most used stimulus types. Five values for the strength of the stimu-

lus have been selected, I = {0, 4.5, 7, 9.5, 12} μA, and 1000 experiments were conducted for

each value of I, leading to a total of 5000 experiments. Different configurations of the most

influential parameters have been considered according to a factorial experiment design. In

every experiment, each of these parameters takes a random value from a set of preselected val-

ues. These values have been experimentally observed in nature, as described in [7] and detailed

in Table 1.

For the values in Table 1, ðS;KÞ have been calculated with Eq (1) to be represented in Fig 2

across stimulus intensities by neuron type. While Fig 2(C) reproduces the one in [7], the rest

of the planes generated by other stimulus intensity strengths are a novelty of this work, show-

ing how the application of a stronger stimulus generates more excitable and oscillatory

experiments.

In a second stage, using R, the signals are preprocessed to assure that complete APs are ana-

lyzed. We proceed as follows: the first AP is discarded if it occurs before the input stimulus has

been applied; resting potential values are considered instead of the discarded data to get seg-

ments of equal length for all the trials. An analogous procedure is applied if the last AP is

observed in the last 6 ms of the experiment. In the exceptional case, where only a pre-stimulus

AP is observed, the original signal is analyzed. It is relevant to note that discarding the first

and/or last AP in the experiments is not a limitation of the approach, as we are assuming

equally-shaped APs.

In a third step, an FMMST model is fitted to the data using the FMM package.

Simulation experiment results: FMM results

From the total 5000 simulated HH experiments, the 3613 with at least one AP have been ana-

lyzed using the FMM approach. In Fig 3, representative signals with one to four spikes are plot-

ted along with the FMMST model predictions. There is a relevant dominant wave that

represents the depolarization and repolarization; and a second wave that accounts for the

hyperpolarization. A summary of the main statistics and parameter estimates are given in

Table 1. Parameters varied in the Hodgkin-Huxley simulations according to the designed factorial experiment

design.

Structural Parameters Kinetic Parameters

C = 1 μF/cm2 ~an = {0.85, 0.95, 1.05, 1.15}

VNa = 50 mV ~bn = {0.7, 0.85, 1, 1.15, 1.3}

VK = −77 mV ~am = {0.8, 0.9, 1, 1.1, 1.2, 1.3}

VL = −54 mV ~bm = {0.7, 0.85, 1, 1.15, 1.3}

gNa = {64, 92, 120, 148, 176, 204, 232, 260}ms/cm2 ~ah = 1

gK = {27, 30, 33, 36, 39, 42, 45, 48} ms/cm2 ~bh = 1

gL = {0.12, 0.215, 0.31, 0.405, 0.5} ms/cm2

https://doi.org/10.1371/journal.pone.0254152.t001
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Fig 2. (S;K) values by stimulus amplitude and neuron type.

https://doi.org/10.1371/journal.pone.0254152.g002
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Fig 3. Neuronal signals simulated with the HH model and the estimated FMMST signals in red (left). Waves of the fitted FMMST model (right), which have been

enumerated according to relevance and order.

https://doi.org/10.1371/journal.pone.0254152.g003
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Table 2. The values in the table show the high prediction accuracy. In particular, the R2
FMMs�

global mean (standard deviation) is equal to 0.8527 (0.0579), and the R2
FMMST

is equal to 0.9877

(0.0053). These values quantify what Fig 3 shows. Table 2 also shows interesting differences in

parameter configurations between signals with a different number of APs.

In order to illustrate the parameter configurations differences between excitable and oscil-

latory neurons for HH and FMM models, two radar-plots have been represented in Fig 4. In

the case of the HH parameters, which represent biochemical properties, oscillatory experi-

ments have primarily higher values in gNa and smaller values in ~bm and ~an. In terms of FMM

parameters, which represent AP waveform features, oscillatory APs have nearer waves (dAB
m )

with smaller kurtosis and skewness (ωA, ωB, βA, βB) and a B wave with a higher amplitude

(AB
m).

Simulation experiment results: Main HH parameters prediction

In this section, the potential of the FMM parameters to predict relevant parameters of the HH

model is shown. Two different sets of predictors: τA and τA + τB, defined in Table 3 and differ-

ent Machine Learning Supervised procedures have been considered. Note that the LR and

SVM approaches assume that the predictors are euclidean, but β is a circular parameter. Then,

cos(βB) and sin(βB) are considered instead of βB. Furthermore, βA is considered as euclidean as

it takes values concentrated in a small arc. Other predictors, derived from those in τA + τB,

Table 2. Means and standard deviations for R2 values and parameter estimators.

Number of APs in the Signal ALL

1 2 3 4 5 6

R2
FMMs�

0.817 0.817 0.857 0.881 0.886 0.902 0.853

(0.061) (0.089 (0.056) (0.028) (0.027) (0.030) (0.058)

R2
FMMST

0.985 0.986 0.989 0.990 0.989 0.988 0.988

(0.005) (0.009) (0.006) (0.003) (0.003) (0.004) (0.005)

M 39.211 80.448 96.346 117.824 156.227 183.459 89.650

(3.936) (22.861) (24.920) (23.591) (22.320) (19.165) (45.465)

AA
m 53.342 50.831 50.541 52.115 54.033 54.313 52.397

(4.258) (4.215) (4.445) (3.646) (3.048) (2.629) (4.182)

AB
m 16.0133 25.292 24.396 22.549 20.986 18.169 20.538

(5.954) (5.106) (4.077) (3.636) (3.382) (2.987) (5.826)

βA 2.780 2.529 2.560 2.582 2.582 2.589 2.645

(0.279) (0.214) (0.180) (0.152) (0.131) (0.152) (0.232)

cos(βB) 0.606 −0.142 −0.110 −0.059 −0.040 −0.029 0.162

(0.347) (0.297) (0.232) (0.203) (0.224) (0.243) (0.424)

sin(βB) −0.573 −0.941 −0.960 −0.977 −0.973 −0.970 −0.831

(0.428) (0.092) (0.111) (0.028) (0.037) (0.049) (0.320)

ωA 0.041 0.030 0.029 0.030 0.030 0.030 0.033

(0.005) (0.006) (0.005) (0.004) (0.004) (0.005) (0.007)

ωB 0.136 0.086 0.070 0.066 0.0689 0.076 0.092

(0.066) (0.044) (0.020) (0.012) (0.012) (0.016) (0.052)

dAP
m

1.515 1.488 1.125 0.814 0.636 0.784

(0.767) (0.335) (0.126) (0.068) (0.021) (0.643)

dAB
m

0.039 0.034 0.029 0.032 0.036 0.041 0.034

(0.023) (0.071) (0.012) (0.011) (0.014) (0.016) (0.020)

https://doi.org/10.1371/journal.pone.0254152.t002
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have been considered in the preliminary analysis but were eventually discarded using the prin-

ciple of parsimony as only the results of LR improved lightly.

Variable selection methods have been used: a stepwise Akaike information criterion for LR,

which selects the regression with the best trade-off between simplicity and goodness of fit, and

caret’s recursive feature elimination [31] for the rest, which searched the minimal subset of

variables that decreased at most 1.5% the goodness of fit. Only a single LR model reduces the

used set of variables by discarding cos(βB).

Furthermore, ten-fold cross-validation is considered for comparative and validation pur-

poses. The dataset is divided into ten equally sized splits. In ten iterations, nine of the subsets

are used to train the procedure, while the tenth serves as a test as in [25, 37]. In addition, the

Fig 4. Median values of the HH parameters and FMMST parameters (defined in Table 3) by neuron type. The represented interval for each parameter is between

the 10% and 90% percentiles.

https://doi.org/10.1371/journal.pone.0254152.g004

Table 3. Feature sets used in the prediction of the main HH parameters.

τA τB

M Intercept parameter.

AA
m Median of the amplitude AA

S , S = 1, . . ., s. AB
m Median of the amplitude AB

S , S = 1, . . ., s.

βA Skewness of the A waves. b
B� Skewness of the B waves.

ωA Kurtosis of the A waves. ωB Kurtosis of the B waves.

dAP
m Median of dAP

S , S = 1, . . ., s − 1. dAB
m Median of dAB

S , S = 1, . . ., s
s Number of APs in the signal.

�: In linear procedures, cos(βB) and sin(βB) are used.

https://doi.org/10.1371/journal.pone.0254152.t003
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Generalized Degrees of Freedom (GDFs) of the procedures have been calculated, as proposed

in [38], to measure the underlying complexity.

Firstly, the prediction of the pair ðS;KÞ is presented. Table 4 provides a summary of the

results of the prediction procedures of S and K. It can be seen that the parameters associated

with the second wave, τB, significantly increase the prediction accuracy compared with that

obtained using only parameters associated to wave A. Regarding the different procedures, at

one end, the relatively bad results for LR provides evidence that the relation between the pre-

dictors and (S;K) is not linear. At the other end, SVM gives the most accurate prediction,

with more than 95% and 94% of explained variance for S and K respectively. The RF and

GBM results are between those for LR and SVM; while RF is comparable to GBM in terms of

interpretability and complexity, the attained accuracy is less. However, although GBM proce-

dures remain more complex and slightly less accurate than SVM, the predictions are

interpretable.

On the one hand, the most relevant predictors to explain S are βA and ωA, which implies

that S is related to the AP shape. In particular, AP signals from experiments with low S have

more symmetrical A waves (βA close to π). On the other hand, the most relevant predictors to

explain K are dAP
m , M and s, which recalls the strong association between K and the numbers of

APs observed in Fig 2. Note that s is third in importance due to its discrete nature.

Predictive analysis for other HH parameters has also been performed. The results for

sodium parameters are included in Table 5. Sodium parameters have been selected as they are

more accurately predicted and are the neuron excitability engine, as authors such as [8, 39]

claim. It is interesting to note that the ~am and ~bm are directly related to the first and second

Table 4. R2 and GDFs for the LR, RF, SVM and GBM procedures to predict S and K.

LR RF SVM GBM

S Predictors: τA R2 0.6825 0.8421 0.8672 0.8576

GDF 7.05 2053.13 301.28 1362.50

Predictors: τA + τB R2 0.7933 0.9127 0.9548 0.9467

GDF 12.21 2123.83 242.48 2699.63

LR RF SVM GBM

K Predictors: τA R2 0.6542 0.8152 0.8446 0.8309

GDF 6.74 2022.95 297.10 1766.07

Predictors: τA + τB R2 0.7548 0.8877 0.9413 0.9350

GDF 11.11 2113.74 381.73 2845.45

https://doi.org/10.1371/journal.pone.0254152.t004

Table 5. R2 values for LR, RF, SVM and GBM procedures to predict the sodium HH parameters.

LR RF SVM GBM

gNa Predictors: τA 0.5916 0.7207 0.7403 0.7309

Predictors: τA + τB 0.7106 0.7943 0.8276 0.8147

LR RF SVM GBM

~am Predictors: τA 0.3606 0.5801 0.6011 0.5909

Predictors: τA + τB 0.3760 0.7115 0.7810 0.7538

LR RF SVM GBM

~bm
Predictors: τA 0.2105 0.4013 0.3593 0.3901

Predictors: τA + τB 0.6521 0.8374 0.9220 0.9103

https://doi.org/10.1371/journal.pone.0254152.t005
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FMM waves, respectively, while gNa is related to both. The attained accuracy is not as high as

for (S;K), which are more stable parameters.

Real data analysis

The SGAMP database, firstly used in [20] and publicly accessible at [40], contains single-unit

neuronal recordings of North Atlantic squid (Loligo pealei) giant axons in response to stimulus

currents. The database has been extensively used in works. Among the recent ones are [41, 42].

The experiments where the applied stimulus is a short square stimulus, the same as in the HH

experimentation, have been selected for the analysis. Five signals have been extracted from 4

trials of 3 different axons, being the stimulus amplitude equal to I = 5 μA in the five cases. The

length of the analyzed segment is also equal to that of the simulated HH signals, 60 ms, to facil-

itate comparisons.

Four different FMM models have been fitted to the signals: an FMMs��, FMMs�, FMMST

and an FMMST�. Moreover, it is assumed that AA − AB< C, where C is 0.70 times the maxi-

mum difference obtained in previous iterations of the algorithm. For comparative proposes,

Fourier models with the same number of free parameters as the FMM models, denoted as FDa

where a is the number of harmonics, have also been fitted.

Fig 5 shows the FMMST� and the corresponding Fourier predictions for a representative sig-

nal. The R2 values and the number of free parameters are given in Table 6, for the five signals

and eight models. The figures in the table show that the dominant wave explains much of the

variability here, much more than it does in the HH experimentation. Furthermore, the models

with restrictions in the A parameters are as accurate as the others without them. As such, the

former models, being the simpler ones, are preferred due to the parsimony principle. Besides,

the FD models make much less accurate predictions. Moreover, Table 7 gives the parameter

values for the FMMST� model of the five signals. Compared to the values in Table 2, in particu-

lar to those corresponding to signals with 4 APs, some interesting differences can be

highlighted. SGAMP APs have a more symmetrical shape (βA values nearer to π) and a spike

with a lower maximum voltage (smaller values of AA). Furthermore, shape differences in the

repolarization and hyperpolarization are evidenced by AB and βB.

Parameter configurations comparison between simulated and real data

In order to facilitate the parameter configurations comparison between real data and HH

simulations, a principal component analysis has been performed with the simulated data.

Furthermore, the corresponding projections of the SGAMP parameter configurations into

this plane have been obtained. The first two principal components are plotted in Fig 6, where

circular points represent the simulated signals and the rhombus points represent the real

data projections. The Figure clearly illustrates the differences between the parameter configu-

rations of the simulated and real data, as rhombus points are far from the main cloud of cir-

cular points.

At first glance, these differences could be attributed to the simplifications of the HH experi-

mentation done. However, in our opinion, this is not a plausible explanation. Specifically, the

intensity and shape of the stimulus being fixed does not affect the AP shape modelled by the

FMM parameters, as authors like [4, 43] state. The other simplifications in the experiment

design are minor. Furthermore, a simpler FMM model is adequate to analyze the real signals

accurately as Table 6 shows. All of these comments evidence that the model underlying

SGAMP signals is not an HH but a simpler one, such as FitzHugh-Nagumo (see [9]).
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Fig 5. Neuronal APs from the SGAMP database (axon 1, trial 18, second short square stimulus) along with the fitted signals

using an FMMST� signal (red) and an FD7 (blue). The waves of the fitted FMMST� model are illustrated at the bottom.

https://doi.org/10.1371/journal.pone.0254152.g005

Table 6. R2 values of the different FMM and FD models for the signals extracted from the SGAMP database.

N˚ of parameters Experiment IDs

a1t18_1 a1t18_2 a1t22 a3t03 a4t13

FMMs�� 8 0.9435 0.9457 0.9472 0.9512 0.9324

FMMs� 11 0.9485 0.9511 0.9476 0.9566 0.9429

FMMST� 15 0.9862 0.9848 0.9880 0.9936 0.9910

FMMST 21 0.9865 0.9852 0.9882 0.9937 0.9910

FD4 9 0.3635 0.3609 0.3587 0.4080 0.2809

FD5 11 0.3648 0.3622 0.3594 0.4141 0.2865

FD7 15 0.3687 0.3636 0.3614 0.4305 0.3056

FD10 21 0.5676 0.5809 0.5586 0.6099 0.4695

https://doi.org/10.1371/journal.pone.0254152.t006
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Discussion

In this paper, the FMMST model has been presented, and its potential to describe the wave-

forms of simulated and real AP signals has been proved. It is shown that the squid giant axon

signals exhibit simpler waveforms and are faithfully described with a simpler model than the

simulated HH signals. Moreover, the excellent behavior of the FMM model to predict HH sim-

ulated and real signals provides pieces of evidence that other neuronal dynamics models could

Table 7. Parameter estimators of the FMMST� models for the SGAMP signals.

Experiment IDs Mean

a1t18_1 a1t18_2 a1t22 a3t03 a4t13

M 173.617 179.144 115.622 158.667 184.105 162.231

AA 44.955 44.472 37.352 43.089 46.284 43.230

AB 6.893 6.770 13.989 6.478 27.524 12.331

βA 3.426 3.311 3.933 3.572 3.634 3.575

cos(βB) −0.368 −0.387 −0.214 −0.428 −0.221 −0.324

sin(βB) −0.930 −0.922 0.977 −0.903 0.975 −0.161

ωA 0.028 0.028 0.030 0.027 0.027 0.028

ωB 0.101 0.138 0.008 0.097 0.005 0.070

dAP
m

1.016 0.985 0.987 1.033 1.049 1.014

dAB
m

0.021 0.020 0.002 0.020 0.002 0.013

https://doi.org/10.1371/journal.pone.0254152.t007

Fig 6. Plot of the first two principal components of τA + τB of the HH experiments (circular points), with experiments with 4 APs highlighted, and

projections of the SGAMP experiments (rhombus points).

https://doi.org/10.1371/journal.pone.0254152.g006
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also be represented using the new approach, in which case, the differences between models

would be articulated through the differences in the parameter configurations.

In addition to many interesting theoretical properties, the FMM approach is a flexible

methodology from an applied point of view. When a single AP is analyzed, the parameters are

able to describe a wide variety of spikes morphologies and, in particular, to discriminate neu-

ron types. When multiple spikes are analyzed, restrictions between the parameters can be

included to provide physiologically interpretable solutions and reduce the model’s complexity.

Many open problems in electrophysiological neuroscience can benefit from the FMM

methodology presented in this paper. In particular, it can significantly contribute to solving

problems where the AP characterization is needed, such as Spike Sorting and cell-type classifi-

cation. Spike Sorting implies grouping spikes into clusters corresponding to different neurons

based on the similarity of their shapes. Cell-type classification deals with the definition of hier-

archical taxonomies of cells based on different sets of morphological, genetic and/or

electrophysiological features.

Spike Sorting and cell-type classification are two of the most critical data analysis problems

in neuroscience and have received a lot of attention in the literature. Some interesting refer-

ences about Spike Sorting are [24, 44, 45], whereas [2, 13, 46] address cell-type classification.

Besides, it is worth mentioning other more complex related problems such as multi-channel

Spike Sorting and the function identification of neurons in brain circuits. These questions that

are tackled in [47–49].

Furthermore, the FMM approach, based on a simple parametric model, is opposite of

‘black box’ methods, which are becoming popular in neuroscience and other areas, and pro-

vides simple solutions to different questions. A particular case is the problem of denoising neu-

ronal signals, which is essential when recordings are made in vivo because often low temporal

resolution and noisy data are recorded in this scenario. Neuronal networks are the predomi-

nant methodology to solve this task (see [50, 51]); however, the FMM model is a signal plus

error and the denoising is included in the estimation step.

Two different lines of work could be defined for the future. On the one hand, from a theo-

retical perspective, a first question to solve is the implementation of restrictions with the form

dAB
1
¼ dAB

S ; S = 2, . . ., s. They are of interest to analyze signals with equal distances between

waves in the APs, because reducing the number of parameters to be estimated is important

when large or noisy Spike Trains are analyzed. On the other hand, from an applied perspective,

many other AP real signals must be analyzed, and the questions of spike and cell classification

and clustering may be addressed. The approach’s potential is difficult to calibrate as many

aspects remain to be researched and exploited.

Finally, a limitation of our study is that the input stimulus’s timing and shape have been

fixed. The influence of the stimulus type could be analyzed using the FMM approach. The α
parameters are related to the firing times, and the shape parameters could be useful to detect

circumstances where the shape of the APs is independent of the stimulus, as [4] suggests, and

circumstances where changes happen, such as the observation of incomplete spikes. However,

the question is tricky and deserves further research.
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