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Abstract: We investigated the association between DICER1 (rs3742330) and DROSHA (rs10719)
polymorphisms and pseudoexfoliation glaucoma (PXG) and related clinical phenotypes in a Saudi
cohort. In a retrospective case-control study, TaqMan real-time, PCR-based genotyping was performed
in 340 participants with 246 controls and 94 PXG cases. The minor (G) allele frequency of rs3742330
in PXG (0.03) was significantly different from that in the controls (0.08) and protective against PXG
(odds ratio (OR) = 0.38, 95% confidence interval (CI) = 0.16–0.92), p = 0.017). Similarly, the rs3742330
genotypes showed a significant protective association with PXG in dominant (p = 0.019, OR = 0.38,
95% CI = 0.15–0.92), over-dominant (p = 0.024, OR = 0.39, 95% CI = 0.16–0.95), and log-additive
models (p = 0.017, OR = 0.38, 95% CI = 0.16–0.92). However, none remained significant after an
adjustment for age, sex, and multiple testing. Rs10719 in DROSHA did not show any significant allelic
or genotype association with PXG. However, a protective effect of the GA haplotype in DICER1 and
DROSHA and PXG (p = 0.034) was observed. Both polymorphisms showed no significant effect on
intraocular pressure and the cup–disk ratio. In conclusion, we report a significant genetic association
between variant rs3742330 in DICER1, a gene involved in miRNA biogenesis, and PXG. Further
investigation in a larger group of patients of different ethnicities and functional studies are warranted
to replicate and validate its potential role in PXG.

Keywords: DICER1; DROSHA; genetics; glaucoma; intraocular pressure; microRNA; polymorphisms;
pseudoexfoliation; rs10719; Saudi

1. Introduction

Pseudoexfoliation glaucoma (PXG) is an age-related and more aggressive form of
open-angle glaucoma associated with a poor prognosis. PXG is characterized by excessive
production and abnormal accumulation or deposition of pseudoexfoliative material, typi-
cally in the anterior segment of the eye that obstructs the aqueous flow pathway, leading
to increased intraocular pressure (IOP), optic nerve head damage, retinal ganglion cell
death (RGC), and subsequent loss of vision [1,2]. Genetic and environmental factors also
play an important role in the development and progression of the disease [3,4]. Previous
genome-wide studies have identified genetic loci and polymorphisms associated with
the disease phenotype [3,5,6]. However, the genetic factors and molecular mechanisms
contributing to glaucomatous eye damage are still unclear.
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Increasing evidence suggests the critical roles of microRNA (miRNA) in glaucoma [7,8].
miRNAs are small (~22 bp), conserved, noncoding RNAs that act by binding to comple-
mentary sequences in the 3′ untranslated region (3′ UTR) of messenger RNAs (mRNAs)
to regulate posttranscriptional gene expression or translational repression [9]. miRNAs
regulate nearly 30% of human genes and each miRNA can regulate several gene targets [10].
Consequently, miRNAs can influence various pathophysiological processes, such as prolif-
eration, differentiation, migration, and apoptosis, and modulate several disease outcomes
as a result [11,12]. Two critical RNase III enzymes, DROSHA and DICER1, are involved in
the biogenesis of miRNAs. Following the synthesis of primary miRNAs (pri-miRNAs) by
RNase II in the nucleus, DROSHA cleaves pri-miRNAs into a 70 bp stem-loop structure
called pre-miRNA. Subsequently, pre-miRNA is transported by the exportin-5 protein
to the cytoplasm, wherein DICER1 processes pre-miRNAs into mature miRNAs that are
subsequently incorporated into the RNA-induced silencing complex (RISC) to interact with
target mRNAs and regulate their expression and function [13].

Differential expression of DICER1 or DROSHA enzymes due to polymorphisms in
the miRNA coding genes can have pathological consequences [14,15]. Two commonly
investigated variants affecting the miRNA binding and mRNA stability, expression, and
function include rs10719 G > A in DROSHA and rs3742330 A > G in DICER1, located in
the 3′ UTRs of their respective genes. These polymorphisms have been associated with
several complex human diseases, including glaucoma [7,16–19]. We hypothesize that these
polymorphisms via miRNA regulation of mRNA stability or translational repression might
trigger downstream changes to influence disease processes (e.g., extracellular matrix (ECM)
remodeling and trabecular meshwork (TM) homeostasis) involved in PXG pathogene-
sis [20]. Thus, we investigated the genetic association of polymorphisms rs3742330 and
rs10719 in DICER1 and DROSHA genes, respectively, in PXG patients of Saudi origin.

2. Materials and Methods
2.1. Study Design and Participants

In a retrospective case-control study, the participants were recruited at the King
Abdulaziz University Hospital in Riyadh, Saudi Arabia. PXG patients (n = 94) of Saudi
origin were diagnosed by glaucoma consultants based on the clinical evidence of exfoliation
material on the pupil margin or anterior lens surface, the presence of glaucomatous optic
neuropathy with associated visual field loss in one or both eyes, and high untreated
IOP (≥21 mm Hg) as per the guidelines of the European Glaucoma Society [21]. The
exclusion criteria included secondary glaucoma, optic neuropathies or visual loss unrelated
to glaucoma, inability to examine fundus for disk assessment, steroid usage, ocular trauma,
and refusal to participate. A group of healthy subjects (n = 246) of the same ethnicity,
who were >40 years of age, had normal IOP (without medication), and were free from
any form of glaucoma, was included as a control group. Subjects refusing to participate
were excluded.

2.2. Genotyping of rs3742330 in DICER1 and rs10719 in DROSHA

DNA extracted from EDTA blood using a QIAamp DNA blood kit (Cat. # 51306,
QIAGEN GmbH, Hilden, Germany) was subjected to genotyping. TaqMan® assays
C__27475447_10 and C___7761648_10 (Catalog number: 4351379, Applied Biosystems
Inc., Foster City, CA, USA) were used to genotype rs3742330 (A > G) and rs10719 (G > A),
respectively, under the recommended conditions on an ABI 7500 Real-Time PCR system
(Applied Biosystems Inc., Foster City, CA, USA). Briefly, each PCR reaction was performed
in a total volume of 25 µL consisting of a 1× TaqMan® genotyping master mix (Applied
Biosystems Inc., Foster City, CA, USA), 1X SNP genotyping assay mix, and 20 ng DNA.
Each 96-well plate included two no-template (negative) controls. Amplification conditions
included incubation at 95 ◦C for 10 min, followed by 40 cycles, denaturation at 92 ◦C for 15 s,
and annealing and extension at 60 ◦C for 1 min. The VIC® and 6-carboxy-fluorescein (FAM)
fluorescence levels of the PCR products were measured at 60 ◦C for 1 min. A fluorescence
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analysis was performed using automated 2-color allele discrimination software to identify
the DICER1 and DROSHA genotypes on a 2-dimensional graph [22].

2.3. In Silico Analysis of rs3742330

The annotation of rs3742330 and its localization to the genomic region was visualized
using the UCSC genome browser with the SNPedia option. Regulation and comparative
genomics tracks were used to visualize regulatory elements and conservation across species.
TargetScanHuman 7.2 was added as a custom track to visualize miRNA targets. The RNA
binding partners to the 3′ UTR reference of 30 nucleotides upstream and downstream of
rs3742330 were predicted using an RBPmap database (http://rbpmap.technion.ac.il/index.
html, accessed on 24 February 2022). Regulatory motif alteration was examined using
HaploReg v4.1.

2.4. Statistics

The Hardy–Weinberg equilibrium (HWE) and other allelic and genotype associations
were tested by chi-square analysis. The continuous parameters were tested by an indepen-
dent samples t-test and one-way ANOVA. Regression analysis was performed to evaluate
the effect of multiple risk factors such as age, sex, and genotype on PXG outcome. Sta-
tistical analysis was performed using SPSS version 22 (IBM Inc., Chicago, IL, USA) and
SNPStats online software (https://www.snpstats.net/start.htm, accessed on 30 Decem-
ber 2021). SHEsis online software (Analysis tool for random samples, by YongYong Shi
(analysis.bio-x.cn, accessed on 30 December 2021)) was used to examine linkage disequi-
librium (LD) and analyze haplotypes. Power analysis was performed using PS software
(https://ps-power-and-sample-size-calculation.software.informer.com/3.1/, accessed on
30 December 2021). A two-tailed p < 0.05 was considered statistically significant and a
Bonferroni-corrected p-value (0.05/5 = 0.01) was considered where applicable.

3. Results
3.1. Demographic Characteristics and Minor Allele Frequency Distribution

Table 1 shows the demographic characteristics of the participants and minor allele
frequency (MAF) distribution of the examined polymorphisms. The cases were significantly
older than the controls (p < 0.001). However, the differences in sex distribution between
PXG cases compared to controls were nonsignificant. Of 246 controls and 94 PXG cases,
genotyping was available for 241 controls for rs3742330 DICER1 polymorphism. The five
DNA samples from controls that failed to amplify were excluded from DICER1 analysis.
There was no significant deviation from the HWE (p > 0.05). The rs3742330 (G) MAF in PXG
(0.03) varied more significantly than the controls (0.08) and was protective against PXG
(odds ratio (OR) = 0.38, 95% confidence interval (CI) = 0.16–0.92), p = 0.017). In contrast,
the rs10719 (A) allele showed no significant distribution between PXG and the controls.
Furthermore, no significant sex-specific allelic association was observed (Table 1).

Table 1. Demographic characteristics and distribution of minor allele frequency of DICER1 rs3742330 (G)
and DROSHA rs10719 (A) polymorphisms in pseudoexfoliation glaucoma cases and control participants.

Characteristics Controls Cases
Odds Ratio

(95% Confidence
Interval)

p-Value

No. of participants 246 94 - -
Age in years (SD) 59.5 (7.2) 66.4 (9.7) - <0.001 1

Men, n (%) 132 (53.6) 61 (64.8) - -
Women, n (%) 114 (46.3) 33 (33.5) - 0.061 2

Minor Allele
Frequency

http://rbpmap.technion.ac.il/index.html
http://rbpmap.technion.ac.il/index.html
https://www.snpstats.net/start.htm
https://ps-power-and-sample-size-calculation.software.informer.com/3.1/
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Table 1. Cont.

Characteristics Controls Cases
Odds Ratio

(95% Confidence
Interval)

p-Value

rs3742330 (G)
Total 0.08 0.03 0.38 (0.16–0.92) 0.0172

Men 0.08 0.03 0.40 (0.13–1.21) 0.076 2

Women 0.08 0.03 0.34 (0.07–1.55) 0.120 2

rs10719 (A)
Total 0.43 0.45 1.08 (0.78–1.50) 0.630 2

Men 0.45 0.47 1.08 (0.71–1.65) 0.720 2

Women 0.41 0.42 1.05 (0.62–1.77) 0.870 2

1 Independent t-test; 2 chi-square analysis. Significant odds ratio and p-value in bold.

3.2. Genotype Association Analysis with PXG

PXG is a complex disease with no apparent genetic mode of inheritance. We used
co-dominant, dominant, recessive, over-dominant, and log-additive genetic models to
examine the association between DICER1 and DROSHA polymorphisms and the risk
of PXG using SNPStat software (Table 2). Rs3742330 genotypes in DICER1 showed a
significant association with PXG risk in dominant, over-dominant, and log-additive genetic
models. The log-additive model exhibited the best fit with the lowest Akaike information
criterion (AIC) and Bayesian information criterion (BIC) values. However, the significance
was lost after an adjustment for age, sex, and Bonferroni correction (pcorrection < 0.01). In
contrast, rs10719 polymorphism in DROSHA showed no significant association (Table 2). In
addition, a sex-stratified genotype analysis for rs3742330 and rs10719 showed no significant
association (Tables 3 and 4).

Table 2. Association analysis of polymorphisms rs3742330 in DICER1 and rs10719 in DROSHA with
the risk of pseudoexfoliation glaucoma cases compared to controls under different genetic models.

SNP
Number Genetic Model 1 Genotype Controls

n (%)
Cases
n (%)

Odds Ratio (95%
Confidence Interval) p-Value 2 AIC 3 BIC 4 p-Value 2,5

rs3742330

Co-dominant
A/A 204 (84.7) 88 (93.6) 1.00

0.055 397.9 409.3 0.170A/G 36 (14.9) 6 (6.4) 0.39 (0.16–0.95) 6

G/G 1 (0.4) 0 (0.0) 0.00 (0.00-NA)

Dominant
A/A 204 (84.7) 88 (93.6) 1.00

0.019 396.2 403.8 0.077A/G-G/G 37 (15.3) 6 (6.4) 0.38 (0.15–0.92)

Recessive
A/A-A/G 240 (99.6) 94 (100.0) 1.00

0.420 401.0 408.6 0.380G/G 1 (0.4) 0 (0.0) 0.00 (0.00-NA)

Over-dominant
A/A-G/G 205 (85.1) 88 (93.6) 1.00

0.024 396.6 404.2 0.098A/G 36 (14.9) 6 (6.4) 0.39 (0.16–0.95)
Log-additive - - - 0.38 (0.16–0.92) 7 0.017 396.0 403.6 0.068

rs10719

Co-dominant
G/G 82 (33.3) 32 (34.0) 1.00

0.530 405.6 417.1 0.250A/G 116 (47.1) 39 (41.5) 0.86 (0.50–1.49)
A/A 48 (19.5) 23 (24.5) 1.23 (0.65–2.34)

Dominant
G/G 82 (33.3) 32 (34.0) 1.00

0.900 404.9 412.6 0.350A/G-A/A 164 (66.7) 62 (66.0) 0.97 (0.59–1.60)

Recessive
G/G-A/G 198 (80.5) 71 (75.5) 1.00

0.320 403.9 411.6 0.350A/A 48 (19.5) 23 (24.5) 1.34 (0.76–2.35)

Over-dominant
G/G-A/A 130 (52.9) 55 (58.5) 1.00

0.350 404.0 411.7 0.098A/G 116 (47.1) 39 (41.5) 0.79 (0.49–1.29)

Log-additive - - - 1.08 (0.78–1.50) 0.630 404.7 412.3 0.930

1 Tested by SNPStat; 2 chi-square analysis; 3 AIC, Akaike information criterion; 4 BIC, Bayesian information
criterion; 5 adjusted for age and sex; 6 A/A vs. A/G p-value = 0.032; 7 best-fit model p-value. Significant odds
ratio and p-value in bold. Bonferroni-corrected p-value is 0.01.
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Table 3. Association analysis of rs3742330 polymorphism in DICER1 with pseudoexfoliation glau-
coma cases in men and women.

Group Genetic Model 1 Genotype Control
n (%)

Cases
n (%)

Odds Ratio (95%
Confidence Interval) p-Value 2 AIC 3 BIC 4 p-Value 2,5

Men

Co-dominant
A/A 109 (85.2) 57 (93.4) 1.00

0.190 240.4 250.1 0.430A/G 18 (14.1) 4 (6.6) 0.42 (0.14–1.32)
G/G 1 (0.8) 0 (0.0) 0.00 (0.00–NA)

Dominant
A/A 109 (85.2) 57 (93.4) 1.00

0.087 238.8 245.3 0.280A/G-G/G 19 (14.8) 4 (6.6) 0.40 (0.13–1.24)

Recessive
A/A-A/G 127 (99.2) 61 (100.0) 1.00

0.380 241.0 247.4 0.380G/G 1 (0.8) 0 (0.0) 0.00 (0.00–NA)

Over-dominant
A/A-G/G 110 (85.9) 57 (93.4) 1.00

0.120 239.3 245.7 0.350A/G 18 (14.1) 4 (6.6) 0.43 (0.14–1.33)

Log-additive - - - 0.40 (0.13–1.21) 0.076 238.6 245.1 0.240

Women –
A/A 95 (84.1) 31 (93.9) 1.00

0.120 157.6 163.6 0.120A/G 18 (15.9) 2 (6.1) 0.34 (0.07–1.55)
G/G 0 (0.0) 0 (0.0) -

1 Tested by SNPStat; 2 chi-square analysis; 3 AIC, Akaike information criterion; 4 BIC, Bayesian information
criterion; 5 adjusted for age and sex. Note: No rare homozygous genotype G/G was observed among women.

Table 4. Sex-stratified association analysis of polymorphism rs10719 in DROSHA with pseudoexfolia-
tion glaucoma cases.

Group Genetic Model 1 Genotype Control
n (%)

Cases
n (%)

Odds Ratio (95%
Confidence Interval) p 2 AIC 3 BIC 4 p 2,5

Men

Co-dominant
G/G 40 (30.3) 20 (32.8) 1.00

0.450 245.2 255.0 0.230A/G 66 (50) 25 (41.0) 0.76 (0.37–1.54)
A/A 26 (19.7) 16 (26.2) 1.23 (0.54–2.80)

Dominant
G/G 40 (30.3) 20 (32.8) 1.00

0.730 244.7 251.2 0.470A/G-A/A 92 (69.7) 41 (67.2) 0.89 (0.46–1.71)

Recessive
G/G-A/G 106 (80.3) 45 (73.8) 1.00

0.310 243.8 250.3 0.230A/A 26 (19.7) 16 (26.2) 1.45 (0.71–2.96)

Over-dominant
G/G-A/A 66 (50.0) 36 (59.0) 1.00

0.240 243.4 250.0 0.094A/G 66 (50.0) 25 (41.0) 0.69 (0.38–1.28)

Log-additive - - - 1.08 (0.71–1.65) 0.720 244.7 251.2 0.830

Women

Co-dominant
G/G 42 (36.8) 12 (36.4) 1.00

0.970 162.5 171.5 0.800A/G 50 (43.9) 14 (42.4) 0.98 (0.41–2.35)
A/A 22 (19.3) 7 (21.2) 1.11 (0.38–3.23)

Dominant
G/G 42 (36.8) 12 (36.4) 1.00

0.960 160.6 166.5 0.510A/G-A/A 72 (63.2) 21 (63.6) 1.02 (0.46–2.28)

Recessive
G/G-A/G 92 (80.7) 26 (78.8) 1.00

0.810 160.5 166.5 0.900A/A 22 (19.3) 7 (21.2) 1.13 (0.43–2.93)

Over-dominant
G/G-A/A 64 (56.1) 19 (57.6) 1.00

0.8800 160.5 166.5 0.590A/G 50 (43.9) 14 (42.4) 0.94 (0.43–2.06)

Log-additive - - - 1.05 (0.62–1.77) 0.870 160.5 166.5 0.610

1 Tested by SNPStat; 2 chi-square analysis; 3 AIC, Akaike information criterion; 4 BIC, Bayesian information
criterion; 5 adjusted for age and sex.

3.3. Linkage and Haplotype Analysis

The two polymorphisms were tested for LD and haplotype analysis using the SHEsis
platform. The standardized LD coefficient D’ value between rs3742330 and rs10719 was
0.06 and r2 = 0.00, indicating that these polymorphisms are not in LD. Additionally, the hap-
lotype distribution did not significantly affect the risk of PXG (X2 = 6.357, df = 3, p = 0.095).
However, haplotype GA showed a significant protective effect (p = 0.034, OR = 0.20, 95%
CI = 0.04–1.03, Table 5).
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Table 5. Haplotype analysis of DICER1 rs3742330 and DROSHA rs10719 polymorphisms.

Haplotypes 1 Controls,
Frequency

Cases,
Frequency p-Value Odds Ratio

(95% Confidence Interval)

AA 0.38 0.44 0.179 1.26 (0.89–1.77)
AG 0.53 0.52 0.821 0.96 (0.68–1.35)
GA 0.04 0.01 0.034 0.20 (0.04–1.03)
GG 0.04 0.02 0.334 0.59 (0.21–1.71)

1 Tested by SHEsis in the order of rs3742330 and rs10719. Overall chi-square = 6.357, df = 3, p = 0.095. Significant
p-value and odds ratio in bold.

3.4. Regression Analysis and Genotype Influence on Clinical Parameters

A binary logistic regression analysis was performed to assess the influence of multiple
risk factors such as age, sex, and genotypes of rs3742330 and rs10719 on PXG outcome.
Except for age (p < 0.001), no other variable showed a significant contribution to PXG
risk (Table 6). In addition, neither polymorphism showed a significant genotype effect
on clinical markers such as IOP, the cup–disk ratio, and the number of antiglaucoma
medications (Figure 1).

Table 6. Binary logistic regression analysis to determine the effect of age, sex, and polymorphisms
rs3742330 (DICER1) and rs10719 (DROSHA) on the risk of pseudoexfoliation glaucoma.

Group
Variables B SE Wald Odds Ratio

(95% Confidence Interval) p

Age 0.100 0.017 35.755 1.10 (1.07–1.14) 0.000
Sex 0.392 0.273 2.068 1.48 (0.86–2.52) 0.150

rs3742330 2.350 0.309
A/G −0.729 0.476 2.349 0.48 (0.19–1.22) 0.125
G/G - - - - 1.000

rs10719 3.002 0.223
G/A −0.410 0.305 1.801 0.66 (0.36–1.20) 0.180
A/A 0.127 0.364 0.121 1.13 (0.55–2.31) 0.728

Constant −7.236 1.079 44.981 0.001 0.000
Significant p-value in bold.

3.5. Potential Significance of rs3742330

The genomic region containing rs3742330 and its associated neighboring features is
shown in Supplementary Figure S1. An in silico analysis showed that the region con-
tains multiple sites for miRNAs, transcription factors, and other regulatory elements
(Figure S1A). In addition, the variant may alter the binding of certain RNA-binding proteins
(Figure S1B) and regulatory motifs (Figure S1C), suggesting that the region is significant for
mRNA stability and gene expression. However, rs3742330 is classified as benign in ClinVar.
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Figure 1. Genotype effect of (A) rs3742330 (DICER1) and (B) rs10719 (DROSHA) on glaucoma
specific clinical indices in pseudoexfoliation glaucoma (PXG). Note: No rare homozygous rs3742330
G/G genotype was observed in pseudoexfoliation glaucoma cases. p-value is based on one-way
ANOVA test.

4. Discussion

In this paper, we report for the first time a moderate allelic association of variant
rs3742330 (G) in DICER1 with PXG in a Saudi cohort. The polymorphism rs3742330 in
DICER1 was associated with a decreased risk of PXG (OR of 0.38). Although no homozy-
gous G/G genotype was observed in the PXG patients, the heterozygous A/G genotype
also conferred significant protection compared to A/A in different genetic models. How-
ever, it did not survive correction for multiple testing.

Emerging evidence suggests that polymorphism(s) in DICER1 may alter the bio-
logical functions of miRNAs and play an essential role in the pathogenesis of various
diseases [16–19]. In accordance with our findings, Chatzikyriakidou et al. reported a
different DICER1 variant, rs1057035 (C > T), which conferred protection (OR of 0.69) in
patients with pseudoexfoliation syndrome [7]. Using the LDlink analysis (https://ldlink.
nci.nih.gov/?tab = ldpop, accessed on 30 December 2021) to predict linkage across the 1000
Genomes database, we noted that variants rs1057035 and rs3742330 in DICER1 were not
in LD (r2 = 0.032); yet, this study lends further support to the protective association of the
DICER1 variant observed in our patient cohort.

https://ldlink.nci.nih.gov/?tab
https://ldlink.nci.nih.gov/?tab
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Dicer has an essential role in development and angiogenesis [23,24]. Germ-line muta-
tions in DICER1 are associated with DICER1 syndrome [25]. DICER1 carriers exhibit ocular
abnormalities including optic nerve damage and retinal changes [25]. Genetic manipulation
of dicer1 in mice has been shown to cause retinal degeneration, suggesting its role in cell sur-
vival [26,27]. Differential expressions of DICER1 have been associated with various types
and stages of cancers, albeit with contradictory findings. The increased expression has been
linked to a good prognosis in lung, breast, and ovarian cancer as opposed to a poor progno-
sis in colorectal and prostate cancer [28–30]. These studies suggest that DICER1 may have
varied roles in different diseases. The underlying potential mechanism(s) linking DICER1
polymorphism rs3742330 to PXG pathogenesis is unknown. Rs3742330 polymorphism has
been related to dysregulation of DICER1 mRNA, wherein the polymorphic A/G and G/G
genotypes harbored lower levels of DICER1 mRNA [31,32]. Altered DICER1 levels (due
to polymorphism) may directly affect enzyme function or can indirectly influence disease
pathogenesis via differential regulation of miRNA expression.

Dicer knockdown results in a marked global reduction in miRNA levels [33,34]. miR-
NAs are tissue-specific and expressed in ocular tissues related to glaucoma [35]. Several
studies have highlighted the significant role of miRNAs and their plausible underlying
mechanisms in different types of glaucoma, including PXG [8,36–40]. Rao et al. reported
the overexpression of 12 miRNAs in PXG, of which miR-122-5p, miR-124-3p, and miR-424-
5p targeted TGFβ1, fibrosis/ECM, and proteoglycan metabolism pathways [39]. These
signaling pathways are known mediators of ECM secretion and deposition and are strongly
implicated in glaucoma [41]. Interestingly, using MicroSNiPer [42], we observed that the
DICER1 rs3742330 (G) variant might enhance the binding of hsa-miR-124-3p and probably
cause a decrease in DICER1 gene expression, which may impact the DICER1 enzyme’s
function and/or sequentially affect miRNA expression. Similarly, Zenkel et al. reported
downregulation of the miR-29 family in iridal and ciliary tissue specimens from donor
eyes with pseudoexfoliation syndrome [43]. In vitro studies have reported the miR-29
family as an essential modulator of ECM genes under chronic oxidative stress conditions
and TGFß stimulation in the human TM cells [44,45]. miR-1260b, mainly involved in
the process of hypoxia and apoptosis, was reported to be most abundantly expressed in
PXG [38]. Hindle et al. reported 20 circulatory miRNAs targeting neuroinflammation,
nitric oxide, and neurotrophin–tropomyosin-related kinase (TRK) signaling pathways [40],
which have all been strongly implicated in the pathophysiology of glaucoma [46,47]. In
another study, Drewry et al. identified dysregulated miRNAs (miR-122-5p, miR-3144-3p,
miR-320a, miR-320e, and miR-630) in PXG involved in focal adhesion, tight junctions, and
TGFß signaling [37].

Oxidative stress, inflammation, breakdown of the blood–aqueous barrier, a decrease
in clusterin, and genetic predisposition (e.g., lysyl oxidase-like-1 (LOXL1) polymorphisms)
are among the pathologic mediators of the abnormal elastotic process in PXG [1]. Taken
together, we speculate that polymorphism rs3742330 in DICER1 may alter DICER levels
and, via miRNA regulation, may be associated with PXG by influencing processes or
pathways discussed above (e.g., TRK signaling, TGFß signaling, oxidative stress genes,
tight junctions, and apoptosis) that might affect ECM remodeling and TM homeostasis
or RGC survival. We are interested in discovering whether the DICER1 polymorphism
modulates the PXG risk by affecting DICER enzyme function and/or via RNA interference.
The in silico analysis suggested that the genomic region of rs3742330 located in the 3′

UTR of DICER1 may be important for mRNA transcript stability and post-transcriptional
regulation of gene expression. However, there is no direct evidence supporting this role.
Additionally, the effect of gene–gene and/or gene–environment interactions, or linkage
with a causal variant in PXG, cannot be ruled out. Further molecular and in vitro studies
are needed to validate these hypotheses.

In contrast, rs10719 polymorphism in DROSHA, another critical enzyme involved
in miRNA biogenesis [33], did not show any allelic or genotype association with PXG or
clinical markers (e.g., IOP and the cup–disk ratio), indicating that this variant may not have
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a significant role in PXG. However, the role of other variants in this gene cannot be ruled
out. In addition, haplotype analysis of DICER1 and DROSHA polymorphisms indicated
that haplotype GA was protective against PXG. However, it is difficult to ascertain whether
the protective effect observed in our study is attributable to a real haplotype effect or reflects
a strong LD with any other variant(s) not included in this study.

The results of the study have certain limitations. It should be noted that the significant
association of the DICER1 variant was restricted to the unadjusted models of analysis
when corrections for multiple testing and confounding variables were included, indicating
that the association may be dependent on other gene–gene or gene–environmental inter-
actions [48]. It also needs to be emphasized that the study was exploratory, performed in
a single ethnic group of patients, and provides no functional evidence. In addition, the
results are limited by sample size, particularly considering the low frequency of the variant
observed in this cohort of Arab ethnicity, and the possibility of chance association cannot
be ruled out. Based on the observed allele frequencies and an α level of 0.05, the estimated
power was 0.73 per allele for rs3742330 (DICER1) and >0.9 per allele for rs10719 (DROSHA)
to detect an OR of two. However, a much larger sample size would be required to detect an
odds ratio of 1.5 or less, which is commonly seen in genetic association studies.

In conclusion, we report a genetic association between a potentially functional poly-
morphism rs3742330 in DICER1, a gene involved in miRNA biogenesis, and PXG patients
of Saudi origin, suggesting a need to further investigate the involvement of epigenetic
pathways as modulators in disease development and progression. Further replication in
a large population-based sample cohort of different ethnicities and functional studies are
warranted to validate the potential role of DICER1 variant rs3742330 in PXG.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13030489/s1, Figure S1: The in silico analysis of rs3742330
in DICER1 showing (A) The genomic region containing the polymorphism on chromosome 14q32.13
and its neighboring features, such as miRNA binding sites, transcription binding sites, regulatory
elements, eQTLs, and conservation among species obtained using the UCSC genome browser. (B)
The altered RNA binding protein partners predicted using RBP map database. (C) Altered regulatory
motifs as detected by HaploReg v4.1.
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