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ARTICLE INFO ABSTRACT

Keywords: Background and purpose: Neurite orientation dispersion and density imaging (NODDI) is a new diffusion MRI
Glioma technique that has rarely been applied for glioma grading. The purpose of this study was to quantitatively
Magnetic Resonance Imaging evaluate the diagnostic efficiency of NODDI in tumour parenchyma (TP) and peritumoural area (PT) for grading
giefrf::ion gliomas and detecting isocitrate dehydrogenase-1 (IDH-1) mutation status.

Methods: Forty-two patients (male: 23, female: 19, mean age: 44.5 y) were recruited and underwent whole brain
NODDI examination. Intracellular volume fraction (icvf) and orientation dispersion index (ODI) maps were
derived. Three ROIs were manually placed on TP and PT regions for each case. The corresponding average values
of icvf and ODI were calculated, and their diagnostic efficiency was assessed.

Results: Tumours with high icvfrp (=0.306) and low icvfpr (<0.331) were more likely to be high-grade gliomas
(HGGs), while lesions with low icvfrp (< 0.306) and high icvfpr (> 0.331) were prone to be low-grade gliomas
(LGGs) (P < 0.001). A multivariate logistic regression model including patient age and icvf values in TP and PT
regions most accurately predicted glioma grade (AUC = 0.92, P < 0.001), with a sensitivity and specificity of
92% and 89%, respectively. However, no significant differences were found in NODDI metrics for differentiating
IDH-1 mutation status.

Conclusions: The quantitative NODDI metrics in the TP and PT regions are highly valuable for glioma grading. A
multivariate logistic regression model using the patient age and the icvf values in TP and PT regions showed very
high predictive power. However, the utility of NODDI metrics for detecting IDH-1 mutation status has not been
fully explored, as a larger sample size may be necessary to uncover benefits.

Isocitrate dehydrogenase

1. Introduction and monitoring treatment response. The unique advantages of this

technique make it well-poised to answer questions about tumour

Gliomas account for approximately 30% of all brain and central
nervous system tumours and 80% of all malignant brain tumours
(Goodenberger & Jenkins, 2012). Accurate preoperative localization,
diagnosis, and grading are highly important for proper treatment
planning and selection in all phases of glioma. Diffusion-weighted
imaging (DWI) is increasingly used as an imaging biomarker for the
detection and characterization of gliomas as well as for prognostication

biology at a cellular level as well as the microstructure of peritumoural
white matter (White et al., 2014).

Advanced diffusion techniques, such as diffusion tensor imaging
(DTI) and diffusion kurtosis imaging (DKI), have been widely used for
glioma grading, and their diagnostic efficiency has gradually improved
(Tropine et al., 2004; Bai et al., 2016). Newly developed neurite or-
ientation dispersion and density imaging (NODDI) is an advanced

Abbreviations: NODDI, neurite orientation dispersion and density imaging; TP, tumour parenchyma; PT, peritumoural area; icvf, intracellular volume fraction; ODI, orientation dis-
persion index; 2-HG, 2-hydroxyglutarate; NAWM, contralateral normal-appearing white matter
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diffusion technique that assumes a three-compartment biophysical
tissue model, including intracellular, extracellular, and cerebrospinal
fluids within a single voxel. This technique enables inference and
quantification of the direction and structure of neurites (axons and
dendrites) and provides valuable insights about tumour physiology
(Zhang et al., 2012). The representative parameters of NODDI are in-
tracellular volume fraction (icvf) and orientation dispersion index
(ODI). Recently, NODDI has been applied to analyse stroke (Adluru
et al., 2014), focal cerebral cortical dysplasia (Winston et al., 2014) and
Parkinson's disease (Kamagata et al., 2016). Furthermore, Wen et al.
(Wen et al., 2015) determined the feasibility of NODDI for character-
izing gliomas with multiband echo planner imaging in 7 T MRI, and
found that, similar to 3T MRI, the data quality was clinically accep-
table. To date, NODDI has rarely been applied for grading gliomas.

The 2016 World Health Organization Classification of Tumours in
the Central Nervous System, for the first time, uses molecular para-
meters and histology to define many tumour entities (Louis et al.,
2016). The most prominent change is that the new edition incorporates
the status of isocitrate dehydrogenase (IDH) into glioma diagnosis, with
the majority of IDH mutations being IDH-1 positive (Hartmann et al.,
2009). Regardless of glioma grade, patients with IDH-1 positive muta-
tions have a better chance of survival (Hartmann et al., 2009; Weller
et al., 2013; Hartmann et al., 2010; Weiler & Wick, 2012). Currently,
magnetic resonance spectroscopy (MRS) can be used to determine the
mutation status of IDH by detecting the 2-hydroxyglutarate (2-HG) level
because IDH-1-positive gliomas express more 2-HG than IDH-1-negative
gliomas (Andronesi et al., 2013; Bertolino et al., 2014). However, ac-
curate detection of the 2-HG concentration by MRS is highly dependent
on the magnetic field intensity, and high false positivity rates limit its
clinical application (Bertolino et al., 2014). In addition, some studies
have applied dynamic susceptibility contrast MRI (DSC-MR), DTI, DKI
and DWI for non-invasive assessment of IDH-1 mutation status with
promising results (Kickingereder et al., 2015; Lee et al., 2015; Xiong
et al., 2016; Hempel et al., 2017a; Hempel et al., 2017b). Their results
showed that patients with IDH-1 mutations have higher apparent dif-
fusion coefficient (ADC) values but lower mean kurtosis (MK), frac-
tional anisotropy (FA) and relative cerebral blood volumes. However,
the utility of NODDI for detecting IDH-1 mutation status is unknown.

Therefore, the purpose of this study was to assess the value of
NODDI metrics (icvf and ODI) in grading gliomas and detecting IDH-1
mutation status.

2. Materials and methods
2.1. Patients

This study was approved by the Research Ethics Committee of The
First Affiliated Hospital of Sun Yat-sen University according to the
ethical guidelines for human research and is compliant with the Health
Insurance Portability and Accountability Act (HIPAA). Written in-
formed consent was obtained from adult patients or their legal guar-
dians.

From May 2014 to October 2016, 90 patients with brain tumours
who had not received chemotherapy, steroid treatment or stereotactic
biopsy were prospectively evaluated by conventional and whole brain
advanced diffusion-weighted images (DWI). All cases of pathologically
confirmed gliomas were included in our study, and the exclusion cri-
teria were as follows: a) the acquired MRI images had serious artefacts
that could affect accurate diagnosis; b) the tumour volume was < 20
mm?; ¢) the patient had recurrent gliomas. After exclusion, 42 patients
(male: 23; female: 19; age range: 13-76 years; mean age: 44.5 years)
were included in the study. Among them, 18 patients with low-grade
gliomas (LGGs) and 24 patients had high-grade gliomas (HGGs). The
detailed pathological results are presented in Table 1. All the tumours
were resected three weeks after MRI examination, and the relevant
clinical information was collected.
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Table 1
The clinical information of included patients.
Index High grade gliomas Low grade P
gliomas
Grade IV * Grade III * Grade II &
(n=16) (n=28) (n=18)
Age (mean, year) 51.8 46.5 37.2 0.011
Sex (male) 9 2 12 0.171
IDH-1
IDH-1 (+) 4 7 12 0.005
IDH-1 (-) 12 1 5%
Ki-67 0.37 0.22 0.04% < 0.001

*: Glioblastoma, IDH-1 mutant (n = 4); Glioblastoma IDH-1 wild type (n = 12).
#: Anaplastic astrocytoma, IDH-1 mutant (n = 1); Anaplastic oligoden-
troglioma NOS (n = 3); Oligodentroglioma NOS (n = 3); Oligodentroglioma
IDH-1 mutant and 1p/19q codeleted (n = 1).

&: Diffuse astrocytoma, IDH-1 mutant (n = 7); Diffuse astrocytoma, IDH-1 wild
type (n = 4); Diffuse astrocytoma NOS (n = 1); Oligodentroglioma NOS
(n = 6).

$: one patient with grade II glioma without the specific gene examination re-
sult.

2.2. MRI protocol and data post-processing

2.2.1. Conventional MRI

Brain MRI was performed on all patients using a 3T MR system
(Magnetom Verio, Siemens Medical Solutions, Erlangen, Germany) with
12 phased-array head coils. Transversal T2-weighted images (repetition
time (TR): 4000 ms; echo time (TE): 100ms; field of view (FOV):
230 mm X 230 mm; slice thickness: 5mm; slice gap: 0.5mm; voxel
resolution: 0.7 mm X 0.6 mm X 6.0mm), transversal T1-weighted
images (TR: 400 ms; TE: 8.9 ms; FOV: 230 mm X 230 mm; slice thick-
ness: 5 mm; slice gap: 0.5 mm; voxel resolution:
0.9mm x 0.7 mm X 6.0 mm) and coronary fluid-attenuated inversion
recovery images (TR/TE: 9000 ms/110 ms; inversion time: 2500 ms;
FOV: 260 mm X 260 mm; slice thickness: 5mm; slice gap: 0.5 mm;
voxel resolution: 0.9 mm X 0.7 mm X 6.0 mm) were obtained. Post-
contrast sagittal 3D T1-weighted images (TR: 1880 ms; TE: 2.62 ms;
section thickness: 1 mm; FOV: 256 mm X 256 mm; voxel resolution:
0.7mm X 0.7mm X 0.7mm) were obtained after whole brain ad-
vanced DWI imaging. Contrast media (0.1 mmol/kg body weight of Gd-
DTPA, Magnevist, Schering, Berlin, Germany) was injected at a rate of
2ml/s, followed by a 20-ml 0.9% saline flush using the same injection
speed.

2.2.2. Whole brain advanced DWI

The Echo planar imaging (EPI) diffusion-weighted data were ac-
quired along 30 diffusion gradient directions, with three b values (0,
1000, and 2000 s/mm?) for each direction. The sequence parameters
were as follows: TR, 5500 ms; TE, 83.6 msec; FOV, 220 x 220 mm?
matrix size, 110 X 110; slice thickness: 4 mm; and acquisition time,
6.3 min. All datasets were visually inspected in each orthogonal view
(axial, sagittal, and coronal).

2.2.3. Data processing and ROI placement

All data was transformed to nifti format. Eddy current correction
was applied to diffusion data (eddy correct, FSL). Then, the corre-
sponding NODDI metric maps, including icvf and ODI, were derived
using the NODDI MATLAB Toolbox (http://www.nitrc.org/projects/
noddi_toolbox). Diffusion-weighted images with b = 0 and 1000 s/mm?>
were used for DTI fitting. A map of mean diffusion (MD) and fractional
anisotropy (FA) was calculated using DKE software (Diffusion Kurtosis
Estimator, http://www.nitrc.org/projects/dke).

All the NODDI, DTI metrics, and T;WI enhancement maps were co-
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Fig. 1. An example of putting the ROIs in a co-registrated enhanced T1 weighted image (a, d, g), intracellular volume fraction (icvf: b, e, h) and orientation dispersion
index (ODI: ¢, f, I) maps, respectively. a, b, c: in tumour parenchyma, ROI was designed to be as large as possible to cover the tumour parenchyma; d, e, f: ROI was
within 1 cm from the outer enhancing tumour margin in peritumoural area; g, h, i: ROI was placed in contralateral normal-appearing white matter.

registered via voxel-based nonlinear registration methods using SPM 8
(Statistical Parametric Mapping, London, UK, http://www.fil.ion.ucl.
ac.uk/spm). ROIs were drawn in ImageJ (Version 1.46r, NIH, USA)
based on the consensus of two experienced radiologists. According to
fluid attenuated inversion recovery (FLAIR) and contrast enhanced T;
weighted images, three ROIs were placed on tumour parenchyma (TP),
peritumoural area (PT) and contralateral normal-appearing white
matter (NAWM) regions, avoiding the necrosis and cystic component
(Fig. 1). The PT area was defined by the following parameters: a) if the
tumour was obviously enhanced according to enhanced T; weighted
images, the PT area was considered to be within 1 cm from the outer
enhancing tumour margin; b) if the tumour was without obvious en-
hancement, according to FLAIR images, the PT area was considered to
be within 1cm from the relatively higher signal delineated tumour
margin. The size of the ROI in TP regions was designed as large as
possible in order to cover the tumour parenchyma, and in PT or NAWM

area, it was similar to each other in each tumour (Fig. 1). The mean
values of icvf, ODI, MD and FA in TP, PT and NAWM regions were
recorded, and the mean ratio values of TP to NAWM on icvf (ricvf) and
ODI (rODI) maps were calculated as well.

To determine the test-retest reliability of NODDI parameters in our
study, a neuroradiologist used the aforementioned method to delineate
the ROIs in 26 randomly selected patients.

2.2.4. Pathology and immunohistochemistry analysis

The nature and grade of the gliomas was determined according to
the 2016 WHO classification (Louis et al., 2016). Immunohistochemical
staining for Ki-67 was performed using the Envision method (Clone No.
UMAB107, dilution 1:300). The tumour sections were reviewed and
quantified based on the percentage of positive cells in the highest
density staining area; all cells with nuclear staining of any intensity
were considered positive, and the Ki-67 values were defined as the
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percentage of positive cells among the total cells counted (Alexiou
et al., 2014).

2.3. Statistical analysis

Statistical analysis was performed using SPSS (SPSS 20.0 Chicago).
The demographic characteristics and differences between tumour
grading were analysed by a Chi-square test or one-way ANOVA when
appropriate. The associations between parameters of quantitative
NODDI and DTI metrics and glioma grading were evaluated by uni-
variate and multivariate stepwise logistic regression models. Receiver
operating characteristic (ROC) curves were constructed to assess the
diagnostic efficiency of NODDI and DTI parameters on glioma grading,
and the area under the curve (AUC) along with the 95% CI was derived.
The optimal cut-off value for a continuous variable being transformed
into a binary variable was defined as the point on the ROC curve that
maximized the Youden index. Sensitivity, specificity and accuracy were
calculated. The intra-examiner consistency was assessed by interclass
correlation coefficients (ICC). The associations between quantitative
NODDI metrics and Ki-67 were assessed by Spearman correlation
coefficients. A P < 0.05 was considered statistically significant.

3. Results
3.1. Patients

Information about IDH-1 mutation screening and Ki-67 values was
available for 41 of the 42 patients included in this study. The detailed
information is shown in Table 1 and Fig. 2. No gender differences were
found among the different grades of gliomas. Overall, the patient age
increased as glioma grade increased. The age difference between the
grade IV and II patients was statistically significant (P = 0.002).
However, the incidence of IDH-1 mutation decreased as glioma grade
increased.

3.2. The interclass correlation coefficients of NODDI metrics

The interclass correlation coefficients of the test-retest reliability for
NODDI parameters in our study ranged from 0.591 and 0.991 (icvfrp:
0.991, 95% CIL: 0.979-0.996; ODIrp: 0.978, 95% CI: 0.951-0.990;
icvfyawm: 0.591, 95% CL: 0.087-0.816; ODIyawm: 0.854, 95% CL:
0.673-0.934; icvfpr: 0.881, 95% CI: 0.734-0.947; ODIpy: 0.842, 95%
CI: 0.648-0.929). The intra-examiner reliability for all parameters was
generally acceptable.

3.3. Diagnostic performance of NODDI and DTI metrics for grading gliomas

The univariate analysis showed that, in TP, the mean value of icvf,
ODI and FA was significantly higher in HGGs compared to LGGs, while
the mean value of MD was significantly lower in HGGs. Furthermore, in
the PT area, the mean value of icvf and FA was significantly lower in

Value
Value

R
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HGGs, while the mean value of MD was significantly higher in HGGs
(Fig. 3). No significant differences were observed in icvf, ODI and DTI
metrics of NAWM between HGGs and LGGs patients. Further, com-
paring the mean ratio values of icvf and ODI between HGGs and LGGs,
we found that the ratio of icvf and ODI was significantly higher in HGGs
than LGGs. ROC curves showed that the icvf in the TP area demon-
strated a significant diagnostic value for grading gliomas (AUC: 0.81,
95% CI: 0.66-0.95), and the specificity, sensitivity and accuracy of
optimal cut-off values (0.31) were 78%, 88% and 83%, respectively
(Tables 2 and 3).

The multivariate stepwise logistic regression showed that age
(OR =1.104) and icvf values in TP (OR = 12.169) and PT areas
(OR = 11.654) were statistically significantly associated with tumour
grading. The comprehensive score generated from the logistic
regression model (Score = —6.149 + 0.099  age + 2.499 xicvfrp +
2.456 = icvfpr) showed a high discrimination value for grading gliomas
(AUC = 0.92, P < 0.001). The optimal cut-off value for the score was
0.59, and the corresponding sensitivity, specificity and accuracy were
92%, 89% and 91%, respectively (Table 4) (Fig. 4). Further analysis
showed that tumours with high icvf values in TP (=0.306) and low icvf
values in the PT area (<0.331) were more likely to be HGGs, while
lesions with low icvf values in TP (< 0.306) and higher icvf values in
PT (> 0.331) were likely to be LGGs (P < 0.001) (Table 5).

In addition to differentiating between HGGs and LGGs, the differ-
ences among grade II, III and IV gliomas were further compared.
Compared to grade II gliomas, the icvf in TP and MD in the PT
area were significantly higher in grade III gliomas (TP: icvfy vs.
icvf = 0.246 = 0.130 vs. 0.403 = 0.135; P =0.011; PT:
MDy; vs. MDyyy = (1.085 * 0.229) X 10 >mm?/s vs. (1.547 * 0.444)
x 10~3mm?/s; P = 0.005). Similarly, the ricvf and rODI were
also significantly higher in grade III gliomas (ricvfy vs.
ricvfy; = 0.437 = 0.242 vs. 0.697 = 0.259; P = 0.028; rODIy; vs.
rODIy; = 1.295 = 0.498 vs.1.823 =+ 0.720; P = 0.035). ROC analysis
showed that icvf in TP had the highest diagnostic value (AUC: 0.82) and
the sensitivity, specificity and cut-off value were 88%, 72% and 0.26,
respectively. However, no significant differences were found in NODDI
and DTI metrics to discriminate grade IV from grade III gliomas.

3.4. Diagnostic performance of NODDI and DTI metrics for IDH-1 mutation
detection

Irrespective of the glioma grade, there were no significant differ-
ences in NODDI (Fig. 2) and DTI metrics to differentiate IDH-1-positive
from IDH-1-negative patients (Table 2).

Furthermore, the correlations between IDH-1 mutation status and
NODDI metrics were sub-analysed within each grade of glioma. For
grade IV gliomas, the mean value of ricvf was significantly higher in
patients with IDH-1 mutations (ricvipegzc+) Vs, rievE pric—y:
0.971 = 0.106 vs. 0.751 = 0.238; P = 0.029). The ROC curve for
ricvf demonstrated that the diagnostic value, sensitivity, specificity and
cut-off values were 0.88, 100%, 75% and 0.84, respectively. For grade

“i1p<0.05 2.5

Il DH-1(+)
Hl Grade 1l IDH-1(-)

Grade Ill

Bl Grade IV

.

Fig. 2. Statistic description maps (mean * SD) of the included patients with the different grades of gliomas and different IDH-1 mutation statuses.
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Fig. 3. Upper images (a, b, c, d, e) show a 51-year-old male with low grade gliomas (e, pathologically confirmed gemistocytic astrocytoma, haematoxylin-Eosin
(HE) x 10) which mainly is located in left temporal lobe and left basal ganglia region. Lower images (f, g, h, i, j) demonstrate a 61-year-old male with high grade
gliomas (j, pathologically proved as glioblastoma, haematoxylin-Eosin (HE) X 10) in the left frontal lobe. Both tumours had obvious necrosis on T2 weighted images
(a, ) and the tumour parenchyma showed vivid enhancement (b, g); however, the higher-grade glioma showed slightly higher ODI value (d, i) and, further, the icvf
map (c, h) showed that high grade glioma with higher icvf value in tumour parenchyma.

Table 2
Comparison of NODDI and DTI parameters between groups for tumour differentiation and IDH-1 status.
Variables Tumour differentiation IDH-1 status
LGG (n = 18) HGG (n = 24) P Negative (n = 18) Positive (n = 23) P
TP
icvf 0.246 = 0.130 0.401 + 0.119 < 0.001 0.357 = 0.128 0.322 + 0.159 0.441
ODI 0.299 =+ 0.058 0.360 = 0.078 0.009 0.340 += 0.058 0.327 + 0.089 0.591
FA 0.138 + 0.041 0.174 + 0.049 0.015 0.171 = 0.050 0.152 + 0.046 0.208
MD (%10~ >mm?/s) 1.609 = 0.321 1.299 = 0.272 0.002 1.379 *= 0.345 1.461 = 0.321 0.436
PT
icvf 0.448 + 0.130 0.315 + 0.155 0.006 0.321 = 0.142 0.410 + 0.165 0.075
ODI 0.278 + 0.089 0.245 + 0.065 0.180 0.243 = 0.074 0.262 + 0.067 0.402
FA 0.284 + 0.088 0.212 =+ 0.088 0.012 0.228 + 0.074 0.259 =+ 0.108 0.309
MD (%10~ 3mm?/s) 1.085 *= 0.229 1.458 = 0.373 0.001 1.373 = 0.327 1.251 = 0.398 0.301
TP/NAWM
icvf 0.437 + 0.242 0.770 += 0.241 < 0.001 0.701 * 0.279 0.576 =+ 0.300 0.179
ODI 1.295 =+ 0.498 1.679 = 0.571 0.028 1.658 *= 0.578 1.404 = 0.561 0.164

TP: tumour parenchyma; PT: peritumoural area; NAWM: normal-appearing white matter; icvf: intracellular volume fraction; ODI: orientation dispersion index; FA:
fractional anisotropy; MD: mean diffusion.

Table 3
Univariate, the area under the curves, the optimal cutoff values, and corresponding sensitivities and specificities based on ROC curves in grading gliomas.

Variables Cut-off value Sensitivity Specificity AUC (95% CI) P

NODDI parameter

TP icvf 0.306 0.875 0.778 0.806 (0.660, 0.952) 0.001
TP ODI 0.338 0.583 0.833 0.723 (0.569, 0.878) 0.014
PT icvf 0.331 0.625 0.889 0.731 (0.573, 0.890) 0.011
DTI parameter
TP FA 0.161 0.667 0.778 0.730 (0.574, 0.887) 0.011
TP MD 1.600 0.958 0.444 0.731 (0.577, 0.886) 0.011
PT FA 0.199 0.542 0.833 0.718 (0.561, 0.874) 0.017
PT MD 1.210 0.750 0.889 0.775 (0.625, 0.926) 0.002

TP: tumour parenchyma; PT: peritumoural area; icvf: intracellular volume fraction; ODI: orientation dispersion index; FA: fractional anisotropy; MD: mean diffusion
(X103 mm?/s).
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Table 4
The results of multivariate stepwise logistic regression analysis.
Variable b Beta OR (95% CI) P
Constant —6.419 - - 0.005
Age (year) 0.099 0.075 1.104 (1.016, 1.200) 0.020
TP icvf
Low (< 0.306) 1
High (=0.306) 2.499 0.684 12.169 (1.636, 90.527) 0.015
PT icvf
High (> 0.331) 1
Low (=<0.331) 2.456 0.673 11.654 (1.205, 112.692) 0.034
TP: tumour parenchyma; PT: peritumoural area.
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Fig. 4. ROC curves for icvfrp, icvf pr and the combining analysis of
the regression equation (Score = —6.149 + 0.099 * age + 2.499 « icvfrp +
2.456 xicvfpr) which demonstrated the highest discrimination value for
grading gliomas (AUC = 0.92, P < 0.001).

Table 5
Group analysis of the patients with different icvf values in different tumour
area.

Group LGG (n = 18) HGG (n = 24) Total P

TP icvf = N & PTicvf =N 13 (87%) 2 (13%) 15 < 0.001
TP icvf = N & PT icvf = P 1 (50%) 1 (50%) 2

TP icvf = P & PT icvf = N 3 (30%) 7 (70%) 10

TP icvf = P & PT icvf = P 1 (7%) 14 (93%) 15

TP: tumour parenchyma; PT: peritumoural area.
The values for TP and PT icvf were determined by regression analysis (TP icvf:
N =“ < 0.306”, P = “=0.306"; PT icvf: N = “ > 0.331”, P = “<0.331”).

II gliomas, the NODDI and DTI parameters were not statistically sig-
nificant for the detection of IDH mutations.

3.5. Correlation between NODDI metrics and Ki-67

The difference in Ki-67 expression between HGGs and LGGs was
significant (P < 0.001). The difference in Ki-67 expression among
grade II, III and IV gliomas were also significant (P < 0.001), and this
held true for any pairwise analysis (P < 0.023). The Ki-67 expression
was significantly higher in higher-grade gliomas.

NeuroImage: Clinical 19 (2018) 174-181

In the TP region, significantly positive correlations were found be-
tween Ki-67 expression and icvf and Ki-67 expression and ODI (icvf:
r = 0.429, P = 0.004; ODI: r = 0.530, P < 0.001), while the icvf in the
PT area was inversely correlated with Ki-67 expression (r = —0.498,
P = 0.003). The correlation coefficient for ODI was higher than that for
icvf (the corresponding scatter diagrams are shown in Fig. 5).

4. Discussion

For HGGs, NODDI metrics were significantly higher in the TP re-
gion, while the mean value of icvf was significantly lower in the PT
region. The icvf value could significantly differentiate grade II from III
gliomas. Combining the variables of patient age and mean values of icvf
in the TP and PT areas yielded the highest diagnostic performance for
grading gliomas. Furthermore, for grade IV gliomas, the mean value of
ricvf was significantly higher in IDH-1-positive patients.

NODDI was developed based on the hindered and restricted diffu-
sion models (Assaf & Cohen, 2000). Hindered diffusion characterizes
the water in the extra-cellular space as defined by the cellular mem-
branes of somas and glial cells (Zhang et al., 2012). Restricted diffusion
refers to the diffusion of water in restricted geometries, and it describes
the water in the intra-cellular space bounded, for example, by axonal or
dendritic membranes (Zhang et al., 2012). Glioma is characterized by
varying degrees of hypercellularity, nuclear pleomorphism, endothelial
proliferation and microvascular density. All these transformations will
replace normal brain tissue and infiltrate adjacent brain tissue, re-
sulting in alterations in the brain microenvironment. Compared with
NAWNM, gliomas cause axonal and neuronal fibre projection disruption,
resulting in reduced intracellular diffusivity, which leads to a lower icvf
value. The ODI was higher for glioma than for NAWM, which could be
explained by the tumour tissue tending to be isotropic due to neuronal
fibre disruption.

HGGs, compared with LGGs, have a higher degree of cellularity,
nuclear pleomorphism, endothelial proliferation and microvascular
density, which could highly restrict the movement of water molecules
via hindered and restricted diffusion. Therefore, HGGs are expected to
have a higher icvf value than LGGs. Similarly, in HGGs, the destruction
of normal brain tissue is more obvious than in LGGs, and it is prone to
be more isotropic, resulting in a higher ODI value. Our results were in
accordance with this hypothesis. In addition, we analysed the correla-
tion of Ki-67 expression with NODDI metrics. Ki-67 expression was used
to predict cellular proliferation (Habberstad et al., n.d.; Donato et al.,
2007). Our results indicate that significantly higher cellular prolifera-
tion levels are found in HGGs, and the mean value of icvf and ODI are
significantly positively correlated with the Ki-67 values in TP. This
result is also consistent with our hypothesis. We might also infer that
this proliferation could be non-invasively predicted by NODDI metrics.

On the other hand, HGGs grow in a more aggressive manner than
LGGs and infiltrate adjacent brain tissue (Walker et al., 2011). The
tumour infiltration but not replace the brain parenchyma could affect
the integrity of normal brain tissue, which would decrease hindered and
restricted diffusion in peritumoural areas. Therefore, we assumed that
the icvf of HGGs is lower than LGGs in the PT area. Furthermore, the
icvf of LGGs was lower than contralateral NAWM. Our results did show
a similar tendency, and the mean value of icvf in the PT area was sig-
nificantly lower in HGGs than in LGGs.

A variety of studies using DTI and DKI for grading gliomas have
shown that DKI is a better diagnostic tool than DTI, and MK is the best
independent predictor for stratifying glioma grades (Van Cauter et al.,
2012). Our results also indicate that NODDI parameters are superior to
DTI metrics in grading gliomas. In the present study, we did not com-
pare the diagnostic efficacy of DKI and NODDI for differentiation of
glioma grade. However, compared with a newly published meta-ana-
lysis of the utility of DKI for grading gliomas (Falk Delgado et al., n.d.),
the multivariate logistic regression model with NODDI metrics in our
study showed comparable diagnostic value and similar sensitivity and
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Fig. 5. Scatter diagrams of NODDI metrics with Ki-67. a, b, Ki-67 expression was significantly positively correlated with icvf and ODI in the tumour parenchyma and

¢, Ki-67 expression was inversely correlated with icvf in the peritumoural area.

specificity. Restricted spectrum imaging (RSI) is an advanced DWI
modelling technique that enables quantitative estimates of nuclear
volume fraction. However, it was not widely available. Several studies
(White et al., n.d.; Kothari et al., 2013; McDonald et al., 2016) have
focused on tumour response monitoring and HGG margin delineation,
but RSI has rarely been applied for grading gliomas.

Furthermore, recent studies on the identification of IDH-1 mutation
status by DTI (Xiong et al., 2016) and DKI (Hempel et al., 2017b) have
shown that IDH-1-mutated gliomas have lower maximum FA and mean
MK values. The authors hypothesized that lower FA and MK values
represent more homogeneous cellular architecture and lower cell den-
sity (Beppu et al., 2005; Kinoshita et al., 2008; Popov et al., 2013).
However, our study demonstrated that, in grade IV gliomas, the mean
value of ricvf is significantly higher in IDH-1 positive patients. The icvf
is positively correlated with tumour cellularity, which contradicts the
aforementioned results from DTI and DKI. Our results still need be
further applied to larger data sets.

Our study has three main limitations. First, our results show that the
utility of NODDI metrics in detecting IDH-1 mutation status has not
been fully established, as a larger group size may demonstrate benefits.
Second, since gliomas are heterogeneous tumours and the im-
munohistological sections were not registered with the ROIs, the ROI-
based method might cause some bias, especially in HGGs. Moreover,
our direction setting of diffusion gradient and voxel size may be not
optimized for the NODDI model. While we used this setting because it is
widely available for clinical scanner and feasible for routine MR exam.

5. Conclusions

As a new diffusion MRI technique, NODDI shows great potential for
glioma grading. It is promising that the regression model utilizing age
and icvf values has a very high ability to predict glioma grade.
However, the utility of NODDI in detecting IDH-1 mutation status has
not been established due to small group size. Furthermore, NODDI
metrics might offer great potential for providing additional information
on the cellular proliferation of gliomas.
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