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Abstract

Gut immunity is regulated by intricate and dynamic mechanisms to ensure homeostasis

despite a constantly changing microbial environment. Several regulatory factors have been

described to participate in feedback responses to prevent aberrant immune activity. Little is,

however, known about how transcriptional programs are directly tuned to efficiently adapt

host gut tissues to the current microbiome. Here we show that the POU/Oct gene nubbin

(nub) encodes two transcription factor isoforms, Nub-PB and Nub-PD, which antagonisti-

cally regulate immune gene expression in Drosophila. Global transcriptional profiling of

adult flies overexpressing Nub-PB in immunocompetent tissues revealed that this form is a

strong transcriptional activator of a large set of immune genes. Further genetic analyses

showed that Nub-PB is sufficient to drive expression both independently and in conjunction

with nuclear factor kappa B (NF-κB), JNK and JAK/STAT pathways. Similar overexpression

of Nub-PD did, conversely, repress expression of the same targets. Strikingly, isoform co-

overexpression normalized immune gene transcription, suggesting antagonistic activities.

RNAi-mediated knockdown of individual nub transcripts in enterocytes confirmed antagonis-

tic regulation by the two isoforms and that both are necessary for normal immune gene tran-

scription in the midgut. Furthermore, enterocyte-specific Nub-PB expression levels had a

strong impact on gut bacterial load as well as host lifespan. Overexpression of Nub-PB

enhanced bacterial clearance of ingested Erwinia carotovora carotovora 15. Nevertheless,

flies quickly succumbed to the infection, suggesting a deleterious immune response. In line

with this, prolonged overexpression promoted a proinflammatory signature in the gut with

induction of JNK and JAK/STAT pathways, increased apoptosis and stem cell proliferation.

These findings highlight a novel regulatory mechanism of host-microbe interactions medi-

ated by antagonistic transcription factor isoforms.
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Author summary

The numerous human diseases caused by aberrations in intestinal immunity and integrity

urge a better understanding of the regulatory interactions that balance the output of host-

microbe interactions. In this study, we discovered a novel phenomenon of transcriptional

antagonism exerted via two isoforms encoded from the same gene. Balanced expression

of the two forms was necessary for ensuring normal immune gene expression and main-

taining immunological homeostasis in the Drosophila gut. We performed genetic manipu-

lations to skew the balance of these isoforms. This resulted in a dysregulated immune

system, changed levels of gut bacteria and altered host lifespan. Moreover, when we over-

expressed the activating form flies quickly succumbed to oral bacterial infection despite

an enhanced immune response. We suggest that antagonistically acting transcription fac-

tor isoforms may constitute a general mechanism for adjusting gene expression in various

biological processes.

Introduction

The innate immune system of mammals and insects is regulated by intracellular signaling

pathways and transcriptional programs that show remarkable signs of evolutionary conserva-

tion. Well-known examples are the Toll/Toll-like receptor (TLR), immune deficiency (IMD)/

tumor necrosis factor-α (TNF-α), JAK/STAT and JNK signaling pathways and their respective

downstream transcriptional activators, nuclear factor kappa B (NF-κB), STAT and AP-1,

which regulate innate immune responses in both Drosophila and mammals [1–4]. Pathway

activation triggers a vast set of genes that encode effector molecules such as antimicrobial

peptides (AMPs) and cytokines, which in mammals also support the induction of adaptive

immune responses [5]. The underlying regulation is complex, especially in the intestine and

other barrier epithelia that are in constant contact with the commensal microbiota. Improper

control of the innate immune system and loss of tissue homeostasis can cause inflammation

and other autoimmune diseases, and may lead to system failure and early death [1, 6]. In Dro-
sophila, the IMD and Toll pathways and downstream NF-κB homologs, Relish (Rel) [7] and

Dorsal-related immunity factor (Dif) [8], are crucial activators of immune genes in response

to infection. About 25% of Drosophila immune-regulated genes (DIRGs) are, however,

expressed independently of these pathways [9]. Additional transcriptional activators [10–13]

as well as repressors [14–17] have been implicated in the immune response during specific

conditions. However, little is known concerning how such factors compete for the same targets

and interact to balance responses and maintain homeostasis.

The POU/Oct transcription factor family is a subclass of the homeodomain proteins pres-

ent in all metazoans [18] and encompasses crucial regulators of developmental decisions,

metabolism, immunity and cancer [19]. Human Oct-1 (POU2F1) was originally discovered as

a regulator of adaptive immune responses [20] and has more recently been shown to regulate

numerous target genes involved in both innate and adaptive immunity, stress resistance,

metabolism and cellular proliferation [21]. In a yeast screen for transcriptional regulators of

innate immune response genes, we have previously isolated three candidates from the Dro-
sophila POU/Oct family [22]. The Oct-1 homolog, nub, was subsequently found to encode a

negative regulator (Nub-PD) of NF-κB/Rel-driven immune gene expression in flies [15]. Nub-

PD is necessary to control aberrant gene activation as nub1 mutant flies are short-lived and

have a severely distorted gut microbiota [23]. Both Oct-1 and Nub regulate target genes by

binding to the canonical octamer DNA sequence motif (ATGCAAAT) or variants thereof, via
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their C-terminal POUS and POUH domains [24–26]. Thus, the DNA-protein interaction sur-

faces appear conserved, further emphasizing the evolutionary relationship of these ancient

transcriptional regulators.

It has earlier been reported that alternative transcript forms of nub exist [27]. However,

functional studies have, to our knowledge, been focused solely on the Nub-PD isoform. In this

study, we demonstrate that nub encodes a novel isoform, Nub-PB, which is a strong activator

of immune gene expression. Furthermore, both isoforms are expressed in midgut enterocytes

and regulate the same immune target genes antagonistically. We show that such tuning of the

transcriptional output of Nub target genes is crucial for host immunity, fitness and survival.

Results

Nub-PB is an activator of immune gene expression

Recent public annotations indicate two promoters of the nub gene, which in combination with

promoter-specific splicing produce two independent proteins, Nub-PB (104 kDa) and Nub-

PD (65 kDa; Fig 1A). Both proteins contain identical C-terminal domains, in which the DNA-

binding POUS and homeodomain (POUH) are located. Thus, Nub-PB and Nub-PD are

expected to bind the same DNA sequences, while abilities for protein-protein interactions are

likely to differ due to the distinct N-termini of the proteins. Initial experiments were aimed

at detecting and elucidating any immune-regulatory features of Nub-PB. We applied the

Gal4-UAS system and constructed a UAS-nub-RB line to drive its overexpression in immune

competent tissues (midgut and fat body) using the c564-Gal4 driver. To simultaneously detect

the ability of Nub-PB to regulate AMP gene expression, we combined c564>nub-RBwith a

lacZ reporter construct for Cecropin A1 (CecA1). This resulted in very prominent β-galactosi-

dase activity in the abdominal fat body (Fig 1B). Nub-PB hence appears to function as a tran-

scriptional activator of immune effector genes, in stark contrast to Nub-PD.

We carried on by analyzing the global transcriptional profiles of c564>nub-RB in compari-

son to driver controls (c564>+, from hereon referred to as wild type [wt]). To enable expres-

sion analysis of fat body and gut independently, mRNA from the fly body without head and

gut (“rest”) and the digestive system (“gut”) were extracted and analyzed separately. The raw

data were normalized, preprocessed and filtered to remove genes that were not expressed

above the detection level (S1 Table; Methods). Unbiased principal component analysis (PCA),

correlation analyses and hierarchical clustering showed that the tissue variable (“rest” versus

“gut”) accounted for the largest distinction, as expected (PC1, explains 47% of the variance;

Figs 1C and S1A). The PCA furthermore indicated that genotype accounted for the second

largest separation in the dataset (PC2 explains 9.5%; most apparent in “gut”). After adjusting

p-values for a false discovery rate of 1%, 1177 (rest) and 545 (gut) probes indicated significant

differential expression (S1 Table), of which 132 were in common for both tissues (S1B Fig, S2

Table). Gene set enrichment analyses (GSEA) according to “Biological process” of upregulated

transcripts in respective tissue resulted in a single major GO cluster encompassing various

aspects of immunity (Fig 1D and 1E, S3 Table). Of transcripts that were found downregulated,

the only significant subnode in “rest” was “proteolysis” (also significant for upregulated probes

in “rest”), whereas those from gut samples formed GSEA clusters of several overlapping cellu-

lar and developmental processes such as cell fate commitment, organ development, Notch sig-

naling pathway and sensory responses along with GO categories of antibacterial defense and

transcriptional regulation, suggesting a multifaceted role of Nub-PB in this organ (S2 Fig, S3

and S4 Tables). To detect additional DIRGs, the dataset was manually curated and run against

a collection of putative immune genes (https://lemaitrelab.epfl.ch/resources, accessed February

2015), which yielded 152 DIRGs in total (Fig 1F, S5 Table). Overall, a striking coherence with
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Fig 1. Nub-PB, encoded from the nub gene locus, is a strong activator of immune-regulated genes in vivo. (A) The nub gene locus encodes the nub-RB
and nub-RD transcripts from separate promoters, resulting in Nub-PB (104 kDa; yellow) and Nub-PD (65 kDa; magenta) proteins, respectively. POUS (dark

red box), and POUH (turquoise box) are indicated. Nub-specific insertion mutants and Gal4 drivers are indicated with encircled numbers on the gene, and

with a key in the right panel. (B) Overexpression of nub-RB by c564-Gal4 activates CecA1-lacZ expression in fat body (blue). Adult females were maintained

at 25 ˚C prior to fixation and overnight β-gal staining. Arrowheads indicate an unfolded wing phenotype frequently scored in flies with nub-RB
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well-characterized DIRGs typical for activated Toll, IMD and JAK/STAT pathways was

observed. In summary, the global expression analysis demonstrated a broad immune activa-

tion following nub-RB overexpression, which further indicates that Nub-PB is a transcriptional

activator of immune genes.

Nubbin isoforms regulate the same genes in an antagonistic manner

A comparative analysis of the differentially expressed genes in response to Nub-PB overexpres-

sion (this study) and nub1 mutant flies (disrupts Nub-PD, but not Nub-PB expression) [15, 27]

revealed an extensive overlap as 65 immune-regulated genes were upregulated in both tran-

scriptional profiles (S6 Table). Out of the most highly expressed immune-process genes in

“rest” (FC>10, 26 genes), 25 were upregulated at least 2-fold in nub1 mutants. To compare

the capacity of Nub-PB and Nub-PD to regulate AMP genes, c564-driven overexpression of

either transcriptional regulator was performed in parallel experiments (Fig 2A). In validation

of the transcriptional profiling, overexpression of nub-RB promoted strong upregulation of all

eight assayed AMP genes (AttA, AttB, CecA1,CecC,DptA,Drs,Drsl2 and Drsl3) from whole fly

extracts. Conversely, overexpression of nub-RD decreased CecA1,DptA,Drsl2 and Drsl3 signif-

icantly compared to controls. We next evaluated the combined effect of the two isoforms in

co-overexpression assays. To circumvent developmental and secondary effects, a temperature

sensitive (ts) c564-Gal4; Tub-Gal80 driver line was applied. This resulted in expression levels of

AttA, CecA1,CecC and DptA similar to those in the control cohort (Fig 2B), indicating that the

two Nub isoforms overall neutralize each other’s activity. Co-expression did not dampen the

increased expression of Drsl3, whereas Drsl2was partially restored to control levels, suggesting

that Nub-PB induces these targets with greater affinity than the corresponding repression

mediated by Nub-PD. We conclude that the Nub isoforms are able to regulate the expression

of several AMP genes in an antagonistic manner.

Nub-PB and Relish synergistically activate immune genes

It has previously been shown that Nub-PD is a repressor of Rel-target genes in the absence of

infection [15]. The observation that Nub-PB overexpression activates the same gene set (S6

Table) prompted us to explore its putative cooperation with Rel. Co-transfection of mbn-2

cells with nub-RB and Rel induced CecA1-luciferase expression significantly stronger

(42.8-fold) than single transfections (nub-RB, 18.6-fold; Rel, 2.2-fold), which also indicated a

synergistic effect (Fig 2C). We therefore hypothesized that Nub-PB acts as a co-activator of

Rel. To investigate this, AMP expression was assayed in whole flies following overexpression

of nub-RB in a Relmutant (RelE20) or wild type background (Fig 2D–2F). To induce a robust

IMD pathway response, separate cohorts were subjected to systemic infection with Enterobac-
ter cloacae β12. Three AMP genes were assayed based on their known dependency of Rel and

proximal Nub/Oct-sites: DptA (Rel-dependent, one Nub/Oct-site), CecA1 (Rel-dependent, sev-

eral Nub/Oct-sites) [15, 28] and Drsl2 (Rel-independent, one Nub/Oct-site) [29]. Of note,

overexpression. (C-E) Analysis of global mRNA expression profiles in gut tissues and carcasses without heads (rest) from flies overexpressing nub-RB
(c564>nub-RB) in comparison to controls (c564>+). (C) Principal component analysis was conducted using all transcripts found to be expressed over

background signal in at least one cohort. Samples are colored group-wise according to genotype and subdivided according to tissue, i.e. dissected intestines

(gut) and body without head and gut (rest). (D-E) Gene set enrichment analysis (GSEA) of the transcripts found upregulated in “rest” (795 hits; D) and

“gut” (159; E). The orange nodes corresponding to different Gene Ontology clusters were found with increasing statistical significance after Benjamini and

Hochberg FDR correction (p<10−3) whereas non-colored nodes were considered non-significant (p>10−3). Circle sizes reflect the number of genes found

within each biological process. The gray-zoned areas highlight statistically enriched nodes relating to immune system processes. (F) Merged list of selected,

differentially expressed DIRGs (see S5 Table for full list). Fold changes (FC) reflect mean values from 3–4 independent biological replicates; bt, below signal

or significance threshold; # putative DIRGs derived from https://lemaitrelab.epfl.ch/resources; p.w., pathway.

https://doi.org/10.1371/journal.ppat.1006936.g001
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binding of Nub to the proximal promoter region of DptA and CecA1 has been demonstrated

biochemically [15]. Overexpression of Nub-PB was sufficient to drive expression of CecA1, but

not DptA, in absence of Rel and independent of infection status (Fig 2D and 2E). Drsl2, specifi-

cally expressed in the gut via the JAK/STAT pathway [29] was, as expected, not affected by the

RelE20 mutant background (Fig 2F). Taken together, the data suggest that Nub-PB can influ-

ence AMP gene transcription both independently of, and together with Rel.

An Oct sequence cluster is required for full Cecropin A1 induction by Nub-

PB in vivo
The proximal promoter region of CecA1 contains a cluster of six Oct/Oct-like sites required

for Nub-PD mediated repression of a CecA1-luciferase reporter construct in vitro [15]. To

investigate the requirement of this cluster for the regulatory capacity of Nub-PB and Nub-PD

Fig 2. Nub-PB and Nub-PD regulate the same genes in an antagonistic and Relish-dependent manner. (A) Quantification of relative mRNA expression from

selected AMP genes along with each isoform of nub (inserts), from whole fly extracts using RT-qPCR following overexpression of nub-RB (yellow bars) or nub-RD
(magenta bars) using c564>Gal4 (means ± SE,N = 3). (B) Quantification of relative mRNA expression from selected AMP genes along with each isoform of nub
(inserts), from whole fly extracts using RT-qPCR following overexpression of nub-RB (yellow bars) or both (purple bars) using c564>Gal4ts (means ± SE,N = 4). (C)

Transfection of mbn-2 cells with a pA10-CecA1-luc construct (15) with or without expression plasmids for nub-RB and/or Rel. Cells were subsequently stimulated

with bacterial peptidoglycan (in the form of crude LPS) to induce a robust immune response. The graph depicts mean values of relative luciferase activity ± SE

(N = 3). (D-F) Quantification of relative mRNA expression from selected AMP genes using RT-qPCR following c564-driven overexpression of nub-RB, with or

without a Rel mutant background (RelE20, orange bars) compared to controls and with or without systemic infection with E. cloacae (means ± SE;N = 3). Lower

panels display proximal promoter regions ofDptA,CecA1 andDrsl2. Oct (ATSBAAAW;●), and Oct-like (ATTCAAAT;●) motifs are depicted in the proximal

promoter region of each gene [15]. κ = κB-site; S = Stat92E-site; A = AP-1 site. Bars represent means ± SE. Asterisks and distinct letters denote significant differences

(�p<0.05; ��p<0.01; ���p<0.001; distinct lettering, p<0.05).

https://doi.org/10.1371/journal.ppat.1006936.g002
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in vivo, the expression of different reporter constructs was analyzed in female (Fig 3) and male

flies (S3 Fig). As expected, flies carrying the CecA1-lacZ construct with an Oct cluster deletion

(pA10ΔOct; Fig 3A) displayed a derepressed and hence stronger reporter gene expression in

fat body than flies with the complete upstream region (Figs 3B, 3C, 3H and S3A and S3B).

Since deletion of the cluster promoted reporter gene expression per se, the incubation time was

decreased to circumvent saturation of the response (Figs 3D–3G and S3C–S3F) and combined

with c564-driven overexpression of Nub-PB (Figs 3F, 3G and S3E and S3F). The full-length

Fig 3. The Oct motif cluster is required for both Nub-PD-dependent repression and Nub-PB-driven activation of the CecA1-lacZ reporter. (A) Schematic

representation of the CecA1-lacZ-constructs carried by transgenic fly strains. The pA10 construct contains 760 bp of 5’ upstream region from the CecA1 gene

(horizontal line), and 62 bp of 5’ UTR (open box) fused to an SV40 leader (filled box), providing a translational start site in frame with the E. coli lacZ coding sequence

(hatched box) [15, 47]. Numbers refer to positions relative to the transcription start site (+1). Location of regulatory sequence motifs, as indicated by symbols and

letters, is in scale. A previously characterized infection-induced response element (IRE) contains a κB-like site (“κ”), GATA site (“G”) and R1 site (“R”), and an

additional κB site located 50 in close proximity of the IRE [56]. The cluster of Oct sequence motifs contains several consensus Oct sequences (●) and Oct-like (●)

sequences [15]. The pA10ΔOct construct has an internal deletion of the whole Oct cluster (−336 to −150) but is otherwise identical to the pA10 construct. (B-G) CecA1-

driven β-gal staining in fat body and other tissues in female flies carrying either the pA10 construct (B, D, F) or the pA10ΔOct construct (C, E, G), in combination with

c564-Gal4 driven overexpression of nub-RB (F, G) or in control flies without c564-Gal4 (B-E), with the genotypes as indicated. Incubation with the β-gal substrate X-gal

was either carried out overnight (O.N.) or for 2 h (D-G). Note the reporter gene expression in the thorax region and legs (F-G) as indicated by arrows. (H) Estimate of

X-gal intensity, by conversion of blue pixels in images to 8-bit grayscale values ranging from 0 (white, no staining) to 255 (black) (N = 6). Group letters denote

significantly different cohorts (p<0.05). (I) Schematic model of CecA1-lacZ regulation by Nub-PD and Nub-PB via the Oct sequence cluster. Nub-PD (orange) binds

to the Oct cluster and prevents CecA1 expression in healthy flies, also in the presence of Relish (blue) and Nub-PB (green) (B and D). In constructs lacking the Oct

cluster (pA10ΔOct), Nub-PD cannot bind and repress the CecA1 promoter, which leads to moderate activation (++) of reporter gene expression (C and E).

Overexpressed Nub-PB will compete with Nub-PD for binding to the Oct cluster and hyperactivates (++++) expression from the intact promoter (F), while the

activation is not as prominent (+++) in constructs lacking the Oct cluster (G).

https://doi.org/10.1371/journal.ppat.1006936.g003
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pA10 CecA1-lacZ reporter gene responded strongly to Nub-PB overexpression (Fig 3F and 3H;

also shown in Fig 1B). Overexpression combined with the Oct cluster deletion did, however,

not promote full transcriptional activation (Fig 3G and 3H). Still, an intermediate level of β-gal

reporter gene expression was observed, significantly stronger than in the Oct deletion control

(Fig 3E and 3H), suggesting that the CecA1 locus may contain additional Nub target sequences

outside the pA10ΔOct region. We conclude that both Nub isoforms require the Oct cluster for

accurate regulation of the CecA1 gene (Fig 3I).

Spatial co-localization of Nub isoforms

Transcription factor antagonism requires a co-localized expression. We explored the spatial

distribution in vivo of nub-RB and RD transcripts from dissected tissues of adult male flies (Fig

4A). Notably, the RNA levels of nub-RD exceeded that of nub-RB in the gut, whereas expres-

sion of the two appeared roughly similar in other tissues. To further investigate the spatial

expression, we applied transgenic reporter lines specific for either the nub-RB or nub-RD tran-

script. A dual isoform marker line (nub-RBGFP, nub-RDAC-62>mCherry) was applied to visual-

ize the spatial expression of both isoforms in parallel (S4 Fig). Prominent dual fluorescence

was observed in larval wing discs, leg discs and foregut, with varying degree of overlap,

whereas only nub-RD>mCherrywas expressed in the larval brain (S4A–S4C Fig). For adult

expression, tissues from nub-RBGFP and nub-RDAC-62>mCherry flies were studied separately.

Fluorescence was observed in wing veins and leg joints with either line, whereas mainly nub-
RD appeared expressed in the abdominal fat body or adjacent tissues (S4D–S4I Fig). A

strong GFP signal was observed throughout the midgut of nub-RBGFP flies (Fig 4B) while nub-
RDAC-62-driven mCherry expression was present only in the anterior region and faded within

days in newly eclosed adult flies (S4A’ Fig). Therefore, additional nub-RD-Gal4 driver lines

were screened and especially nub-RDVT6452 drove prominent mCherry expression in the mid-

gut (Figs 1A and 4B). For the purpose of the present work, we conclude that the isoforms are

expressed to varying degrees in immune competent tissues and thereby should be able to act as

transcriptional antagonists in a competitive manner.

Nub isoforms are expressed in enterocytes and regulate midgut AMP

expression, bacterial load and adult life span

In contrast to the observed isoform transcript levels in Fig 4A, Western blot experiments on

midgut and carcass extracts using a non-discriminatory Nub antibody yielded an overall stron-

ger band for Nub-PB (S5A Fig) [15]. This suggests that additional regulation occurs post-tran-

scriptionally. Since nub-RDmutant flies exhibit chronic immune activation and microbial

dysplasia in the gut [15, 23], we hypothesized that this isoform is required to suppress aberrant

activity of Nub-PB in these tissues. In fact, Nub immunostaining is commonly used to mark

the nucleus of gut enterocytes [30], which suggests that at least one of the isoforms is strongly

expressed in this cell type. The enterocyte-specific driver NP1-Gal4ts was therefore applied to

drive RNA interference (RNAi) of nub-RB (nub-RB-IR) in adult flies. This resulted in a roughly

two-fold decrease of the targeted transcript accompanied by a significant reduction of Drsl2,

Drsl3,DptA, CecA1 and upd3 in midgut tissues (Fig 4C). The latter encodes an infection-

inducible cytokine and ligand of the JAK/STAT pathway [31, 32] and was found upregulated

4.8-fold in the gut, albeit below the signal threshold in the global transcriptional profile (S1

Table). The RNAi was further confirmed at the protein level, as Nub-PB decreased 2-fold in

extracts from whole flies, strongly indicating that enterocytes constitute a major source of this

isoform (S5B Fig). Similar effects were observed with c564-Gal4ts in the midgut, but not in the

abdominal carcass (encompassing the fat body), suggesting that the endogenous Nub-PB acts
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as a positive regulator of AMPs specifically in the midgut (S5C and S5D Fig). Conversely,

RNAi-mediated downregulation of nub-RD, using a similar assay as in Fig 4C, resulted in an

overall increased expression of the same set of genes (Fig 4D). Comparative overexpression of

the two isoforms in gut enterocytes confirmed their opposite regulatory effects on immune

Fig 4. Nub isoforms regulate immune genes in midgut enterocytes. (A) Relative transcript levels of nub-RB (yellow) and nub-RD (magenta) in extracts of adult

body parts and tissues as indicated were quantified by RT-qPCR (N = 3). (B) Expression of reporter genes in adult female guts under the control of the RB-

promoter (nubMI05126-GFP; upper panel) and PD-promoter (nubVT6452-Gal4>mCherry; lower panel). (C-D) RT-qPCR of selected immune genes from midgut

extracts following RNAi-mediated knockdown of nub-RB (C; blue) or nub-RD (D; red) in midgut enterocytes usingNP1-Gal4ts and compared to controls (white);

N = 3. (E) RT-qPCR of AMP genes and upd3 from midgut extracts followingNP1ts-driven overexpression of either nub isoform, compared to controls. (F-G)

qPCR analysis of bacterial 16S rDNA relative to host genomic vvl levels (internal control) from dissected midguts following overexpression (F; yellow) or RNAi of

nub-RB (G; blue) in midgut enterocytes by NP1-Gal4ts, relative to controls (white). (H-I) Lifespan assays of female (H) and male (I) flies after overexpression

(yellow) or downregulation (blue) of nub-RB (for statistics, see S6 Fig). Bars reflect means ± SE and asterisks denote significant differences (�p<0.05; ��p<0.01;
���p<0.001).

https://doi.org/10.1371/journal.ppat.1006936.g004
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Fig 5. Enterocyte-specific nub-RB overexpression renders flies hypersensitive to infection despite increased AMP levels and enhanced pathogen

clearance. (A-B) Survival curves of mock-infected (dashed lines) or Ecc15 orally infected female and male flies (filled lines), after simultaneous

overexpression (yellow) or downregulation of nub-RB (blue) compared to controls (black) in midgut enterocytes usingNP1-Gal4ts. Females mock,

n = 24–38; females infected, n = 67–109; males mock, n = 20; males infected, n = 24–32. The graphs are representative of two independent experiments.

(C-F) Quantification of relative mRNA expression from whole fly extracts, in uninfected flies or following 3 or 24 h post oral Ecc15 infection, with

(yellow rectangles) or without (white circles) simultaneous overexpression of nub-RB in midgut enterocytes. Relative levels were normalized to those of

uninfected control flies (set to 1). (G-H) Colony forming units from control flies (white circles), flies with overexpression (yellow squares), or

downregulation of nub-RB (blue triangles), orally infected with Ecc15-GFP. Serial dilutions were prepared from whole fly extracts and plated at 1 and 6

hpi. After 1 hpi, remaining flies were transferred to regular food without bacteria. (I-J) Box-Whisker plots (min-max, including outliers) of bacterial

clearance from 1 to 6 hpi relative to control flies. (K-L) Capillary feeding assay of the denoted genotypes (N = 5). (M) Representative images of flies from
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genes, previously observed in whole flies (Fig 2A and 2B), as Drsl2 and upd3were strongly up-

and downregulated in midgut extracts following nub-RB and nub-RD overexpression, respec-

tively (Fig 4E). CecA1 and Drsl3 levels were increased by nub-RB but unaltered by nub-RD
whereas neither overexpression affected DptA significantly. Interestingly, NP1ts>nub-RD
decreased the expression of nub-RB 2.4-fold, but not vice versa. To investigate whether Nub-

PB expression affected the gut bacterial load, we performed a qPCR analysis of the relative 16S

rDNA levels from midgut extracts. NP1ts-driven overexpression of nub-RB resulted in a ~56%

reduction of bacteria after 24 h (Fig 4F). Conversely, RNAi using the same driver increased

bacterial loads by 67% (Fig 4G). The same set of flies displayed striking lifespan phenotypes as

nub-RB overexpression significantly shortened median longevity (females, 19.3; males, 20.3

days; average from three individual experiments) relative to controls (females, 46.2; males 45.8

days), whereas its downregulation increased longevity (females, 52.3; males, 48 days) (Figs 4H,

4I and S6A–S6C). Overexpression of nub-RD resulted in longer lifespan (females, 29; males 33

days) compared to that of nub-RB, but shorter than controls (S6B and S6C Fig). Surprisingly,

antibiotic supplementation of the diet enhanced longevity of nub-RB-overexpressing flies

(females 15.8%, males 28.9%) but not those of nub-RB RNAi (females -3.1%; no change in

males), suggesting that the microbial composition, rather than loads influences host lifespan

(Figs 4F, 4G and S6B and S6D). The germ-free conditions enhanced female (6.8%), but not

male controls. Conversely, germ free nub-RD overexpressing males displayed enhanced lon-

gevity at early time points, but were overall not significantly benefited, whereas females were

equally long-lived in comparison to conditionally reared flies. Together, these findings demon-

strate that Nub isoforms regulate the expression of midgut AMPs in opposite manners and

that Nub-PB expression correlates with gut microbiota and host lifespan.

Dysregulation of nub-RB affects survival to oral infection

To investigate the role of Nub-PB after bacterial challenge, we performed oral infections using

Erwinia carotovora carotovora 15 (Ecc15), a well-characterized bacterium with generally low

oral pathogenicity in adult flies. Strikingly, overexpression of nub-RB caused a hypersensitive

phenotype as all males and roughly 70% of the females succumbed within a day post infection

(Fig 5A and 5B). Interestingly, the median lifespan of the remaining overexpressing female

survivors after bacterial exposure was 10 days, suggesting that death occurs primarily due to

acute effects. RNAi directed against nub-RB caused a significant female (~25%), but not male,

mortality during the acute stage of infection compared to infected driver control flies. We next

explored the induction of the immune response mediated by the combined overexpression of

nub-RB and Ecc15 infection (Fig 5C–5F). At three hours post infection (hpi), Drsl2 expression

was upregulated by three orders of magnitude relative to the similarly infected driver control

cohort, while at 24 hpi, levels were more comparable to those of the uninfected overexpression

cohort (Fig 5C). This indicates a rapid and transient hyperinduction of this gene by the com-

bined effect of overexpression and infection. The induction of upd3 and CecA1was also

strongly enhanced by the combined effect of overexpression and infection, with peak expres-

sions occurring later than for Drsl2 (Fig 5D and 5E). Conversely, and in line with Fig 4E, DptA

the Smurf assay, initiated at 6 hpi with Ecc15 or control food (Mock) followed by flipping flies onto regular fly food supplemented with blue food dye.

No smurfs were recorded within the assayed period (up to two weeks post infection). As control, 5% SDS-supplementation of the food resulted in a high

penetrance of smurfs within 3 days (note the blue head and thorax). (N) Post-infection time series of the relative midgut expression of nub transcript

forms relative to those at 0 hpi, determined by RT-qPCR (N = 3). Flies (w1118) were starved (S) for 2 h prior to infection (I) on an Ecc15-diet until 6 hpi

and subsequently transferred to regular food vials for recovery (R). Bars and boxes denote means ± SE and asterisks (�p<0.05; ��p<0.01; ���p<0.001).

https://doi.org/10.1371/journal.ppat.1006936.g005
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was not affected by nub-RB overexpression with NP1 (Fig 5F). We hypothesized that such a

strong effect on the immune response would likely be detrimental for the host, while at the

same time enhance clearance of the infection. In line with this, enterocyte expression levels of

nub-RB correlated with the relative clearance of Ecc15 compared to controls (Fig 5G–5J). In

comparison, overexpression of nub-RD caused a moderate, non-significant decrease in clear-

ance (S7A and S7B Fig). To exclude a confounding effect of feeding rate, a capillary feeding

assay was performed where the different genotypes were found to consume similar amounts to

controls (Figs 5K, 5L and S7C). Proinflammatory responses in the gut could potentially cause

epithelial damage and ultimately cause gut leakage. To test this, we applied the Smurf assay

[54] but did not observe any flies turning blue, neither from genotype, infection, nor the com-

bination of both, suggesting that death occurs due to other causes (Fig 5M). We also observed

upregulated levels of both isoforms in the midgut of orally infected flies, albeit stronger for

nub-RB than nub-RD (Fig 5N). This suggests that the balance is temporarily skewed towards

the activating function of Nub-PB during the acute stage of infection. Following recovery on

regular fly food, the expression of both isoforms returned to pre-infection levels around 48

hpi, indicating a pattern typical for transiently induced DIRGs. Taken together, these data

indicate that Nub-PB is involved in the midgut immune response to ingested Ecc15 and that

the activity of this transcription factor requires tight control to avoid detrimental effects on the

host.

Enterocyte-specific overexpression of nub-RB promotes a proinflammatory

signature and epithelial renewal in the midgut

Among the identified IMD/Toll-independent DIRGs in the transcriptional profiles, several

targets of the JAK/STAT pathway were induced, such as the gut-specific and infection-

inducible Drsl2, stress-regulated Turandots (Tots) and the immunomodulatory cytokine Die-
del (in the fat body), suggesting that Nub-PB either acts above, or at the level of, the JAK/

STAT pathway (Fig 1F, S1 and S5 Tables) [10, 29]. In Drosophila gut enterocytes, the JNK

pathway has been implicated in the regulation of Upd3, which in turn acts as a ligand for the

JAK/STAT pathway in response to bacterial infection and stress [31]. Pathway activation

triggers intestinal stem cell differentiation and proliferation to replenish extruded entero-

cytes [31]. Our observations that the expression of upd3 and Drsl2/3 is regulated by Nub-PB

led us to investigate the role of the above-mentioned pathways in this context (Fig 6). Pro-

longed nub-RB overexpression for five days resulted in prominent induction of reporters for

JNK (Fig 6A–6D), upd3 (Fig 6E–6F”) and JAK/STAT (Fig 6G and 6H). This was accompa-

nied by a general disorganization of enterocytes (Fig 6E’ and 6F’), increased number of

mitotic cells (Fig 6I, 6J and 6M) and apoptosis (Fig 6K and 6L). Combined overexpression

of nub-RB and targeted RNAi against the JNK-homolog basket (bsk-IR) in gut enterocytes

attenuated the induction of Drsl2 but not upd3, suggesting a dependency on JNK pathway

activity for the former, but not the latter target (Fig 6N). To investigate the role of JAK/

STAT, nub-RB was co-expressed together with a dominant negative form of the receptor

Domeless (DomeDN; Fig 7O–7Q). Similarly to the findings in Fig 6N, and independent on

infection status, this diminished the induced expression of Drsl2, but not upd3. Nub-PB

might hence act together with the transcription factors of the JNK and JAK/STAT pathways

to induce midgut-specific immune genes not typically regulated by NF-κBs. In support of

this, Drsl2was found to contain putative DNA-binding motifs for Nub [15], AP-1 and

Stat92E [33] in the proximal promoter region (Fig 2F). As expected, the expression of nub-
RB was similar between the overexpression genotypes and was, in line with observations in

Fig 6H, also induced by Ecc15 infection in the driver control line (Fig 6N and 6Q). Together
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these results indicate that Nub-PB is sufficient to drive most, if not all, of the documented

aspects of intestinal immunity and inflammation.

Discussion

We have shown that the large isoform encoded by nub, Nub-PB, is a novel and exceptionally

strong transcriptional activator of immune genes in Drosophila. Compared to the major

Fig 6. Prolonged nub-RB overexpression promotes a proinflammatory signature in the midgut. (A-L) Immunostainings of adult female posterior midguts after five

days of nub-RB overexpression usingNP1-Gal4ts compared to driver controls. β-gal staining to highlight puc-lacZ expression (red), a target of the JNK pathway in

controls (A-A’), or overexpression flies (B-B’). TRE-GFP (C-D’; green) was additionally applied to confirm JNK-signaling. Enterocyte morphology (green) and upd3-

lacZ specific β-gal staining (red) were determined using flies co-expressing UAS-GFP and upd3-lacZ (E-F”). STAT activity was assayed using the reporter 10xStat92E-

GFP (G-H; green). Mitotic cells were stained with an antibody directed against PH3 (I-J; red). Cellular apoptosis was detected with α-caspase3 (K-L; red). Channels

were merged to depict DAPI-stained nuclei (A’, B’, C-D, E”, F”, G-L; blue). (M) Quantification of PH3 positive cells in the R5 region of the midgut [57]. (N)

Expression of selected transcripts from midgut extracts following Nub-PB overexpression alone (yellow) or combined with RNAi against bsk to block JNK signaling

(purple), assayed relative to control levels (white; set to 1) by RT-qPCR. (O-Q) Expression of selected transcripts from midgut extracts following overexpression of

nub-RB (yellow), UAS-domeDN (gray; to inhibit JAK/STAT signaling) or both (orange), assayed relative to control levels (white; set to 1) by RT-qPCR. The experiment

was performed on uninfected flies (-) or 24 h post oral infection with Ecc15 (+). Asterisks and distinct letters (p<0.05) denote significant differences (�p<0.05;
��p<0.01; ���p<0.001). Bars and boxes denote means ± SE (N = 3).

https://doi.org/10.1371/journal.ppat.1006936.g006
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immune regulatory factors, Rel and Dif, Nub-PB can potentially target an even broader set of

DIRGs (Fig 1F). This could be explained by the notoriously promiscuous nature of Oct factors

in terms of their conformations, dimer formations, protein-protein interactions and post

translational modifications [21]. In humans, the Nub homolog, Oct-1, has been proposed to

act as a switchable stabilizer of either repressed, induced or poised states of genes depending

on its protein-protein interactions [34]. Furthermore, interactions between human Oct-1 and

NF-κB have been demonstrated biochemically [35]. In agreement, we found that Nub-PB and

Rel synergistically induce CecA1 transcription (Fig 2C and 2E). Moreover, the Nub binding

sites (Oct sites), located in immediate proximity to the κB-sites in the proximal promoter

region of CecA1, were required to both repress [15] and fully induce expression (Figs 3 and

S3), suggesting that the isoforms bind the same motifs to antagonistically regulate the tran-

scription of Rel-target genes (Fig 3I).

Several Oct family members encode alternative isoforms [36]. Knowledge of their unique

functions is, however, sparse. Drosophila appears to be no exception as both nub and its para-

logs pdm2/miti and pdm3 have similar gene organizations and encode promoter-specific iso-

forms with unknown functions. The underlying mechanism of the antagonism demonstrated

in this study remains to be deciphered and is likely under multilayered regulation through iso-

form expression, mRNA/protein stability and the potential to form homo- and heterodimers.

The very short unique N-terminus of Nub-PD implies that the domains required for transcrip-

tional activation, e.g. via protein-protein interaction, are located in the larger N-terminal part

Fig 7. Model of the antagonistic actions of Nub isoforms. A balance between Nub isoforms is required to ensure

immune homeostasis in the gut. During normal conditions, Nub-PD interacts with the proximal promoter region of

immune-regulated genes to repress aberrant expression. Microbial dysbiosis or oral infection skews the isoform ratio

towards Nub-PB, which through an unknown mechanism outcompetes Nub-PD and activates immune gene

transcription. Once microbial homeostasis has been reestablished, the equilibrium between the isoforms is regained to

balance gut immunity. Uncontrolled expression of Nub-PB or a lack of Nub-PD results in a hyperactivate immune

response, loss of tissue homeostasis and early host death.

https://doi.org/10.1371/journal.ppat.1006936.g007
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of Nub-PB, although prediction analyses of protein functions did not reveal any distinct

domains. Nub-PD might act as a passive repressor in a competitive manner, by binding to tar-

get sequences and prevent recruitment of additional factors, or alternatively form inactive het-

erodimers with Nub-PB. In accordance, isoform dimerization of the human POU protein Brn

results in its inactivation [37]. Opposing effects of rat Oct-2 isoforms in vitro have also been

reported and were dependent on the sequence and position of the octamer motif [38]. Finally,

the human Oct-1 locus encodes at least three N-terminally distinct isoforms, which have been

reported to act in partly distinct, albeit not opposite, manners [39]. It is hence plausible that

distinctly acting, or even antagonistic isoforms of POU/Oct factors are an evolutionarily con-

served phenomenon.

Intestinal immune and stress responses need to be tightly controlled to avoid excessive

damage to host tissues. The gut microbial level and composition in adult flies correlate with

host immunity and lifespan [6, 40, 41]. Age-related gut dysfunctions have been linked to dys-

biosis, chronic inflammation and ultimately host death [42]. In line with these studies, we have

previously observed that flies with the nub1 mutation (disrupts Nub-PD, but not Nub-PB

expression) display chronic immune activation, microbial dysplasia and shortened lifespan

[15, 23]. Importantly, we found that both isoforms are expressed in midgut enterocytes (Figs

4A–4D and S5B) and that overexpression of Nub-PB in these cells resulted in overall similar

phenotypes as those previously found in nub1 mutants (Fig 4E, 4F, 4H and 4I), suggesting

that the function of Nub-PD in this context is to counteract Nub-PB and repress aberrant

responses. In fact, prolonged enterocyte-specific overexpression of Nub-PB was sufficient to

drive most aspects of immune and inflammatory responses previously recorded during oral

infection [31] including JNK and JAK/STAT pathway activation, Upd3 induction and

increased gut mitosis and apoptosis (Fig 6). It is hence plausible that Nub-PB represents a

missing node in the Upd3 mediated signaling from enterocytes to intestinal stem cells result-

ing in subsequent activation of JAK/STAT-driven stem cell proliferation and epithelial renewal

[31], although a recent study demonstrated that a large number of transcription factors could

potentially be involved [43]. The shortened lifespan of these flies correlated with a decreased

microbiota (Fig 4F, 4H and 4I) and enhanced clearance of orally administered Ecc15, indicat-

ing that death is not a direct consequence of bacterial overgrowth but rather occurs due to a

hyperactive immune response. In agreement, genetic manipulations to inhibit feedback regu-

lation of the IMD pathway impair host lifespan and survival to infection [44–45]. Also, similar

to nub1 mutants [23], microbial depletion extended longevity in nub-RB overexpressing flies,

which furthermore suggests that bacterial exposure could aggravate the inflammatory response

triggered by imbalance between Nub isoforms (S6B Fig). Enterocyte-specific and adult-

restricted RNAi of nub-RB yielded overall the opposite phenotypes: reduced DIRG transcrip-

tion, increased level of gut bacteria and enhanced lifespan, suggesting that Nub-PB is both nec-

essary and sufficient to drive these phenotypes (Fig 4C and 4G–4I).

Importantly, genes involved in mounting an immune response at all levels from recognition

to effectors and cytokines were activated by Nub-PB (Fig 1F). In contrast to Rel-driven

immune responses [2], very few components providing negative feedback regulation were

induced by Nub-PB. We hence speculate that endogenous Nub-specific transcription might be

regulated via feedback on the Nub isoforms per se, possibly through protein degradation, a typ-

ical feature of many transcription factors. In addition, the combined effect of Nub-PB overex-

pression and infection resulted in immune gene expression levels up to three orders of

magnitude above those of infected control flies, which implies that Nub-PB can enhance tran-

scription during infection. Such vast expression levels are likely to impact host tolerance to

microbial exposure [46] through loss of homeostasis, generation of self-inflicted damage, stress

or even a metabolic collapse, which may explain the shortened life span and hypersensitivity to
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infection. Interestingly, Oct-1-deficient mouse fibroblasts are hypersensitive to stress [47], of

which some parallels can be drawn to Nub-PB overexpressing, as well as nub1 flies [15, 23]. We

propose that Nub-PD, in analogy with to Oct-1, acts as a stress sensor to neutralize the activity

of Nub-PB, and that a balanced ratio between the isoforms is required to maintain a healthy

gut environment.

Our finding that two N-terminal isoforms of the Oct-1/Oct-2 homolog, Nub, play antago-

nistic roles in immune/stress gene transcription provides genetic evidence of a novel switch-

like regulation mediated via the same gene. We further suggest that Nub-PB and Nub-PD

together form a molecular rheostat that dynamically tunes the transcriptional output to bal-

ance responses and efficiently eradicate pathogens while avoiding excessive activation and

autoimmune-like reactions. This raises the possibility that Nub protein isoforms also regulate

other physiological and developmental processes in opposite directions. Furthermore, the

findings highlight a potential need to scrutinize the present view of POU/homeodomain net-

works by considering the presence of antagonistically operating isoforms, which may radically

alter the transcriptional output. It remains to be explored whether similar modes of molecular

rheostasis constitute a general and evolutionarily conserved mechanism to ensure flexible

adjustment to environmental and developmental cues.

Materials and methods

Fly genotypes

The following transgenic fly lines were used in this study. (A) w1118;; (RRID:BDSC_5905)

was applied as wild type. (B) y1w�; nubMI05126 (RRID:BDSC_37920). In this stock, the

MiMIC cassette [48] is inserted into the 5’ UTR of nub-RB and the GFP expression derived

from the MiMIC cassette is under control of the endogenous nub-RB promoter. (C) w�;
nubAC-62; UAS-mCherry/TM3 (RRID:BDSC_38418). The nubAC-62 allele carries a Gal4

enhancer trap inserted into the upstream region of nub-RD promoter, and has been recom-

bined with nuclear UAS-mCherry (Müller and Affolter, personal communication to Fly-

base). (D) w�; nubGAL4.K (RRID:BDSC_42699). The nubGal4.K line carries a Gal4 reporter

driven by a 5.3 kb fragment from the nub-RD promoter and approximately 5 kb of upstream

sequence[49]. CecA1-lacZ reporter lines: (E) pA10 [50] and (F) pA10ΔOct, (this work). Lines

for overexpression of transcription factors: (G) w;; UAS-nub-RD (15), (H) w; UAS-nub-RB
(this work), (I) w;; UAS-DomeDN/TM3, sb1 (a gift from Nicolas Buchon). Lines for RNAi (J)

w; UAS-nub-RB-IRKK113120 (RRID:FlyBase_FBst0476872, no predicted off-targets), (K)

y1, v1;; nub-RD-IRP{TRiP.JF02973}attP2/TM3, sb1 (RRID:BDSC_28338; moved to a w1118 back-

ground prior to experiments), (L) w�;; UAS-bsk-IR. Gal4 driver lines for expression in spe-

cific tissues: (M) w1118; c564-Gal4 (RRID:BDSC_6982) and (N) w1118; c564-Gal4; tub-gal80ts

for fat body and midgut, and (O) w; NP1-Gal4 (a gift from Bruno Lemaitre) combined with

Tub-gal80ts or (P) w; NP1-Gal4; Tub-gal80ts, UAS-GFP (a gift from Nicolas Buchon) for mid-

gut enterocytes and (Q) w;; nub-RD-Gal4VT006452 (RRID:FlyBase_FBst0483181). Mutant fly

strains: (R) w;; RelE20, es (RRID:BDSC_9457). (S) w; UAS-nub-RB; UAS-nub-RD was con-

structed from (G) and (H); (T) w; UAS-nub-RB; UAS-DomeDN from (H) and (I); (U)

w[1118];UAS-nub-RB; UAS-bsk-IR from (H) and (L); (V) w1118; c564-Gal4; RelE20, es

from (M) and (R); [23] w1118; UAS-nub-RB; RelE20, es from (H) and (R) using the double bal-

ancer line (W) w1118; if/CyO; MKRS/TM6B, tb1. (X) w;; TRE-eGFP, (Y) w;; puc-lacZ/TM3
(gifts from Ulrich Theopold /Dirk Bohmann), (Z) w; upd3-lacZ and (AA) w; 10xStat92E-

GFP (gifts from Nicolas Buchon) were recombined to (I) and crossed to (O) or (P) for

immunostainings.

Nubbin isoform antagonism governs gut immune homeostasis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006936 March 2, 2018 16 / 25

https://doi.org/10.1371/journal.ppat.1006936


Fly rearing

Flies were maintained on instant potato medium [23] in mixed female/male populations at

25 ˚C, 60% RH, with a 12 h light/12 h dark cycle. For experimental crosses, flies were reared at

18 ˚C until at least two days post eclosure, and then switched to 29 ˚C. Overexpression experi-

ments were carried out following two days of incubation at 29 ˚C. For RNAi, flies were main-

tained at 29 ˚C for 5–7 days prior to experiments. All experiments were performed using 5–10

day old females with the exception of lifespan (newly eclosed males and females, which were

recorded daily) and survival assays post infection (5–10 day old males and females maintained

separately). For lifespan analysis in germ free conditions, food was supplemented with an anti-

biotic cocktail [23].

Cell culturing

Drosophila mbn-2 cells (DGRC, cat. no. 147) were cultured in Schneider’s medium (Gibco)

supplemented with 10% fetal bovine serum (Gibco) in 5 ml plates at 25 ˚C, to a cell density of

approximately 6–7 × 106 cells/plate.

Creation of UAS-nub-RB transgenic flies

Total RNA was isolated from OrRmales with TRIsure (Bioline) and used as template for

reverse transcriptase (RT). Due to the gene locus size, two RT-PCR reactions were performed

in parallel, using coupled AMV RT and Tfl DNA polymerase (Access RT-PCR system, Pro-

mega Biotech AB), to amplify the 5’ and 3’ fragments of the nub-RB cDNA separately. The 5’

forward primer was constructed with a NotI site-containing overhang and an internal reverse

primer; the reverse with an internal forward primer and a reverse primer with a BamHI site-

containing overhang at the 3’-end of the nub-RB cDNA. The two cDNAs, 1603 bp and 1803 bp

respectively, which partly overlap and contain a common EcoRV site in exon 5, were cloned

into the pGEM-T easy vector. After DNA sequence verification, the two nub-RB cDNA halves

were excised with NotI/EcoRV and EcoRV/BamHI respectively and then ligated into the

pcDNA3.1(-) vector to create the complete 2883 bp nub-RB coding sequence with short 5’ and

3’ UTRs. Drosophila expression plasmids were created using Gateway Technology (Invitrogen,

Carlsbad, CA, USA). Briefly, nub-RB coding cDNA was amplified from pcDNA3.1(-)nub-RB
using PfuDNA polymerase (Thermo Fisher Scientific, Waltham, MA, USA) according to stan-

dard procedures. The purified PCR product was cloned into the pENTR/D-TOPO vector

using pENTR Directional TOPO Cloning (Invitrogen) followed by recombination of the nub-
RB cDNA into the pTW and pAW destination vectors (obtained from TD Murphy) using LR

Recombination and the LR Clonase enzyme mix (Invitrogen). P element transformation of

w1118 flies with pTW-nub-RB was performed according to standard procedures[51]. Transfec-

tion of cells with pAW-nub-RB is described below.

CecA1-luciferase and CecA1-lacZ reporter constructs and flies

Plasmids and transgenic fly lines with CecA1-luciferase and CecA1-lacZ (pA10) reporter con-

structs with the complete CecA1 upstream region and a short 5’ UTR have been described pre-

viously [13, 47]. To create a CecA1-lacZ reporter with the Oct cluster deleted, pA10was used as

template for inverse PCR amplification with phosphorylated primers and cloned as described

previously for CecA1ΔOct-luc [15]. The whole CecA1ΔOct-lacZ fragment was thereafter excised

by XbaI-XhoI digestion and ligated into the P element vector pW8 plasmid, opened with the

corresponding enzymes. P element-transformation of w1118 was carried out according to stan-

dard procedures [51].
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Cell transfections

Transfections were performed with 1 μg of pA10-luc construct and mixed with 1 μg of pAW-
nub-RB, 500 ng of pAct-Rel, and 100 ng of Pol III-Renilla luciferase (Addgene plasmid 37380)

as internal reference. Carrier DNA was added to reach 10 μg in each sample, and transfections

were performed using a calcium phosphate transfection kit (Invitrogen) as described previ-

ously [15]. Luciferase values were measured by the Dual-luciferase Reporter Assay System

(Promega). To stimulate immune activation, peptidoglycan was added in the form of a crude

lipopolysaccharide (LPS) preparation (25 μl of 2 mg/ml), 4 h prior to harvest.

Reporter gene expression in transgenic flies

For analysis of CecA1-lacZ reporter gene expression in transgenic flies, adults were dissected to

remove heads and separate the digestive system from the rest of the fly, then fixed in 1% glutar-

aldehyde in phosphate-buffered saline and stained for β-gal activity using 5-bromo-4-chloro-

3-indolyl-β-D-galactopyranoside (X-gal) as substrate, as described previously [52]. Incubation

with substrate was done for 2 h at 37 ˚C, and in some cases continued for 16 h at 25 ˚C. To esti-

mate X-gal intensity, 8-bit images were first processed in Adobe Photoshop (version 2015 CC)

using the grayscale tool to convert all colors to white except blue (converted to grayscale).

Mean gray values per fly were subsequently measured in ImageJ (in the range 0 (white, no

staining) to 255 (black)) using the freehand tool (N = 6).

RNA extraction and quantitative RT-qPCR analysis

Total RNA extractions were carried out using TRIsure (Bioline) from adult females (three flies

for whole fly extracts and six dissected tissues, respectively, per replicate), followed by DNAse

treatment and cDNA synthesis as previously described with a few modifications[15]. Taqman

probes/primers were used to measure gene expression according to the manufacturer´s

instructions (Applied Biosystems). Primer/Probes: nub-RD (CG34395-PD): Dm01841366_m1

(Applied Biosystems); nub-RB (CG34395-PB): Dm01812808_s1 (Applied Biosystems). Primer/

probes for AMP gene expression were as previously published [15]. Samples were analyzed in

biological triplicates or quadruplicates and relative amounts of each target were quantified rel-

ative to a set standard curve pooled from all samples in the analysis and finally normalized rel-

ative to those of RpL32.

Microarray analysis, processing and extended analysis

Overexpression of nub-RB, was carried out in flies of the genotype w; UAS-nub-RB/c564-Gal4
and compared with flies carrying the c564-Gal4 driver but no UAS target gene (w; c564-Gal4/+).
Flies were raised at 18 ˚C and adults reared in mixed sex populations at 25 ˚C. Female flies were

used at 10 days of age, dissected to separate guts and the rest (flies without guts and heads).

Total RNA extractions were carried out using TRIsure (Bioline), followed by DNAse treatment

with Turbo-DNase (Ambion) and purification using RNeasy (Qiagen). Tissues (25 per repli-

cate) from three or four independent pools of flies were analyzed as biological replicates onDro-
sophila Agilent microarrays. Total RNA (150 ng) was amplified and labeled using Low Input

Quick Amp Labeling Kit according to the manufacturer’s instructions. Cyanine 3-CTP-labelled

c-RNA (1.65 ug) was used for 17 hour of hybridization at 65 ˚C to theDrosophila (V2) Gene

Expression Microarray, 4x44K. The hybridized arrays were washed and scanned with the Agi-

lent DNA microarray scanner G2505C. The fluorescent intensities of the scanned images were

extracted and preprocessed using the Agilent Feature Extraction Software (version 10.7.3.1).

Preprocessing of the raw data was done according to the standard analysis pipeline at the
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Bioinformatics and Expression Analysis Core Facility at Karolinska Institutet, Huddinge, Swe-

den. In short, Agilent processed signals (i.e. feature gProcessedSignal) were imported to Partek

Genomics Suite and subjected to quantile normalization. After preprocessing and normaliza-

tion, the data was filtered to remove genes that were not expressed at detectable levels (estimated

background signal). A factorial map of principal component analysis was executed on the whole

expressed data using Bioconductor 3.1 and R 3.1. Multiple T-tests of the entire dataset were per-

formed in Graphpad Prism 6 and p-value thresholds adjusted using the FDR approach (Q set to

1%). Filtered data (above detection limit in at least one of the groups compared and below the

adjusted p-value threshold) were further used throughout the extended explorative downstream

analysis with a few exception were a subsequent fold change cut-off were additionally applied

(where denoted). The GSEA to reveal enriched GO biological processes was performed using

Cytoscape (version 3.6.0) and the plugin Bingo (version 3.0.3). The analysis was executed using

the hyper-geometric test with Benjamini-Hochberg FDR correction. Venn diagrams were con-

structed using the web-based software Venny (version 2.1).

Immunostainings

Female guts were dissected in PBS, pH 7.4 and fixed with 4% paraformaldehyde (PFA) at

room temperature for 1 h. Following two 5 min washes in PBS-T (1x PBS +0.1% TritonX-

100), tissues were incubated in blocking solution (PBST+ 0.5% normal goat serum) at room

temperature for 30 min and probed with primary antibodies (mouse α-β-gal [1:20; DSHB,

RRID:AB_528101]; rabbit α-PH3 [1:300; Millipore, RRID:AB_310177]; rabbit α-cleaved cas-

pase-3 [1:300; Cell Signaling, RRID:AB_2341188]) at 4 ˚C over night. The next day, tissues

were washed in PBST 4×15 min, incubated with secondary antibodies (goat α-mouse

Alexa594 [1:1000; Invitrogen, RRID:AB_141372]; goat α-rabbit Alexa594 [1:1000; Invitrogen,

RRID:AB_141359]) at room temperature for 2 hours, washed again in PBST 4×15 min and

then stained with DAPI (Sigma) at room temperature for 10 min. Stained samples were

mounted on a glass slide with DABCO (Sigma) and confocal images were acquired using a

LSM 780 microscope (Zeiss).

Western blot

Carried out as previously described with a few modifications [15]. Briefly, whole fly extracts

were prepared by grinding three flies per replicate in 2x standard Laemmli buffer in a 1.5 ml

microcentrifuge tube using a plastic pestle followed by 10 min heating at 70 ˚C and 15 min

centrifugation at 4 ˚C to remove debris. Samples were run on 10% polyacrylamide gels (125V,

90 min), wet transferred to PVDF membranes (Millipore; 10V O/N followed by 40V for 1 h)

and blocked with 5% non-fat dry milk in Tris-buffered saline, 0.1 Tween-20. Membranes were

incubated with rabbit-α-Nub [15] in TBS-T at 4 ˚C overnight, washed and incubated for 1 h at

RT with HRP-conjugated donkey-α-rabbit (1:10,000; GE Healthcare, cat. no. LNA934V/AG).

Bands were obtained using SuperSignal West Pico (Thermo Fisher Scientific). After quick

stripping (5 min protocol using 0.3 M NaOH), PVDF membranes were blocked and reprobed

with mouse α-β-Actin (1:10,000; Abcam) followed by HRP-conjugated sheep-α-mouse

(1:10,000; GE Healthcare, cat. no. LNA931V/AG) as loading control.

Bacterial stocks and infections

Erwinia carotovora carotovora 15 (Ecc15) and Ecc15-GFP, kindly donated by Bruno Lemaitre,

were cultured in LB medium at 30 ˚C with shaking [53]. For oral infections, overnight cultures

of bacteria were pelleted and resuspended to OD100 in a 1:1 ratio of bacterial medium and

Milli-Q H2O with 5% sucrose and 1% isotonic phosphate-buffered saline (PBS), pH 7.4.
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Infection vials were prepared by depositing 100 μl of bacteria or control solution on a filter

paper placed on top of a 1% PBS, 2% agar gel to maintain humidity. Prior to challenge, flies

were starved and desiccated in empty vials for 2 h, then briefly anesthetized to allow transfer to

infection vials. Flies were maintained on this diet for 1 h (bacterial count) or 24 h (survival

analysis) and subsequently transferred to fresh food vials. For systemic infections, E. cloacae
β12 was grown over night at 37 ˚C with shaking, pelleted and resuspended in PBS at OD 1.

Flies were infected by abdominal injections with approximately 50 nl of bacterial suspension

under brief anesthesia. Following all infections, flies were maintained at 29 ˚C. Smurf assay

[54] was initiated at 16 hpi by transferring flies onto regular fly food supplemented with Coo-

massie Brilliant Blue FCF (commercial, food grade). Flies were maintained up to two weeks

post infection on this diet and observed for smurfs daily.

Bacterial quantifications

For relative 16S rDNA quantification of gut bacteria, midguts from six flies per replicate were

dissected and bacterial DNA extracted using the DNA Blood and Tissue (Invitrogen) kit

according to instructions, including the Gram+ lysis step. For bacterial counts of Ecc-15
post infection, Ecc15-GFPwas applied and cultured in LB with carbenicillin (50 μg/ml). Oral

infections were performed as described above. At indicated time points, individual flies were

anaesthetized and ground in 100 μl PBS on ice. Ten-fold serial dilutions were added to LA-car-

benicillin plates and subsequently incubated over night at 30 ˚C. GFP-positive bacterial colo-

nies were quantified from seven individual flies per replicate. The experiment was performed

three times for conditional rearing, and once under germ free conditions.

Capillary feeding

Carried out as described by Ja et. al with a few modifications [55]. Two females per replicate

were placed in a vertically standing microcentrifuge tube with the bottom part excised and

sealed with cotton to allow air exchange. Microcapillaries (3.2 mm, 5 μl; Drummond) were

filled with a 5% sucrose, 5% yeast extract solution placed through a small hole in the cap of the

tube. To prevent evaporation, tubes were maintained in a high humidity climate chamber,

with quick replacement of microcapillaries every 24 h. Following 48 h entrainment at 18 ˚C,

tubes were placed at 29 ˚C to induce Gal4-activity. For overexpression, measurements were

performed between day 2–3; for RNAi between day 5–6 after the temperature shift.

Quantification and statistical analysis

Analyses of two sample means were performed using a two-tailed Student’s unpaired t-test

(Figs 4C, 4D, 5I–5L, 6M and S5B–S5D, S7B and S7C). Equal variances between the groups

were ensured using an F-test (p>0.05). Multiple comparisons were carried out using a one-

way (Figs 2A–2C, 3H, 4E–4G, 5N and 6N), or two-way ANOVA (Figs 2D–2F, 5C–5G and

6O–6Q) combined with Tukey’s post hoc test. In Fig 5C–5F, denoted significant differences

between cohorts were derived from the interaction between the two factors: 1) time post infec-

tion and 2) nub-RB overexpression as determined by a two-way ANOVA without further post-

hoc analysis. In Fig 5N, Dunnett’s test was applied to analyze significant fold changes post

infection relative to at 0 hpi (set as control). Lifespan and survival assays were analyzed using

Mantel-Cox log-rank test with Bonferroni-corrected thresholds for significance (p<0.05/num-

ber of comparisons). Normalized qRT-PCR data were log2-transformed in order to model pro-

portional changes prior to statistical analysis. Statistical analyses and graph constructions were

carried out in Graphpad Prism 6. For experiments involving dissections, sample sizes were set

to N = 3–4 to allow collections within the designated time point and to minimize sample
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degradation due to handling. Parametric tests were chosen based on previous experience of

the normality of gene expression of the selected targets. Fold changes in expression were quan-

tified relative to the mean value of the control cohorts.

Supporting information

S1 Fig. Hierarchical clustering and Venn diagram of global transcription in Nub-PB over-

expressing flies. (A) Hierarchical clustering was conducted using all transcripts expressed

over background signal in at least one sample group after removing background and filtering

for fold change�2. (B) Venn diagram depicting the overlap of differentially expressed genes

by c564>nub-RB in “rest” and “gut” cohorts.

(TIF)

S2 Fig. Gene set enrichment analysis (GSEA) of downregulated transcripts in respective

tissue. The colored nodes corresponding to different Gene Ontology clusters were found with

increasing statistical significance after Benjamini and Hochberg FDR correction (p<10−3)

whereas non-colored nodes were not significant. Analyses were based on 382 and 386 probes

from “Rest” and “Gut”, respectively.

(TIF)

S3 Fig. Complementary figure to Fig 3. (A-F) β-gal staining in fat body and other tissues in

male flies as readout of expression from the CecA1-promoter with (pA10) or without

(pA10ΔOct) the Oct-cluster. See Fig 3 for details.

(TIF)

S4 Fig. Visualization of Nub isoform expression in selected tissues by fluorescent report-

ers. (A-C”) Dual fluorescence assay of nub-RB-GFP (green) and nub-RDAC-62 (red) expression

in larval proventriculus (A-A”), wing discs (B-B”), brain and leg discs (C-C”). Channels were

also merged with DAPI overlay to depict nuclei (A”, B”, C”). (D-I) Adult expression of either

Nub isoform reporter in adult abdomen (D-E), wing veins (F-G) and leg joints (H-I).

(TIF)

S5 Fig. Nub-PB regulates immune gene expression in midgut enterocytes but not fat body.

(A) Western blot of Nub from dissected midguts or corresponding carcasses in OregonR flies.

(B) Western blot from whole fly extracts following five days incubation at 29 ˚C to achieve full

effect of the NP1ts-Gal4-driven RNA interference of nub-RB (nub-RB-IR). Upper panel, repre-

sentative immunoblot; lower panel, quantification of Nub-PB protein levels, normalized to β-

Actin bands (loading control). Asterisks denote significant differences, determined by Stu-

dent’s unpaired t-test (�p<0.05, N = 3). (C-D) qRT-PCR of nub-RB and Drsl3 following c564

[ts]-Gal4-driven RNAi of nub-RB in midguts (C) or abdominothoracic carcasses (D). Asterisks

denote significant differences, determined by Student’s unpaired t-test (���p<0.001, N = 3).

(TIF)

S6 Fig. Additional lifespan experiments including germ free conditions and statistics. (A-B)

Lifespan analysis of females and males of the denoted genotypes. Flies were conditionally reared

(CR) or maintained on antibiotic-supplemented food to become germ free (GF). The number

of dead flies were recorded daily. (C) Statistics from the three individual experiments under CR

conditions. Group letters denote significant differences (pBonferroni-corrected<0.0083). (D) Rela-

tive lifespan extension in GF conditions for respective genotype (pBonferroni-corrected<0.0125 was

considered significant).

(TIF)
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S7 Fig. Additional data relating to Fig 5. (A-B) Ecc15 counts and relative bacterial clearance

in flies overexpressing nub-RD in enterocytes, compared to controls. (C) Feeding rates follow-

ing nub-RD overexpression. See Fig 5 for details.

(TIF)

S1 Table. Whole transcriptome comparison of the c564>nub-RB and c564>+ cohorts.

(XLSX)

S2 Table. List of the 132 probes indicating differentially expressed transcripts in common

for “rest” and “gut” cohorts.

(XLSX)

S3 Table. A list of all significantly enriched GO clusters and the associated differentially

expressed transcripts in “gut”.

(XLSX)

S4 Table. Differentially expressed transcripts in “rest” belonging to the GO cluster “prote-

olysis”, filtered further by fold change�2 or�-2 (113 genes).

(XLSX)

S5 Table. Merged list of all 152 differentially expressed DIRGs annotated according to bio-

logical function (relating to Fig 1F).

(XLSX)

S6 Table. Comparison of immune gene expressions between c564>nub-RB and nub1 flies

[15] in “rest”, both presented in fold changes relative to respective control. �, verified by

RT-qPCR; italicized values, below threshold or not significant.

(XLSX)
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