
RESEARCH ARTICLE

Reappraisal of the Trophic Ecology of One of
the World’s Most Threatened Spheniscids,
the African Penguin
Maëlle Connan1*, G. J. Greg Hofmeyr2,3, Pierre A Pistorius1

1 DST/NRF Centre of Excellence at the Percy FitzPatrick Institute of African Ornithology, Department of
Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa, 2 Department of
Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, 6031, South Africa, 3 Port Elizabeth
Museum at Bayworld, Humewood, Port Elizabeth, 6013, South Africa

*maelle.connan@gmail.com

Abstract
Many species of seabirds, including the only penguin species breeding on the African conti-

nent, are threatened with extinction. The world population of the endangered African pen-

guin Spheniscus demersus has decreased from more than 1.5 million individuals in the

early 1900s to c.a. 23 000 pairs in 2013. Determining the trophic interactions of species,

especially those of conservation concern, is important when declining numbers are thought

to be driven by food limitation. By and large, African penguin dietary studies have relied on

the identification of prey remains from stomach contents. Despite all the advantages of this

method, it has well known biases. We therefore assessed the African penguin’s diet, using

stable isotopes, at two colonies in Algoa Bay (south-east coast of South Africa). These rep-

resent over 50% of the world population. Various samples (blood, feathers, egg mem-

branes) were collected for carbon and nitrogen stable isotope analyses. Results indicate

that the trophic ecology of African penguins is influenced by colony, season and age class,

but not adult sex. Isotopic niches identified by standard Bayesian ellipse areas and convex

hulls, highlighted differences among groups and variability among individual penguins.

Using Bayesian mixing models it was for the first time shown that adults target chokka squid

Loligo reynaudii for self-provisioning during particular stages of their annual cycle, while

concurrently feeding their chicks primarily with small pelagic fish. This has important ramifi-

cations and means that not only pelagic fish, but also squid stocks, need to be carefully

managed in order to allow population recovery of African penguin.

Introduction
The marine environment has in recent years been profoundly altered by anthropogenic activi-
ties. Although all trophic levels have been affected, directly or indirectly, seabirds as a group
have been particularly vulnerable and are among the most threatened taxonomic groups [1].
For many species, this is partially because of their obligate dependence on diminishing marine
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resources that are also targeted by humans (e.g. [2, 3]). Among seabirds, Spheniscidae, along
with Diomedeidae, are the most threatened families [1] with more than half of the penguin spe-
cies classified as vulnerable or endangered [4].

The African penguin Spheniscus demersus is endemic to the southern African coast and the
only penguin species breeding on the African continent. Like some of its congeners in South
America, the population of African penguins has declined sharply over the last century. Esti-
mated between 1.5 and 3 million individuals in the early 1900s [5], African penguins numbered
c.a. 23 000 breeding pairs in 2013 [6]. As a consequence of this rapid decline, the conservation
status of African penguins was upgraded to Endangered in 2010 [7]. Reasons for the decline
are multiple with historical contributors including commercial harvesting of eggs and destruc-
tion of nesting habitat. Presently, however, the most important threats are thought to be com-
petition with industrial fisheries and climate change mediated displacement of pelagic fish prey
resources [2, 5, 8].

The African penguin currently breeds at 28 localities from Hollam’s Bird Island on the
Namibian coast to Bird Island in Algoa Bay on the south-east coast of South Africa [8]. Until
the mid-2000s, the bulk of the African penguin population bred on the west coast of southern
Africa in the Benguela current ecosystem [8]. Currently, however, more than 54% of the global
population breeds in Algoa Bay within the Agulhas Bioregion, primarily on St Croix and Bird
islands in Algoa Bay (7 616 and 2 843 breeding pairs in 2015, respectively; Department of Envi-
ronmental Affairs, unpubl. data). A similar eastward displacement has also been observed in
the sympatric Cape gannetMorus capensis, with the world’s largest gannetry presently found
on Bird Island, Algoa Bay [6]. These trends have been linked to the eastward displacement of
sardine Sardinops sagax and anchovy Engraulis encrasicolus which is thought to constitute the
main prey of these two seabirds during chick rearing at various localities, including in Algoa
Bay (e.g. [9–11]).

The diet of the African penguin has mainly been studied through the analysis of stomach
contents obtained using the water off-loading technique (e.g. [12–14]). Stomach content analy-
sis allows for the identification and measurements of prey remains but it can only be used at
the colony during the breeding season when the birds return with full stomachs for chick provi-
sioning. Furthermore, it is a snap-shot method as only prey ingested over the last ~12 h will be
recovered [15]. To overcome these limitations in dietary studies in general, indirect methods
were developed in the early 1990s. Not only do these provide information on the foraging ecol-
ogy of marine top predators outside of the breeding season, but they also allow for the assess-
ment of food assimilation in parents (rather than prey captures for provisioning purposes).
The stable isotope technique is one of these [16]. Carbon and nitrogen stable isotopes are the
most commonly used for the study of marine apex predators. Because of the almost conserva-
tive transfer of carbon stable isotopes from diet to consumers, carbon stable isotope values can
be used to trace the carbon sources at the base of the ecosystem (e.g. nearshore vs offshore,
marine vs terrestrial, benthic vs pelagic; [17, 18]). In contrast, nitrogen stable isotope values
increase in a predictable manner with each trophic transfer [19, 20]. Within a given geographic
area, nitrogen stable isotope values can therefore be used to determine the trophic position of
predators. A further advantage of using stable isotopes is that by sampling a number of tissues
with different turnover rates from the same individual, information can be collected at various
time scales [21]. Whole blood is constantly renewed with a half-life estimated between 10 and
16 days depending on species (e.g. [17, 22, 23]); therefore integrating diet over the last few
weeks prior to sampling. Feathers are almost pure keratin and remain isotopically inert once
fully grown [17, 24]. In penguins, feather stable isotope values reflect the penguin diet of the
last weeks prior to moult [25]. Another tissue that can be sampled non-destructively is the egg
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membranes from hatched eggs. These inform on female trophic ecology prior to or during egg
formation [26, 27].

Given that the bulk of the African penguin population is now situated in Algoa Bay, and the
need to understand how this species will adapt to continuing climate change and anthropo-
genic influences, a reassessment of their trophic ecology in the Eastern Cape is essential and
timely. In this study, we used stable isotopes to investigate the trophic ecology of African pen-
guins from St Croix and Bird islands in Algoa Bay. Due to varying energetic demands, this was
done in relation to breeding stage, sex and age class. In addition to blood, feathers and egg
membranes were therefore also collected to obtain information on the little known but never-
theless crucial pre-moulting and pre-laying periods.

Materials and Methods

Ethics statement
All fieldwork and data collection were undertaken under the research permit RES2013/18
issued by the Department of Environmental Affairs and the ethics clearance reference A13-
SCI-ZOO-008 issued by the Research Ethics Committee at the Nelson Mandela Metropolitan
University. Access to study sites (Bird Island and St Croix Island) and permission to conduct
the research were granted by South African National Parks (SANParks), the managing author-
ity of the islands. No penguins were injured as a result of handling and sampling for the present
study. Sampling procedures were carried out briefly (<10 min of handling) by experienced
researchers to minimize disturbance.

Annual cycle of the African penguin in the Eastern Cape
Geographic variation in the timing of the annual cycle has been observed in African penguins
[28]. The only detailed information for the Eastern Cape colonies [29] was derived for the
period 1976 to 1982 on St Croix Island. Based on this, it appears that after a pre-moulting for-
aging trip that lasts an average of 35 days, birds usually start moulting in late October or in
November. They complete their moult ashore over approximately 21 days. About two
months following the end of the moult, the first clutches are laid. Shared incubation lasts an
average of 42 days after which one or two chicks are raised over about three months by both
parents. Chicks are usually classified into six categories according to plumage from P0 (newly
hatched chicks) to blues (>61 days; fully grown, in full juvenile plumage without any down
left) [30, 31].

Collection of samples
Adults and blues were sampled on St Croix and Bird islands (Fig 1) between the 23rd July and
4th August 2013. Adults were also caught outside their breeding season on the 19th and 20th

January 2013 on Bird Island only, due to logistical constraints. To minimise disturbance at the
nests [32], breeding adults returning from the sea close to dusk were caught on pathways lead-
ing to their nests. It was assumed that adults caught on Bird Island in January were not breed-
ing as no eggs were found on the island over the sampling period.

For stable isotope analyses, up to 0.5 mL of blood was collected from the tarsal vein using a
slightly heparinised syringe, and up to 5 white breast feathers were plucked. Egg membranes
were collected from hatched eggs on both islands in April. Blood samples were kept cool before
being air-dried within a few hours from collection. All samples were then stored at -20°C until
further processing.
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Whole blood samples were collected to inform on the diet within a month prior to sampling
(i.e. mid-December/mid-January, and mid-June/July), feathers to give an indication of the diet
during the pre-moulting trip (~October) and egg membrane to provide information on the
pre-laying diet of females (~beginning of March) (e.g. [17, 21]).

Structural size and body condition
Differences in stable isotope values can potentially be influenced by size and the physical condi-
tion of the African penguins. To control for this, two indices were estimated: a structural size
index and a body condition index.

A number of measurements were taken from each adult and blue including bill length and
depth for sexing in the field [33], flipper length and body mass. As bill length, bill depth and
flipper length were correlated in adults (Pearson’s r, all P< 0.001), a principal component
analysis was used to establish an index of structural size [34]: Principal Component 1 = 0.59 �

bill length + 0.61 � bill depth + 0.53 � flipper length. The first principal component analysis
explained 69% of the variability in the data. Body condition of adults was then defined as the

Fig 1. Location of the African penguin colonies along the coast of South Africa ($) and of the two colonies in the Eastern Cape
where stable isotope samples were collected.

doi:10.1371/journal.pone.0159402.g001
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residuals of a regression of body mass on the index of structural size ([34, 35]; R2 = 0.26,
P< 0.001). Similarly, an index of structural size was defined for blues: Principal Component
1 = 0.60 � bill length + 0.54 � bill depth + 0.59 � flipper length. Their body condition was
defined as the residuals of a regression of body mass on the index of structural size (R2 = 0.55,
P< 0.001).

Genetic sexing of African penguins
As one of the aims of the study was to examine whether differences in diet existed between
sexes, assigning sex was crucial. Using length and depth measurements of the bill to build a dis-
criminant function,>90% of the adults can be sexed accurately [33]. This leaves ~10% of pen-
guins with borderline measurements with uncertain identification of sex. Therefore, all adults
were sexed genetically by adapting a protocol developed for Cape gannets [36, 37].

Whole genomic DNA was extracted from the feather roots using a Chelex1 extraction
method [37]. The DNA yield was then measured using a NanoDrop1 Spectrophotometer
(Thermo Scientific), and the supernatant stored at -20°C. DNA fragments of the sex-linked
CHD-1 gene (ZZ for males, ZW for females) were then amplified as in [37]. The only differ-
ence with the published protocol was the electrophoresis conditions for the separation of the
PCR products which were 100 V for 1 h. Gel was then stained with GelRed™ Nucleic Acid Gel
stain and bands were visualized under ultraviolet light.

Stable isotope analyses
Prior to analysis, egg membranes were carefully brushed in distilled water before being dried at
50°C for 24 hours. Feathers were initially washed in chloroform-methanol (2 parts to 1) in an
ultrasonic bath for 2 minutes, rinsed in successive baths of methanol and distilled water, and
then dried at 50°C for 24 hours. Each feather and piece of membrane were then cut into small
pieces and homogenized. For whole blood sampled from birds, it is usually assumed that no
pre-treatment is necessary [38]. Homogenized feather, egg membrane and dried blood were
then weighed out 0.4 to 0.5 mg into a tin capsule. Relative isotope abundances of carbon and
nitrogen were determined with a Thermo Finnigan Delta XP Plus mass spectrometer interfaced
with a Conflo III device to a Thermo Flash EA 1112 elemental analyzer (Stable Light Isotope
Unit, University of Cape Town, South Africa). Carbon and nitrogen results are presented in
the usual δ notation relative to Vienna Pee Dee Belemnite, and atmospheric N2, respectively.
Internal laboratory standards were calibrated against reference materials from the Interna-
tional Atomic Energy Agency (IAEA, Vienna, Austria) and run throughout all runs, typically 2
standards for every 10–12 samples. Within and among run measurement errors are detailed in
S1 Table.

Within an organism, lipids are typically depleted in 13C and exhibit more negative δ13C val-
ues than proteins and carbohydrates [39, 40]. A strong relationship between lipid contents and
C:N ratios has been highlighted in animal tissues and it is advisable to account for lipids when
C:N ratios are above 3.5 [41]. Accordingly, when C:N ratios exceeded 3.5 in blood samples,
lipid-associated biases of δ13C were therefore reduced by mathematically normalizing the car-
bon ratios using an equation developed for aquatic animals δ13C = δ13C − 3.32 + (0.99 x C:N)
[41].

Stable isotope Bayesian ellipses
After verification of the multivariate normality assumptions (Mardia tests; all P> 0.05), stable
isotope Bayesian ellipses were generated in R ([42]; package SIBER in R v3.2.5; R Foundation
for Statistical Computing, Vienna, Austria) to evaluate the variability among individuals and
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plot the isotopic niches of the various sample groups. The following metrics were estimated:
convex hull [43], standard ellipse area corrected (SEAc) for low sample size (SEAc = SEA(n-1)
(n-2)-1), and the Bayesian estimate of the standard ellipse area (SEAB) [42].

Diet reconstruction using Bayesian mixing models
In all mixing models, determining stable isotope values of potential prey species is necessary.
Fifteen specimens of the five potential prey species (4 fish and 1 squid) previously identified
for African penguins in Algoa Bay [14], were collected from local fisheries operating in East-
ern Cape waters in 2013: anchovy, sardine, red-eye round herring Etrumeus whiteheadi, chub
mackerel Scomber japonicus and squid Loligo reynaudii. A muscle section was sampled from
each individual, dried at 50°C for 24 h, ground to powder and delipidated using cyclohexane
(protocol detailed in [44]). Carbon and nitrogen stable isotope values of the prey species were
correlated (Spearman’s rank coefficient P< 0.002) and failed the hypothesis of multivariate
normality (Mardia’s skewness test P < 0.001). The comparison among the stable isotope
values of prey species was performed using a one-way permutational analysis of variance
(PERMANOVA).

Accurate diet-tissue discrimination factors are also essential in mixing models [45]. A feed-
ing captivity study conducted with African penguins found a discrimination factor for nitrogen
for whole blood only (+2.5 ± 0.2‰; [46]). To date, no other discrimination factors exist for
African penguins. Additional average discrimination factors for carbon and nitrogen were con-
sequently calculated from all studies conducted on other species of penguins in captivity (S2
Table). The following discrimination factors were used for all the sources: whole blood (carbon:
-0.4 ± 0.6‰, nitrogen: +2.4 ± 0.3‰), feathers (carbon: +0.5 ± 0.7‰, nitrogen: +4.1 ± 0.7‰),
and egg membranes (carbon: +2.8 ± 0.1‰, nitrogen: +4.4 ± 0.1‰).

The adequacy of the food sources and discrimination factors was checked using simulated
mixing polygons [47] before running the mixing models. Probability distributions for the pro-
portional contribution of the five potential prey species to the diet of African penguins was
then estimated using the Bayesian stable isotope mixing model MixSIAR GUI v3.0 [48, 49].
This Bayesian approach accounted for the uncertainty in sources [50, 51], and the inclusion of
categorical covariates (sexes and age classes) into the models where appropriate [48, 52]. Con-
centration dependence can also be included in this model [49]; but because all five potential
prey species exhibited similar carbon and nitrogen concentrations (carbon: ~43%; nitrogen:
~13%) this factor did not need to be accounted for [45, 53]. Markov Chain Monte Carlo
parameters for blood and feathers were set as follows: chain length = 100 000, burn in = 50 000,
thin = 50, number of chains = 3. For egg membranes, parameters were chain length = 300 000,
burn in = 200 000, thin = 100, number of chains = 3. Models were assessed for convergence
using Gelman-Rubin and Geweke metrics [49].

Statistical analyses
All statistical analyses were conducted using R v3.2.3 [54] and Past 3.06 [55]. Significance level
was set at 0.05 and a Bonferroni correction was applied after multiple comparisons. After
checks for normality and homoscedasticity, morphometric data were analysed using paramet-
ric analyses. Growth and nutritional stress may affect stable isotope values [25, 56–58]. The
influence of body condition on δ13C and δ15N values were therefore checked within each group
(considering locations, age classes and seasons) by comparing values for individuals exhibiting
a lower (negative) and higher (positive) body condition index than average. The comparison
of stable isotope values between sexes, age classes and islands required the use of various
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parametric and non-parametric analyses depending on whether normality and homoscedastic-
ity hypotheses were verified.

Results
Overall, males exhibited statistically larger features and were heavier than females (all P< 0.001;
Table 1, S3 Table). A comparison of birds from the two islands found no statistical differences in
morphometric data, body weight or body condition index (Table 1, S3 Table). Body condition
did not influence δ13C in adults or in blues (all P> 0.341). Similarly, no statistical differences
were found in the δ15N values between birds with different body conditions (all P> 0.204) with
the exception of adults sampled outside the breeding season on Bird Island. In the latter case,
birds with a lower body condition than average exhibited statistically higher δ15N values (t-test
t = 2.42, P = 0.027).

Seasonal variation in carbon and nitrogen stable isotope values of blood
and feathers
Carbon stable isotope values of blood collected during the non-breeding period were statisti-
cally lower in females than in males. These values for females were also lower than those for
both sexes sampled during the breeding period at the same island (Kruskal-Wallis H = 22.38,
P< 0.001; Mann-Whitney pairwise comparisons all P< 0.020 when considering blood from
females compared to other groups). Importantly, these carbon values were correlated with high
C:N ratios (up to 4.3; Pearson’s r = -0.90, P< 0.001), while C:N values were all lower than 3.5
for all the other samples. Consequently, non-breeding female blood δ13C were normalized and
only δ13Cnormalized for the females was used for subsequent analyses.

Significant seasonal variations were evident based on blood samples collected during breed-
ing and non-breeding (MANOVAWilks’ lambda F6,70 = 17.73, P< 0.001, pairwise compari-
son all P< 0.004 with the exception of breeding season samples where no difference existed
between male and female samples P = 0.391; Table 2). Samples collected outside the breeding
season were segregated from breeding season samples by their δ15N values (t-test t = -9.26,
P< 0.001), and during non-breeding males were separated from females based on their δ13C
values (t-test t = -2.57, P< 0.020). The overall isotopic spaces of all four groups were similar
(Table 3) and no overlaps were found between SEAc of non-breeding males, non-breeding
females and both sexes during the breeding season (Fig 2a and 2b).

No seasonal or sex related variation in δ13C and δ15N were highlighted in the feather sam-
ples (PERMANOVA Fseason = 1.04, P = 0.296; Fsex = 0.06, P = 0.894; Tables 2 and 3) with all
the SEAc and TA overlapping (Fig 2c and 2d). Similarly, their interaction was not significant
either (Fseason�sex = -2.96, P = 0.583).

Spatial variation in carbon and nitrogen stable isotope values of the
three tissues
When using a multivariate analysis, neither sex, island nor their interaction had a significant
effect on adult blood stable isotope values (PERMANOVA, Fisland = 2.63, P = 0.077; Fsex = 2.02,
P = 0.116; Fisland�sex = -2.71, P = 0.736). Univariate analysis however showed that carbon stable
isotope values of adult blood samples were significantly different between the two islands with
samples from St Croix being depleted in 13C (ANOVA Fisland = 11.68, P< 0.002; Table 2). Sex
was also a significant factor with females exhibiting a lower δ13C than males (ANOVA Fsex =
7.76, P< 0.009; Table 2). The interaction between those two factors was not significant
(ANOVA Fisland�sex = 1.23, P = 0.274). None of these factors were significant when considering
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δ15N values (ANOVA Fisland = 0.56, P = 0.458; Fsex = 0.74, P = 0.394; Fisland�sex = 0.05, P = 0.817).
When adding the samples for blues, the island still had a significant effect on δ13C values
(ANOVA Fisland = 13.57, P< 0.001; Table 2) but age class did not (ANOVA Fage class = 0.07,
P = 0.791), and neither did the interaction of these two factors (ANOVA Fisland�age class = 0.06,
P = 0.814; Fig 3a and 3b). Conversely, δ15N values from blues were significantly lower than the

Table 1. Biological characteristics of the African penguins sampled on Bird and St Croix islands in 2013.

Island Period of
sampling

Age class Sex n Bill depth
(mm)

Bill length
(mm)

Flipper length
(mm)

Body weight
(kg)

Body condition
index

Bird Non-breeding Adults Males 10 25.1 ± 1.2 60.5 ± 3.0 191 ± 8 4160 ± 348 232 ± 324

(23.6–27.3) (57.1–66.8) (180–206) (3625–4625) (-319–663)

Females 12 23.2 ± 1.0 56.4 ± 2.1 181 ± 6 3735 ± 477 107 ± 498

(21.3–24.3) (53.4–59.3) (170–191) (2875–4375) (-802–727)

Breeding Adults Males 13 24.7 ± 0.8 60.2 ± 1.8 190 ± 7 3810 ± 309 -86 ± 340

(23.5–26.8) (57.4–63.2) (176–199) (3250–4250) (-781–322)

Females 9 22.3 ± 1.0 56.1 ± 2.0 177 ± 8 3314 ± 408 -216 ± 394

(20.3–23.9) (53.0–59.0) (163–189) (2775–4100) (-702–398)

Blues 12 17.8 ± 1.0 48.1 ± 3.9 183 ± 11 3100 ± 354 -20 ± 207

(15.6–19.4) (41.7–53.5) (167–204) (2650–3675) (-391–241)

St
Croix

Breeding Adults Males 13 25.2 ± 1.3 59.5 ± 2.1 185 ± 11 3873 ± 217 79 ± 255

(23.0–27.8) (55.4–62.3) (167–204) (3425–4200) (-268–429)

Females 7 22.1 ± 0.5 55.7 ± 2.8 176 ± 3 3293 ± 314 -194 ± 310

(21.4–22.6) (50.3–59.1) (172–180) (2875–3725) (-692–152)

Blues 11 17.1 ± 0.9 48.5 ± 2.2 177 ± 8 3002 ± 352 22 ± 257

(15.2–17.9) (45.4–52.4) (160–185) (2550–3750) (-415–579)

n: number of individuals sampled. Values are means ± SD.

doi:10.1371/journal.pone.0159402.t001

Table 2. Carbon (a) and nitrogen (b) stable isotope (‰), and C:N ratio (c) values of blood, feathers and eggmembranes of African penguins breed-
ing in Algoa Bay.

Bird Island St Croix Island

Non-breeding Breeding Breeding

Adults Adults Blues Adults Blues

Males Females Males Females Males Females

a) δ13C (‰)

Blood -15.8 ± 0.2 -16.1 ± 0.1* -15.8 ± 0.1 -16.0 ± 0.1 -15.9 ± 0.1 -15.8 ± 0.1 -15.8 ± 0.1 -15.8 ± 0.2

Feathers -14.7 ± 0.1 -14.7 ± 0.1 -14.7 ± 0.1 -14.8 ± 0.2 -14.6 ± 0.1 -14.8 ± 0.1 -14.8 ± 0.1 -14.6 ± 0.1

Egg membrane - - - -14.6 ± 0.1 - - -14.6 ± 0.1 -

b) δ15N (‰)

Blood 13.3 ± 0.3 13.4 ± 0.3 14.1 ± 0.2 14.2 ± 0.3 13.4 ± 0.2 14.1 ± 0.2 14.1 ± 0.1 13.8 ± 0.2

Feathers 15.4 ± 0.2 15.4 ± 0.4 15.3 ± 0.4 15.3 ± 0.4 14.3 ± 0.2 15.3 ± 0.2 15.4 ± 0.3 14.5 ± 0.2

Egg membrane - - - 14.7 ± 0.3 - - 14.9 ± 0.4 -

c) C:N

Blood 3.3 ± 0.0 3.8 ± 0.3 3.4 ± 0.1 3.4 ± 0.1 3.4 ± 0.1 3.3 ± 0.1 3.3 ± 0.1 3.4 ± 0.1

Feathers 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0 3.1 ± 0.0

Egg membrane - - - 3.2 ± 0.1 - - 3.2 ± 0.1 -

*: corrected values due to high C:N values (see text). Values are means ± SD.

doi:10.1371/journal.pone.0159402.t002
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Table 3. Average standard ellipse areas (‰²) with 95% confidence intervals estimated from δ13C and δ15N values using a Bayesian Inference with
10,000 replications.

Island Season Age class Sex Blood Feather Egg membrane

SEAB SEAB SEAB

Bird Non-breeding Adults Males 0.1 (0.1–0.2) 0.1 (<0.1–0.1) - -

Females 0.1 (<0.1–0.2) 0.1 (0.1–0.3) - -

Breeding Adults Males 0.1 (<0.1–0.2) 0.1 (0.1–0.2) - -

Females 0.1 (<0.1–0.2) 0.1 (0.1–0.3) 0.1 (0.1–0.3)

Blues 0.1 (<0.1–0.2) 0.1 (<0.1–0.1) - -

St Croix Breeding Adults Males 0.1 (<0.1–0.1) 0.1 (<0.1–0.1) - -

Females < 0.1 (<0.1–0.1) 0.1 (<0.1–0.2) 0.2 (0.1–0.3)

Blues 0.1 (0.1–0.2) 0.1 (<0.1–0.1) - -

doi:10.1371/journal.pone.0159402.t003

Fig 2. Seasonal variation in the isotopic space depicting niche areas for African penguin blood (a, b) and feathers (c, d) using
convex hull areas (a, c; [31]) and standard ellipse areas corrected for small sample size (b, d; [30]). Females (circles) and males
(triangles) were sampled in both non-breeding and breeding periods on Bird Island and are represented in black and grey, respectively.

doi:10.1371/journal.pone.0159402.g002
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Fig 3. Spatial variation in the isotopic space depicting niche areas for African penguins blood (a, b), feathers (c, d) and egg
membrane (e, f) using convex hull areas (a, c, e; [31]) and standard ellipse areas corrected for small sample size (b, d, f;
[30]). Females (circles), males (triangles) and blues (crosses) sampled on Bird and St Croix islands are represented in black and
grey, respectively.

doi:10.1371/journal.pone.0159402.g003

Trophic Ecology of African Penguin

PLOS ONE | DOI:10.1371/journal.pone.0159402 July 19, 2016 10 / 23



values from adults (ANOVA Fage class = 71.89, P< 0.001), and the interaction island/age class
had a significant impact on δ15N values (ANOVA Fisland�age class = 13.75, P< 0.001; Fig 3a
and 3b).

Neither sex, island nor their interaction had a significant influence on the δ13C and δ15N
adult feather values (PERMANOVA Fisland = 0.50, P = 0.504; Fsex = 0.77, P = 0.383; Fisland�sex =
-1.95, P = 0.661). When considering samples from adults and blues, no statistical difference in
the stable isotope values was highlighted between the two islands, but age class was a significant
factor (PERMANOVA Fisland = 1.23, P = 0.240; Fage class = 117.09, P< 0.001) with δ13C and
δ15N values being significantly lower in blues than in adults (δ13C: Mann-Whitney U = 152,
P< 0.001; δ15N: Mann-Whitney U = 0, P< 0.001; Table 2; Fig 3c and 3d).

No statistical differences were apparent in egg membranes from the two islands neither for
δ13C (Mann-Whitney U = 45, P = 0.723) nor for δ15N (t test t = -1.33, P = 0.199; Table 2).
Finally, the isotopic space from both islands was similar (Table 3; Fig 3e and 3f).

Diet reconstruction
δ13C and δ15N values of the five marine species, sardine, anchovy, red-eye round herring, chub
mackerel and squid, were significantly different from each other (PERMANOVA F4,70 = 243.2,
P< 0.001, pairwise comparisons all P< 0.02; S4 Table) and were therefore integrated into the
mixing model without grouping.

When corrected with tissue-specific trophic enrichment factors, African penguin δ13C and
δ15N values fell within the simulated mixing polygons calculated with the five potential prey
species (Fig 4) allowing further diet determination using Bayesian mixing models. Egg mem-
brane δ13C and δ15N values were, however, borderline to the simulated mixing polygons.

Unlike the data for blood and feathers, MixSIAR models did not converge for the egg mem-
brane data, which was therefore not used for diet reconstruction. Overall, models predicted
that sardine and squid were the main species eaten by the various groups of birds (Figs 5 and 6;
S5 Table). No sex-specific differences in the diet of penguins were apparent. Blood data sug-
gested that adults from Bird Island mainly preyed upon sardine, and to a less extent squid,
before the breeding season with squid consumption becoming dominant during the breeding
season. Similarly, squid were the main prey species for breeding birds from St Croix. Prior to
moulting, adults from both islands favoured a mix of sardine and squid.

Blood samples collected from both adults and blues on Bird Island indicated that while
mainly utilising squid themselves, breeding birds raised their chicks primarily with sardine fol-
lowed by squid. Feather samples from blues confirmed this result. On St Croix, blues were
again mainly raised on sardines but squid quantities were slightly higher than for blues on Bird
Island.

Importantly, due to a correlation between sardine and anchovy stable isotope values, in
many cases the model could not fully discriminate between those two species. Therefore, a
grouping of ‘small pelagic fish’may be a more realistic diet component rather than strictly sar-
dine sensus stricto.

Discussion
The African penguin population has decreased dramatically due to a number of factors. Cur-
rently, this includes shortages in prey [8]. To fully understand and assess how present and
potential future changes in the marine environment will affect this species, it is crucial to accu-
rately determine its trophic interactions and whether these vary according to intrinsic (age clas-
ses, sexes) but also extrinsic (seasons, colonies) factors. This study addresses some of these
concerns and for the first time shows that season, colony as well as age class affect stable
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isotope data in African penguins through their diet. It furthermore demonstrates that the con-
tribution of squid in the African penguin diet has largely been overlooked in previous studies
that only relied on stomach content analyses. Our study also stresses the importance of indirect
methods in adequately determining the diet of marine top predators at a range of spatial scales
and life history stages. This is particularly important where appropriate management of prey
resources throughout the annual cycle could be critical to the future well-being of the species.

Potential effect of the annual cycle of the African penguin on carbon and
nitrogen stable isotope values
The annual cycle of penguins includes two important events, moulting and breeding, each
being energetically costly in its own way [59]. Prior to the moulting fast ashore, penguins

Fig 4. Simulated mixing region calculated with the five potential prey species (white crosses).Dark symbols represent the African
penguin blood (a and b), feather (c) and egg membrane (d) data corrected with the tissue-specific trophic enrichment factors (see S2
Table).

doi:10.1371/journal.pone.0159402.g004
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maximize energy intake to increase fat reserves. During breeding, breeders face the costs of
incubation and raising chicks, in addition to self-maintenance [60]. Body weight and condition
indices suggested that African penguin males are truly income breeders, i.e. they acquire the
necessary energy to raise their offspring from prey caught while rearing their offspring, rather

Fig 5. Stable isotopemixingmodel (MixSIAR) results with predicted diet proportions (median values and 5th to 95th percentiles) of
each five potential prey species compared to δ13C and δ15N values of African penguin blood.White: females, light grey: males, dark
grey: blues.

doi:10.1371/journal.pone.0159402.g005

Fig 6. Stable isotopemixingmodel (MixSIAR) results with predicted diet proportions (median values and 5th to 95th percentiles) of
each five potential prey species compared to δ13C and δ15N values of African penguin feathers.White: females, light grey: males,
dark grey: blues.

doi:10.1371/journal.pone.0159402.g006
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than prior to the onset of a breeding event [61]. However, our data showed that females may be
intermediate between income and capital breeders, with a decreasing body condition index on
both islands while rearing their chicks (Table 1). Both parents invest heavily in parental care
and share incubation and chick-rearing responsibilities [29]. The difference between sexes in
the alteration of body condition could be explained by the carry-over effect of egg formation in
females. However, greater foraging effort by females while rearing the chick has also been
observed [33], which may explain this, although the two factors are not mutually exclusive.
Weight loss due to fasting during moulting in King penguins Aptenodytes patagonicus has been
shown to increase δ15N by ~0.3‰ [25]. However, the extent of weight loss detected here for
the breeding season (10%) was far less than that recorded previously for the moult (up to 40%;
[62]). Therefore, we do not expect any important consequences of weight loss on the δ15N of
females during chick-rearing.

The breeding cycle of African penguins is protracted and on Bird Island egg laying mainly
takes place from February to July, sometimes followed by second clutches for both successful
and failed breeders [29, 63]. When sampling adults in mid-January on Bird Island, no breeding
activity had been recorded. However, considering their breeding cycle, laying in at least some
individuals would likely have occurred shortly after sampling. The lower δ13C and elevated C:
N ratios observed in female blood at that time of the year were therefore possibly related to
higher proportions of circulating lipids in their blood due to egg formation [64]. Elevated lipid
contents have been identified in the plasma of pre-breeding female Magellanic (Spheniscus
magellanicus [65]) and Macaroni (Eudyptes chrysolophus [66]) penguins when compared to
males and samples collected from females at other times of the year. No study has yet concur-
rently analysed stable isotopes and blood parameters of sexed penguins at the onset of laying.
Measuring carbon and nitrogen stable isotope ratios of whole blood do not usually require a
pre-treatment [38, 67], but as noted by [38] and observed in our study, care needs to be taken
in particular physiological situations such as the egg formation period in females.

Factors influencing the trophic ecology of African penguin
One of our most important results is that parents are selectively favouring small pelagics when
catching food for their chicks, but targeting squid for self-provisioning, as indicated by blood
and feather stable isotope data. Such selective foraging has also been observed in the Yellow-
eyed penguinMegadyptes antipodes [68].

Our results from feathers indicate that adults from both islands preyed upon a mix of small
pelagics and squid prior to moulting. Blood samples suggested that, thereafter, the adults main-
tained a similar diet prior to breeding. Birds with a lower body condition than average in Janu-
ary exhibited higher δ15N than birds with a higher body condition at the same period. This
effect of physiology on δ15N values [56] may artificially and slightly increase the quantity of
squid determined by the mixing model prior to breeding. During breeding, however, the adults
obtained most of their energy from squid but fed the blues primarily on small pelagics together
with lower amounts of squid (with subtle difference between islands). These changes in the diet
may be dictated by the different energetic needs of the moult and breeding seasons, but may
also follow the seasonal availability of prey species. Small pelagics, whose energy contents are
~1.5 times higher than that of squid [69], were favoured when energetic needs were important
(before breeding and for chick growth). In addition, while adults are able to efficiently use
squid [29], the chicks do not seem to possess that ability [70]. Growth and nutritional stress
have been found to impact stable isotope ratios in chicks [57, 58] (but see [19]). To reduce the
impact of growth on δ13C and δ15N values, we sampled chicks as closely as possible to fledging
(i.e. blues;>61 days old). The weights recorded (~3000 g) for Bird and St Croix island blues
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suggest that they were not experiencing nutritional stress as these approached the weight of
hand-reared chicks [71]. It is therefore unlikely that physiology impacted much on their δ13C
and δ15N values. The geographical difference observed, with St Croix chicks being fed a larger
proportion of higher trophic level prey such as squid than their counterparts on Bird Island,
may be explained by the greater availability of squid in the south west area of the bay [72]
where breeders from St Croix are known to forage [33].

The availability of the prey species in the environment was likely to also have played a role
in the seasonality that we observed in adult diet. Penguins that have been tracked exclusively
during chick-rearing on both islands remained in an area within 44 km of their breeding col-
ony [33]. Therefore, it is likely that they will need to locate food within that area during
breeding. The availability of small pelagics and squid in Algoa Bay is regulated by the annual
cycle of these species, including the event known as the “sardine run”. This migration is a
1000 km northward migration of clupeids up the east coast to KwaZulu-Natal during the aus-
tral winter [73]. During this event the abundance of small pelagics (especially sardine)
decreases significantly in the area just north of Algoa Bay [74]. Adult penguins may turn to
squid during this period. The chokka squid is found all along the coast of southern Africa but
the south east coast is particularly rich and known to host important spawning grounds in
inshore waters [72]. Gregarious spawning, peaking in early summer, makes chokka squid
particularly vulnerable to predators [75]. This may explain the large contribution of squid in
the diet of African penguin during their pre-moult foraging trip in October despite the return
of small pelagics.

Carbon and nitrogen stable isotope values of egg membranes were similar for the two
islands suggesting that females from Bird and St Croix islands had a similar diet prior to laying.
Unfortunately, the non-convergence of the MixSIAR model prevented the determination of
diet from δ13C and δ15N values. The non-convergence could be explained by a number of fac-
tors including (i) the use of an erroneous trophic discrimination factor, and/or (ii) the absence
of the main prey species in the database targeted by females prior to laying. Only one study has
determined the diet-egg membrane trophic discrimination factor in penguins (Gentoo penguin
Pygoscelis papua; [76]). A study of captive African penguins would allow the calculation of a
species-specific discrimination factor and would verify the suitability of Gentoo penguin data.
Should the discrimination factors be similar, African penguin females would be targeting high
amounts of a currently undetermined species.

Spatial and temporal variations in the diet of African penguin
Breeding colonies of African penguins are located both in the warm Agulhas current bioregion
on the east coast of South Africa, and the cold Benguela current on the west [8]. These currents
are characterised by different oceanographic conditions. This, in addition to differences in the
bathymetry surrounding the breeding colonies, will likely influence the trophic ecology of
these true central place foragers as it does in other penguin species [77, 78].

The trophic ecology of the African penguin has been studied all along its breeding range
using stomach contents since 1950s (Table 4). In Namibia, African penguins turned to Pelagic
goby Sufflogobius bibarbatus after the collapse of small pelagic stocks due to overfishing in the
1970s (Table 4; [79]). On the west coast of South Africa, small pelagics have consistently been
recovered in the stomach contents since the end of the 1980s (Table 4). In the Eastern Cape,
small pelagics and squid were identified as the main prey species in varying proportions
depending on months and years during the early 1980s [14]. More recently, small pelagics have
dominated the stomach contents at both St Croix and Bird islands (Table 4) which could be
related to the eastward displacement of sardines and anchovy since the mid-1990s [80, 81].
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Squid remains have been found regularly in African penguin stomach contents. However,
their importance was often dismissed due to the higher retention time of squid beaks in the
stomachs compared to otoliths [94], and the slower digestion time of squid compared to fish
[15]. Our study, using stable isotopes, demonstrated the importance of nutrients originating
from squid for adults at various stage of their annual cycle and stresses the need for similar
studies at other colonies to get a better understanding of their diet.

Table 4. Studies that focused on the African penguin diet along its breeding range. Colonies are listed fromWest to East along the southern African
coast. Small pelagics consists out of anchovy and sardine.

Country Area Colony Year Dominant prey References

Namibia North

Walvis Bay 1957–1958 Small pelagics [12]

Central

Mercury Isl. 1980 Pelagic goby [82]

Mercury Isl. 1980 Pelagic goby, Squid [83]a

Mercury Isl. 1996–2009 Pelagic goby1 [79]

Ichaboe Isl. 1980 Pelagic goby [82]

Ichaboe Isl. 1980 Squid, Pelagic goby [83]a

Halifax Isl. 1977–1979 Pelagic goby [82]

Halifax Isl. 1980 Squid [83]a

Possession Isl. 1977–1979 Pelagic goby [82]

Possession Isl. 1980 Squid [83]a

South Africa Western Cape

St Helena Bay 1953–1954 Small pelagics [84]

St Helena Bay 1954–1955 Small pelagics [85]

West coast 1954–1056 Small pelagics, Mackerel2 [86]

Saldana bay 1977–1978 Small pelagics3 [87]

Marcus Isl. 1980–1986 Small pelagics [88] (includes data from [13])

Marcus Isl. 1990 Small pelagics [89]

Jutten Isl. 1987–1989 Small pelagics [89]

Dassen Isl. 1991–2009 Small pelagics4 [8]

Robben Isl. 1989–1992 Small pelagics [90]

Robben Isl. 2003 Small pelagics [91]

Robben Isl. 1989–2009 Small pelagics [8]

Boulders 2003 Small pelagics [91]

Dyer Isl. 1991–1997, 2008, 2009 Small pelagics [8]

Eastern Cape

St Croix Isl. 1976–1977 Study of squid remains only [92]

St Croix Isl. 1979–1981 Small pelagics [14]

St Croix Isl. 1996, 1999, 2006, 2009 Small pelagics5 [8]

St Croix Isl. 2009–2010 Small pelagics [93]

Bird Isl. 1992, 1993, 1999, 2001, 2005–2009 Small pelagics [8]

Bird Isl. 2009–2010 Small pelagics [93]

a% by number converted to % by mass by [8]
1Except in 2003 when mullet was dominant
2Squid present but not numbered
3% by number
4Except in 1997 when other species were dominant
5Except in 1996 when squid was dominant

doi:10.1371/journal.pone.0159402.t004
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Two other projects have analysed stable isotopes of feathers and blood from African pen-
guins [95, 96]. Differences in the protocols used, however, make comparisons difficult. For
example, the lower δ13C detected in feathers collected in the Eastern Cape colonies in 2008–
2009 [95] and in 2012–2013 [96] compared to our data are likely due to the effect of pigmenta-
tion rather than changes in the marine environment. Black feathers were analysed in the prior
study but melanin has been shown to lower carbon stable isotope values [97]. By contrast,
while δ15N is not affected by melanin content [97], the values observed in 2013 seem higher
than the ones from previous years. This may indicate a slightly lower importance of squid in
the earlier period during pre-moult foraging trips [95, 96]. Blood samples collected from adults
at the beginning of winter in 2009 and 2013 on Bird Island (Algoa Bay) showed similar carbon
and nitrogen stable isotope values highlighting the importance of small pelagics and squid dur-
ing the breeding season for the adults [95]. Alternatively, if prey choice remained consistent in
2009, 2012 and 2013, a shift in the isotopic values of their preferred prey and/or temporal shift
in isotopic baselines could have given rise to this difference [98]. Countering this, the large
scale spatial variation in feather stable isotope values detected by [95] along the southern Afri-
can coast mirrored that which was found for Cape gannets [99] and African black oystercatch-
ers Haematopus moquini [100]. This indicates that these changes probably resulted from the
different oceanographic conditions, and thus different foraging habitats, rather than a differ-
ence in the African penguin diet during their pre-moult foraging trip.

Implications for conservation
This study provides a greater understanding of the trophic ecology of the African penguin at
their most important breeding sites and reveals the utility of indirect methods in studying the
diet of seabirds. It highlighted the importance of chokka squid at a particular time of the year
in the diet of adults. Previous research have emphasized the role of small pelagic fish and how
the purse sein fishing industry may negatively impact African penguins [93, 101]. We suggest
that squid and squid fisheries should also be considered, in particular within areas of the Afri-
can penguin breeding range. Further work should also focus on other breeding localities to
access trophic information using indirect markers that is not available through traditional
stomach content analysis. Stomach content data is the only source of information on diet that
has been considered thus far in African penguin population modelling (e.g. [102–104]). Con-
sidering that this data can only be obtained from breeding animals, and the degree of seasonal
variability in diet shown by this study, we suggest that this is inadequate. For species of conser-
vation concern such as the African penguin, an effort should be made to fully understand their
trophic ecology, how this vary with time, location, age class, and how it may change in the
future.
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