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Numerical investigation of band 
gaps in 3D printed cantilever-in-
mass metamaterials
Awais Qureshi, Bing Li & K. T. Tan

In this research, the negative effective mass behavior of elastic/mechanical metamaterials is exhibited 
by a cantilever-in-mass structure as a proposed design for creating frequency stopping band gaps, based 
on local resonance of the internal structure. The mass-in-mass unit cell model is transformed into a 
cantilever-in-mass model using the Bernoulli-Euler beam theory. An analytical model of the cantilever-
in-mass structure is derived and the effects of geometrical dimensions and material parameters to 
create frequency band gaps are examined. A two-dimensional finite element model is created to 
validate the analytical results, and excellent agreement is achieved. The analytical model establishes 
an easily tunable metamaterial design to realize wave attenuation based on locally resonant frequency. 
To demonstrate feasibility for 3D printing, the analytical model is employed to design and fabricate 
3D printable mechanical metamaterial. A three-dimensional numerical experiment is performed using 
COMSOL Multiphysics to validate the wave attenuation performance. Results show that the cantilever-
in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. Our 
study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass 
metamaterial with negative effective mass density for stress wave mitigation purposes.

Advancement made to the world of materials over the past few decades has brought on an era of uniquely engi-
neered materials. The highest demand for performance of materials coupled by the fast pace of scientific develop-
ments have pushed boundaries beyond the imagination of man to design and engineer materials with exceptional 
properties not found in nature. An increasing amount of research has been conducted to explore the extraor-
dinary physical effective properties (like negative effective mass density, negative effective elastic modulus and 
negative Poisson’s ratio, etc) of acoustic/elastic/mechanical metamaterials1–5. Such properties are often realized 
through the fabrication of specifically designed structures at the meso-, micro- and nano-scale, and not by mate-
rial chemical composition. The potential applications of these unique metamaterials range from vibration iso-
lation6–8, acoustic sound wave control9–11, impact and blast-wave mitigation12–14, etc. The wave attenuation and 
mitigation mechanism exhibited by the mechanical metamaterials is a result of the formation of frequency band 
gaps that prohibited transmission of acoustic/mechanical waves15–19.

The control over band gaps in the negative effective mass concept employs a mass-in-mass model which 
defines a unit cell with an outer mass and an inner mass connected by a spring20–22. The system exhibits the 
dynamic negative mass behavior due to the internal resonance of the unit cell caused by the inner mass and the 
spring, as depicted in Fig. 1(a). The practical realization of these mass-in-mass metamaterials remains a challenge, 
as they either represent cumbersome structures13,22, or require more than one constituents for manufacturing (for 
example, heavy core as inner mass and surrounded by soft elastic layer, acting as spring)1,23, which does not make 
fabrication easy, particularly if mass production of numerous unit cells is required in the entire structure.

The frequency band gaps of a metamaterial can also be controlled using phononic plates which employ 
beam-like resonators to induce local resonance24,25. Other studies show wave attenuation in thin met-
amaterial plates as well as enhancements by introducing springboards26. The plates are created using a 
cantilever-mass-microstructure, to analyze the dispersion relations for in-plane longitudinal waves27. Each design 
has proven to be effective at impact wave mitigation through the presence of band gaps, where the input fre-
quency falls within the locally resonant band gap frequency of the internal structure. However, there is a lack of 
design parameters to govern the designed resonance frequency based on analytical model of cantilever-in-mass 
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metamaterials. Moreover, the prototypes in earlier studies were typically made of metals25,27, thus quick and easy 
fabrication could not be simply achieved.

Recent progress in three-dimensional (3D) printing technology has enabled a rapid prototyping of com-
plex models at a limited cost. Fabrication of metamaterials with complex internal architecture is a challenge in 
traditional manufacturing methodology. However, 3D printing offers possible realization of mechanical meta-
materials, since in 3D printing, complex structural shapes and geometries can be achieved, without incurring 
assemblage and mold requirement, and thus reducing cost and increasing efficiency in fabrication28. Another 
manufacturing approach of elastic metamaterial is by the precision laser cutting system as demonstrated by Zhu 
et al.29.

Early research conducted on the rapid prototyping of band gap microstructures revealed that it is possible to 
use modern 3D printing techniques to create features at a micro level. The outcome exhibits the formation of a fre-
quency band gap in the material30. In the effort to 3D print a mass-in-mass metamaterial with spring-connected 
mass, Buckmann et al.31 fabricated the delicate helical Hooke’s spring structures combined with the inner cube’s 
solid material, but realized that the springs are not smooth and have slightly larger than designed average wire 
diameter. Although 3D printing provides a lot of flexibility in design, it is still difficult to 3D print springs accu-
rately. As such, there appears a need to reconsider the use of mass-in-mass metamaterial model, and possibly 
consider the better use of a cantilever-in-mass metamaterial design in 3D printing. The lack of analytical model 
based design and the need to achieve a one constituent material tunable mechanical metamaterial to enable easy 
fabrication by 3D printing are the main motivations for this work.

In this work, we propose the design, fabrication and characterization of 3D printable mechanical metamateri-
als by employing cantilever beam-like resonators to equivalently and effectively represent the spring mass-in-mass 
model. We develop an analytical model of analogous cantilever-in-mass metamaterial based on Bernoulli-Euler 
beam theory. We perform parametric studies to understand and evaluate the influence of geometrical and mate-
rial properties on the designed resonance bandgap of the metamaterials, with the aim to achieve tunability. We 
further validate the analytical model using 2D finite element simulation and investigate the wave attenuation 
performance of the metamaterial. Finally, we fabricate and demonstrate 3D printable metamaterials using Objet 
Eden260v 3D printer. We also conduct numerical experiments of the 3D printable metamaterials and validate the 
2D simulation results and analytical model to confirm the feasibility of the design.

Results
Mass-in-mass model. This section briefly reviews the theory of negative effective mass density obtained by 
using a mass-in-mass spring system20,21. Such a system would consist of an outer mass, m1, and an inner mass, m2, 
connected by a spring of stiffness k2, as illustrated in Fig. 1(a). Assuming that the external applied force F and 

Figure 1. (a) Mass-in-mass unit cell and its equivalent effective mass model. (b) Plot showing normalized mass 
against normalized frequency and highlighting the negative mass density region for θ =  1. (c) Equivalency of a 
mass-in-mass unit cell with a cantilever-in-mass unit cell. (d) Calculating moment of inertia of a rectangular 
beam.
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masses displacement uγ (γ  =  1, 2) are governed by harmonic motion, as in Equations (1) and (2), we can use the 
harmonic wave behavior to derive equations in terms of the applied force.

= ω−F t F e( ) (1)i t
0

γ= =γ γ
ω−ˆu t u e( ) 1, 2 (2)

i t

Applying Newton’s second law and free body diagram for each of the masses, we obtain the expressions for the 
forces acting on the mass m1 and m2.

Outer mass, m1:

= + −̈m u F k u u( ) (3)1 1 2 2 1

Inner mass, m2:

= −̈m u k u u( ) (4)2 2 2 1 2

Solving the above equations using the harmonic wave behavior, we simplify to
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where ω = k m/2 2 2  is the locally resonant frequency of the internal resonator.
We equate the motion of the outer mass to that of an effective mass, meff , and use the free body diagram to 

derive an expression for the forces acting on the effective mass of the system.

ω= − ˆF m u (6)eff0
2

1

Comparing Equations (5 and 6) yields the effective mass, meff , in terms of the locally resonant frequency of the 
structure, ω2 and the input frequency, ω.
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From Equation (7), we see that as the input frequency ω gets close to locally resonant frequency ω2, there is a 
vertical asymptote which approaches positive infinity from one side and negative infinity from the other. Within 
a certain range ω +2  we observe a region where the effective mass of the system exhibits negative behavior, which 
is also the region where we see the formation of a frequency band gap.

Considering the stationary mass of the system as mst =  m1 +  m2, we derive the normalized mass m m/eff st as a 
function of the normalized operating frequency ω ω/ 2. Simplifying Equation (7), we have
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We can see from Equation (8) that the normalized mass is a function of the normalized frequency ω ω/ 2 and 
the term θ which is defined as the ratio of the inner mass to the outer mass, θ = m m/2 1. Plotting the normalized 
mass against the normalized operating frequency, we observe the negative effective mass of the unit cell as pre-
sented in Fig. 1(b). The shaded region highlights the frequency domain where the effective mass is negative for 
θ =  1. We can see from Fig. 1(b) the effect of varying θ on the negative mass region. As the ratio of the inner mass 
to the outer mass increases, the frequency range for the negative effective mass of the unit cell also increases. For 
θ =  1 used in this study, the negative effective mass is in the region of ω2 <  ω <  1.3ω2.

Cantilever-in-mass model. We transform the spring mass-in-mass model into a cantilever-in-mass model 
to observe the similar negative effective mass phenomenon. Since elastic structures behave like springs‒ deflect-
ing when a force is applied, the stiffness of a beam can be defined in the same way as for a spring. In the model 
depicted in Fig. 1(c), we use Bernoulli-Euler beam theory to find the deflection of the beam and its equivalent 
spring constant where Δ  is the deflection in the spring or beam.

Linear spring:

=
∆

k F
(9)2

Cantilever beam:

∆ = =v L PL
EI

( )
3 (10)Z

3

where v(x) is the transverse displacement function of beam length L, and P is the applied load at the end of the 
beam (x =  L).
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The “spring constant”, kc of a cantilever beam is derived in Equation (12), where E is the Young’s Modulus of 
the beam, Iz is the moment of inertia about the bending z-axis [formula given in Fig. 1(d) for a rectangular cross 
section], and Leff is the effective length of the beam. The equivalency of a mass-in-mass unit cell with a 
cantilever-in-mass unit cell, = =k kc

EI

L2
3 Z

eff
3

 is schematically presented in Fig. 1(c). Using the relationship 

ω = k m/2 c 2  and Equation (12), we can attain the resonance frequency of the cantilever-in-mass model as.

ω =
EI

L m
3

(13)
Z
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2 3
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In the practical design displayed in Fig. 2(a), the resonator mass m2 is connected to a cantilever beam of length 
L3, width h2 and thickness t. In order to simplify the approach, we assume the resonator mass to be a square 
defined by the dimension h1. Given all the dimensions and assuming a one constituent material with density ρ, 
we have

ρ ρ= =m V h t (14)2 1
2

=I th
12 (15)Z

2
3

= +L L h
2 (16)eff 3
1

Figure 2. (a) Cantilever-in-mass practical design with important geometrical parameters. Variation of 
designed resonance frequency with geometrical changes in cantilever-in-mass structure (b) length of beam, L3 
and dimension of mass, h1 (c) length of beam, L3 and width of beam, h2. (d) Variation of designed resonance 
frequency with changes in material mass density, ρ and Young’s Modulus, E.
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We substitute Equations (14–16) into Equation (13) to obtain the resonance frequency in terms of the design 
parameters. It is important to note that the effective length of the beam Leff is considered from the base to the 
center of the resonating mass, defined by Equation (16). This assumption was validated during parametric 
numerical study by varying beam length, and comparing the resonance frequency evaluated numerically with 
that from the analytical model. As such, the resonance frequency of the cantilever-in-mass model with geometri-
cal and material parameters is given by

ω
ρ

=
+( )
Eh

L h4
(17)

h
2

2
3

3 2

3

1
21

It is interesting to note that due to the moment of inertia of the beam, Iz and the resonator mass, m2, the reso-
nance frequency of the cantilever-in-mass model is independent of thickness, t.

Factors influencing locally resonant frequency. Equation (17) can be expressed by the following nota-
tion showing the dependence of the resonance frequency on five variables.

ω ρ= f E h h L( , , , )2 1 2, 3

These variables are considered and analyzed into two categories: geometric dimensions and material proper-
ties. We investigate how the geometric parameters and the material selection influence the locally resonant fre-
quency of the structure in Fig. 2(b–d). We can observe from Fig. 2(b) that as the length of the beam increases, the 
resonance frequency decreases. Coupling with the effect of mass dimension, we see that as we increase h1, there is 
a further decrease in the resonance frequency of the structure. This is directly correlated to the decrease in reso-
nance frequency caused by the overall length of the beam, as the increase in dimension of the mass also increases 
the effective length of the beam, Leff. In contrast, when you increase the width of the beam, h2 there is an increase 
in the resonance frequency, as shown in Fig. 2(c). Figure 2(b,c) demonstrate how the resonance frequency can be 
tuned and adjusted according to the geometrical parameters (h1, h2, L3).

We also analyze the influence of material properties (E, ρ) on the designed resonance frequency. Figure 2(d) 
illustrates the effects of varying the Young’s modulus, E and the material density, ρ. It is evident that as Young’s 
modulus increases, the resonance frequency increases as well. However, increasing the material density will 
decrease the resonance frequency of the cantilever-in-mass metamaterial. The material properties, influenced by 
the selection of materials, are particularly important in this work, as the material chosen must be able to be used 
in the 3D printer Objet Eden260v. The general application of the cantilever-in-mass analytical model can, how-
ever, be applied to any types of materials.

Band gap by frequency sweep. A two-dimensional (2D) finite element (FE) model of the cantilever-in-mass 
structure was created in COMSOL Multiphysics to validate the derived analytical model. Further details of the 
2D FE model should be referred to Methods Section. The frequency sweep result of the 2D FE model is shown in 
Fig. 3(a), comparing the design case 1 and case 2 (Table 1). In both of the designs we can see dips in the transmis-
sion ratio. The blue curve shows the frequency sweep for case 1 and a dip is observed at ω =  100 Hz. The red curve 
represents the frequency sweep for case 2 with a dip evident at ω =  277 Hz. In both cases, the results from the FE 
simulation have very good agreement with the designed resonance frequency predicted by the cantilever-in-mass 
analytical model Equation (17).

This dip in displacement ratio proves that there is energy reduction as the wave propagates through the meta-
material. According to the negative effective mass model explained in earlier section, as ω approaches the locally 
resonant frequency ω2 of the structure, the effective mass approaches positive infinity from one side and negative 
infinity from the other side. This phenomenon is clearly exhibited in the frequency sweep simulation.

It is worth noting that the band gap region for negative mass starts from the dip at the designed resonance 
frequency and ends when the transmission ratio returns to 1. Case 1 shows a narrower band gap region compare 
to Case 2. This is expected as the negative effective mass region is dependent on the locally resonant frequency 
(the region is ω2 <  ω <  1.3ω2 for θ =  1 used in this study), so higher resonance frequency naturally has broader 
band gap region.

Fast Fourier Transform of internal resonator. Figure 3(b) displays the Fast Fourier Transform (FFT) 
of the first resonator in both design case 1 and case 2. FFT plot provides clear understanding of the vibrational 
frequency and energy absorption of the internal mass during wave propagation through the metamaterial. As 
defined by the negative effective mass of the analytical cantilever-in-mass model, the internal resonance of the 
metamaterial is caused by the beam and the resonating internal mass. FFT results presented in Fig. 3(b) clearly 
show that the resonance peaks of the internal mass correspond in good agreement with the frequency dips seen 
in frequency sweep results [Fig. 3(a)]. This means that the internal resonators are absorbing the wave propagation 
energy at their respective designed resonance frequency.

Wave attenuation at band gap region. The locally resonant frequency of the cantilever-in-mass 
structure results in the presence of frequency band gaps at the designed frequency region. As introduced in 
the mass-in-mass model for negative effective mass, when the input frequency approaches the locally resonant 
frequency, the negative effective mass behavior is exhibited and this causes wave attenuation at the designed fre-
quency. In order to observe wave attenuation at specific frequency input, we plot and compare the displacement 
of the 10th unit cell (output) and 1st unit cell (input). Figure 4(a) shows the result of the model without resona-
tors (not a cantilever-in-mass metamaterial). It is clear that stress wave propagates through the material without 
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any attenuation. For the model with resonators (cantilever-in-mass metamaterial with designed frequency at 
277 Hz), three different harmonic input frequencies (according to Equation 18) are given for different cases. We 
can see that when the input frequency is within the passing band of the metamaterial [77 Hz and 477 Hz shown in 
Fig. 4(b–d)], waves propagate through the metamaterial without attenuation. However, when the input frequency 
falls within the stopping band gap of the cantilever-in-mass structure [277 Hz in Fig. 4(c)], significant wave atten-
uation is clearly observed.

For frequencies which are outside the band gap (passing band), we can see that the displacement at the 10th 
unit cell is larger than the input. This is due to the reflection and interaction of the propagating stress waves. At 
passing band input frequency of 77 Hz, we observe a 24.8% increase in the average displacement. At 477 Hz input 
frequency, we notice a 16.5% increase in the average displacement of the unit cell. However, when the input fre-
quency is within the stopping band region at 277 Hz, a huge reduction of 52.6% in the average displacement of 
the 10th unit cell is achieved.

Band gap for 3D numerical experiment. According to the analytical model, the cantilever-in-mass struc-
ture should be independent of thickness. In order to validate this hypothesis, a 3D FE model was created and simu-
lated. The 2D model was given a thickness of 1 centimeter to create the 3D model. A frequency sweep was performed 
from 0 to 500 Hz. Figure 5(a) reveals the transmission ratio at the 10th unit cell across the frequency sweep. From 
the data gathered by the FE analysis, we observe a band gap forming around 260–350 Hz, resembling the frequency 
sweep result for the 2D model [Fig. 3(a)]. In order to validate wave attenuation performance, we plot the displace-
ment profiles of 1st unit cell (input) and 10th unit cell (output) when the input frequency is around 277 Hz [Fig. 5(b)]. 
It is evident that significant wave attenuation occurs. Again the result obtained is very similar to the results from the 
2D FE analysis [Fig. 4(c)]. The slight difference (of ~6%) in the frequency dip can be considered negligible and be 
attributed to the change in mesh size from the 2D model to a 3D model. The data acquired from the 3D simulation 
validates the assumption that the cantilever-in-mass analytical model is indeed independent of thickness, as well as 
provide numerical experiment demonstration for the cantilever-in-mass structure.

Figure 3. (a) Frequency sweep across the 2D model for case 1 and case 2 at designed resonance frequency of 
100 Hz and 277 Hz, respectively. (b) Fast Fourier Transformation of the first cantilever-in-mass resonator for 
case 1 and case 2.

Geometrical Parameters Case 1 Case 2

 L3 (m) 0.02 0.02

 h1 (m) 0.02 0.02

 h2 (m) 0.002 0.004

Designed Resonance frequency

 ω2 (Hz) 100 277

Table 1. Design matrix used in FE numerical simulation.
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Realization of 3D printed metamaterials. The Objet Eden260v 3D printer was used to employ the pho-
topolymerization technique to 3D print a prototype of the cantilever-in-mass structure using single material 
(one material constituent). Figure 6(a,b) present the Computer-Aided Design (CAD) model and the prototype 
of the actual 3D printed part, thus demonstrating the realization of 3D printed cantilever-in-mass mechanical 
metamaterial. The authors plan to verify the analytical model of the cantilever-in-mass system using experimental 
data in the next phase of their research study. This will then provide a better understanding of the behavior of 
the structure in a practical scenario. The use of 3D printing and rapid prototyping will allow us to easily fabricate 
prototypes with different parameters and materials. We can switch from stiffer polymers such as VeroWhitePlus 
to more rubbery materials with very low Young’s modulus such as the TangoBlackPlus (E =  0.5MPa). 3D printing 
provides a valuable opportunity to explore a vast range of methods to fabricate 3D printable cantilever-in-mass 
mechanical metamaterial.

Discussion
In this work, we have derived the analytical model of a mechanical metamaterial by converting the mass-in-mass 
model into a cantilever-in-mass model using the Bernoulli-Euler beam theory. The analytical model described by 

Figure 4. (a) Displacement profile of the 10th unit cell for model with no resonators at input frequency of 
277 Hz. Displacement profile of the 10th unit cell for model with resonators at input frequency of (b) 77 Hz 
[passing band], (c) 277 Hz [stopping band gap] , and (d) 477 Hz [passing band].

Figure 5. (a) Frequency sweep across the 3D model for designed resonance frequency of 277 Hz.  
(b) Displacement profile of the 10th unit cell at input frequency of 277 Hz [stopping band gap].
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the parameters of the cantilever-in-mass structure demonstrated tunability of the designed resonance frequency 
by the influence of both geometrical dimensions and material parameters. A two-dimensional finite element 
model is created to validate the analytical results. Frequency sweep results confirm the frequency band gap as 
predicted by the analytical model. The negative effective mass behavior of the metamaterial is also exhibited by 
significant wave attenuation when input frequency is within the stopping band region of the designed resonance 
frequency. When incoming waves are at frequencies of the passing band, no wave attenuation is observed.

To demonstrate application and feasibility for 3D printing, the cantilever-in-mass model is further employed 
to design and fabricate 3D printable mechanical metamaterial. A three-dimensional numerical experiment is 
performed using COMSOL Multiphysics to validate the wave attenuation performance. Results show that the 
cantilever-in-mass metamaterial is capable of mitigating stress waves at the desired resonance frequency. This 
study successfully presents the use of one constituent material to create a 3D printed cantilever-in-mass metama-
terial with negative effective mass density for stress wave mitigation purposes.

The flexibility of the cantilever-in-mass model will enable the design to be easily tuned and to achieve many 
different targeted resonance frequencies. In such a simply tunable model, it is more cost efficient to employ the 
use of 3D printing for the manufacturing of the cantilever-in-mass structure. With this control over the behavior 
of the metamaterial, we can design certain microstructures for other specific applications.

The authors believe that it is feasible to perform experimental testing on the 3D printed metamaterials. The 
input excitation can be created by an electro-dynamic shaker, and the output response of the metamaterial can 
be measured using Scanning Laser Doppler Vibrometry (SLDV) techniques to obtain the displacement and 
transmission ratio. The authors expect experimental testing data to agree well with numerical simulation results. 
However, the focus of this work is to derive an analytical model for the cantilever-in-mass metamaterial design, 
investigate its band gap tunability, demonstrate its 3D printability, and validate the design and performance using 
numerical experiment. The authors hope to demonstrate experimental verification in the near future and share 
their results with the scientific research community.

It is worth noting that the cantilever-in-mass structure presented in this manuscript is the simplest and most 
fundamental design possible. Its complexity can be significantly increased by designing a cantilever head that best 
utilizes and optimizes the space within the outer mass, yet allowing enough room and freedom to vibrate accord-
ing to specific application. Moreover, complexity of the structure can be enhanced by using multi-materials, and 
3D printing allows printing of multi-materials, such that it permits specific tuning of material properties for both 
the cantilever beam and resonator mass. Manufacturing using conventional technique might be cheaper under 
mass production, but specific tailoring of material structure and properties, and fabrication of small number of 
complex parts is more economical by using 3D printing. It is true that non-metal design has its disadvantage in 
load bearing and reliability. Depending on application, one option is to add a stronger material (metal) as a sac-
rificial plate when there is direct impact loading of high stress amplitude. Alternatively, one can use a relatively 
tough polymer that could be sufficient for load bearing purposes. The user has to make the decision on material 
selection based on design condition and application purposes. Nonetheless, this work proposes the analytical 
model for cantilever-in-mass model which could be employed for any materials.

Methods
Two-dimensional (2D) finite element model. A two-dimensional (2D) finite element (FE) model of the 
cantilever-in-mass structure was created in COMSOL Multiphysics to validate the derived analytical model and 
to prove the assumption that the resonance frequency is independent of thickness (Equation 17). We introduced 
two cases for the cantilever-in-mass structure, one at designed resonance frequency of 100 Hz and the other at 
277 Hz (Table 1). The aim is to validate each design by comparing the designed resonance frequency (based on 
analytical model) and the dynamic wave attenuation performance of the system (based on FE simulation). The 

Figure 6. 3D model and realization of cantilever-in-mass unit cell (a) CAD model. (b) Prototype of 3D printed 
part.
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design parameters (listed in Table 1) were selected based on manufacturing feasibility and reasonable dimensional 
tolerance using 3D printing techniques. The material chosen in the FE simulation was VeroWhitePlus, which is a 
material type used in Objet Eden260v 3D printer, and was subsequently fabricated by 3D printing. The material 
properties for VeroWhitePlus were taken from the data sheet provided (E =  2,500 MPa, v =  0.33, ρ =  1,170 kg/m3).

A FE model was created for each design to find the frequency band gap using frequency sweep analysis across 
the model. The geometry for a unit cell was created in COMSOL Multiphysics and was set to an array of 50 unit 
cells as shown in Fig. 7(a). The boundary condition represented constraint of the base in the y-direction, with 
the input given in the x-direction at the first unit cell. Analysis of wave propagation through the model was per-
formed. Figure 7(b) portrayed the finite element mesh of the model.

We provided an input and performed a frequency sweep function (from 0 to 500 Hz) to observe any band 
gap. The transmission ratio, defined by the ratio of the displacement at the 10th unit cell (output) over the dis-
placement of the 1st unit cell (input), was analyzed. In order to confirm the presence of a band gap, a harmonic 
excitation was further applied at specific frequency input using Equation (18), where ω is the input frequency in 
hertz, with the aim to observe wave attenuation at band gap frequency.

πω=u tsin(2 ) (18)x

Three-dimensional (3D) finite element model. In order to validate that the analytical model for the 
designed resonance frequency of the cantilever-in-mass metamaterial is independent of its thickness, a 3D FE 
model was created with a thickness of t =  0.01 m. Other than having a tangible thickness, the 3D FE model resem-
bles that of the 2D FE model with the same material properties, geometrical dimensions, boundary and input 
conditions. The 3D FE simulation of the model during stress wave propagation is shown in Fig. 7(c). Results 
were compared to that of the 2D FE model. The data obtained were used to validate the assumption that the 
cantilever-in-mass model is independent of thickness. The 3D FE model was created similarly using COMSOL 
Multiphysics 5.0. More importantly, the 3D FE model represented a numerical experiment that allowed us to use 
3D printing to validate our analytical and computational results by gathering experimental data in the next phase 
of our study.

Fabrication using 3D printing. Based on the same design dimension as the 3D FE model, the feasibility of 
the design is demonstrated by 3D printing using the Objet Eden260v 3D printer, Stratasys Inc. The Eden260v is 
a commercialized 3D printer which makes use of the photopolymerization process to build a structure layer by 
layer. It makes use of photocurable polymers such as VeroWhitePlus which are sprayed by a nozzle onto the build 
path before being cured using ultra violet light.
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