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Abstract

In the past few decades, chronic hepatitis B caused by hepatitis B virus (HBV) has been one of the most serious diseases to human
health. The development of innovative systems is essential for preventing the complex pathogenesis of hepatitis B and reducing
side effects caused by drugs. HBV inhibitory drugs have been developed through various compounds, and they are often limited
by routine experimental screening and delay drug development. More recently, virtual screening of compounds has gradually been
used in drug research with strong computational capability and is further applied in anti-HBV drug screening, thus facilitating a
reliable drug screening process. However, the lack of structural information in traditional compound analysis is an important hurdle
for unsatisfactory efficiency in drug screening. Here, a natural language processing technique was adopted to analyze compound
simplified molecular input line entry system strings. By using the targeted optimized word2vec model for pretraining, we can
accurately represent the relationship between the compound and its substructure. The machine learning model based on training
results can effectively predict the inhibitory effect of compounds on HBV and liver toxicity. The reliability of the model is verified by
the results of wet-lab experiments. In addition, a tool has been published to predict potential compounds. Hence, this article provides
a new perspective on the prediction of compound properties for anti-HBV drugs that can help improve hepatitis B diagnosis and
further develop human health in the future.
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Introduction
The design and synthesis of compounds that establish
high activity for specific targets is one of the most signifi-
cant processes in pharmaceutical chemistry. Drug design
is the inventive process of finding new therapeutic enti-
ties based on high-throughput virtual screening. Despite
advances in pharmaceutical chemistry, drug design is
still a slow and difficult process for evaluating the phar-
macological activity of drug molecules against specific
targets. In this study, we use a simplified molecular
input line entry system (SMILES) as input to process
chemical tasks. Deep learning is a typical method for
representation learning that has shown very high perfor-
mance across many different natural language process-
ing tasks. Supervised classification models for SMILES

encoded spatial vectors are used to predict the activity
of small molecules to specific targets.

Hepatitis B is a chronic infectious disease caused by
hepatitis B virus (HBV). It can lead to serious health
problems, including cirrhosis, liver cancer, liver failure
and even death. According to statistics, ∼350 million
people worldwide are chronically infected with HBV, and
>600 000 patients die of chronic infection and complica-
tions of HBV every year [1].

The virus particles are internalized into the body
by endocytosis, and the nucleocapsid is subsequently
released into the cytoplasm. The HBV genomic material
in the nucleocapsid (i.e. relaxed circular DNA, rcDNA)
is transported to the nucleus, and part of the double-
stranded virus rcDNA is repaired to form covalently

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-5883-1016


2 | Shao et al.

closed circular DNA (cccDNA) using the host DNA
repair mechanism. Subsequently, the virus is transcribed
and translated into a new nucleocapsid, in which
the second generation of viral DNA is synthesized by
reverse transcription. Subsequently, mature newborn
HBV nucleocapsids containing rcDNA are secreted from
host cells [2]. Currently, the main anti-HBV drugs in
clinical application are HBV DNA polymerase/reverse
transcriptase inhibitor nucleoside analogs [3–5] and the
immune modulator interferon [6–9]. The resistance of
hepatitis B to drugs is complex, and current antiviral
drugs can have unpleasant side effects. In recent years,
researchers have synthesized many nonnucleoside
active compounds with novel structures, which depict
an important class of current anti-HBV therapies.
Withdrawal causes and rebound indications usually
occur after the discontinuation and/or reduction of these
drugs.

Antiviral compounds (AVCs) inhibit the development
of viruses in the host cell and are relatively harmless to
the host. However, designing safe and effective antiviral
drugs is a difficult task due to the high genetic diversity
and consequent drug resistance in viruses [10]. Initially,
antivirals were discovered using traditional trial-and-
error methods [11]. However, the discovery of effective
antivirals was a very lengthy process. Later, research on
virology helped to identify many target pathways to block
viral multiplication [12, 13]. Scientists are now using
rational drug design strategies for developing antivirals
that target viruses at different stages of their life cycles
[14]. To save time and money for discovering a new drug,
researchers have widely used various computational
methods to screen virtual libraries of compounds
before the synthesis and animal testing of chemicals.
Among the different approaches, quantitative structure–
activity relationships (QSARs) are mostly used [15–17].
In this approach, relationships connecting molecular
descriptors and activity are used to predict the properties
of other molecules [18]. Molecular descriptors transform
the chemical information (structure and linking of
groups) of a molecule into simple numbers. QSAR-
based virtual screening is an effective computational
technique leading toward the identification and design
of novel antiviral agents [19]. AVCpred was developed
as a web server for the prediction and design of AVCs.
In this method, scientists used previously known AVCs
against HIV, hepatitis C virus, HBV, human herpesvirus
and 26 other viruses with experimentally validated
percentage inhibition from ChEMBL—a large-scale
bioactivity database for drug discovery [20].

Limited by the conventional drug development pro-
cess, large-scale drug molecule design, synthesis and
anti-HBV activity experiments consume many human
and material resources, including time and cost, and
decrease the speed of drug development. Artificial Intelli-
gence aided (AI-aided) drug screening prediction models
play a substantial role in drug research and development
with their advantages of fast speed, low cost and high
efficiency in predicting active drug molecules [21–24].

SMILES
The SMILES is a ‘chemical language’ [25] that represents
a chemical structure in compact text notation. The appli-
cation of molecular graph theory for SMILES enables
structure specification with the help of a very small and
natural grammar. SMILES is also suitable for computer
recognition and processing. It is easy to read and can
be used by researchers and computers, so it is suit-
able for designing and producing unique numerical sym-
bols, continuous database retrieval, smooth substructure
retrieval and performance prediction models [26].

Extended connectivity fingerprint
Molecular fingerprints are representations of chemi-
cal structures originally designed to aid in chemical
database substructure searches but later used for
analytical tasks such as similarity search, clustering
and classification. Molecular fingerprints are commonly
used in several areas of drug discovery, including MACCS
[27], PubChem [28], Tree Fingerprint [29], MolPrint2D
[30, 31], extended connectivity fingerprint (ECFP; [32]),
UNITY 2D [28] and MP-MFP [33]. ECFP is a fingerprint
methodology specifically designed to capture molecular
characteristics associated with molecular activity. ECFP
is applied to predict drug activity, but they are not
designed for substructure search. A variety of methods,
such as similarity search, clustering and virtual filtering,
have been used by ECFP to capture molecular features.
Since 2000, ECFP has been applied to a wide range of
science-related issues [32–34].

Word2vec
Word2vec methodology such as continuous bag-of-words
(CBOW) and skip-gram has seen increasing interest in
recent years because of its ability to understand word
representations using a pair of architectures. CBOW is
similar to skip-gram in general. The main difference
between the two structures is that CBOW uses context
to predict words, whereas skip-gram uses target words to
predict context.

There are many gradient schemes for neural networks
[35], such as the stochastic gradient descent scheme
(SGD), momentum [36] and Adagrad [37]. Current word
embedding models use a simple stochastic gradient opti-
mization method, i.e. for different words in the word bag,
the gradient equally contributes to each word vector. The
most commonly used scheme in word2vec is SGD.

Database
ChEMBL [38] is a free online database developed by
EBI (European Bioinformatics Institute) that contains a
large amount of binding, function and ADMET (absorp-
tion, distribution, metabolism, excretion and toxicity)
information on medicinal compounds. These data were
regularly extracted manually from major published
literature and then further collated and standardized.
The database currently contains 2 105 464 compounds,
14 554 targets and 1 383 553 drug activity assays. Through
this database, the reported compounds and their activity
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Figure 1. The pipeline overview of S2DV method. Part A: Two tokenization method: ‘SMILES to SC’ and ‘SMILES to ECFP’. Part B: The process of embedding
generation.

information of a target can be quickly queried. The data
in this database are all from various reported studies,
which are reliable and can be traced to the source of
the data. Through this database, accurate chemical
compounds and their biological data can be obtained
quickly, which can further accelerate the speed of drug
design and drug development. In this study, potential
anti-HBV drugs were screened, and liver toxicity was
considered. Therefore, compounds targeted at HBV and
HepG2 cells were screened as training data.

Methods
Tokenization
Usually, word segmentation is required before the text
is pretrained for the next step. As shown in Figure 1A,
for chemical structure coding SMILES, split character (SC)
and molecular fingerprint (ECFP) can be used.

SMILES to SC

(i) According to the order of SMILES, the sliding window
displacement is cut with a specific window size and
the displacement is one character each time.

(ii) Delete the “(“ and ”)” used to represent the branch
chain at the branch chain, then use a single letter
“R” to retain the branch chain information.

(iii) Double characters such as ‘Cl’ and ‘Fe’ indicate a sin-
gle atom. Replace it with single characters such as ‘L’
and ‘E’ that are not confused with other characters.

(iv) For each SMILES, a linear word segmentation list is
formed by splicing back and forth according to the
sequence of the main chain and branch chain.

As shown in Figure 1A, SMILES expressed as ‘Nc1cc(OC
COCP(=O)(O)O) NC (N) N1’ compounds were processed by
SMILES to SC to form 17 tokens as follows:

Nc1c/c1cc/1ccR/ccRn/cRnc/RncR/ncRn/cRn1/OCCO/
CCOC/COCP/OCPR/CPRR/PRRO/N/=O/O.

SMILES to ECFP

Morgan FP is generated by producing and assigning a
unique identifier (Morgan identifier) to all substructures
around all heavy atoms in the molecule within a defined
radius. These identifiers usually hash vectors of fixed
length [39].

For each compound encoded by SMILES, SMILES to
ECFP generates identifiers for all atoms of a fixed
radius and then arrange the identifiers for each atom
into a ‘molecular sentence’ in the order in which the
atoms are arranged by SMILES. If an atom has multiple
identifiers at the same time, the atomic identifiers are
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arranged according to their recognition radius from short
to long.

Embedding generation
SMILES-encoded texts are made up of different atoms
and atomic structures, and various chemical structures,
such as atoms, chemical bonds, branched chains, ring
structures and ionic bonds, are described through codes.
These chemical structures are related to each other and
can be distinguished from each other to form the mean-
ing of similar entities. The concept of an entity refers to
the object or concept that exists in the objective world
and can be distinguished from each other. An Ising model
is proposed to explain a phase change of the ferromag-
netic material. The magnetic and nonmagnetic shifts
between two phases can be the same in text data to
construct an entity of sparse matrix. Between entities,
there is no change to reflect. After verification, it can also
describe the chemical structure that exists, and there
is no change in the entity. Different components of the
Ising model system are associated with each other over
a long range, which is exactly what is needed in the
construction of the global correlation matrix through
local interaction [40, 41].

The module shown in Figure 1B is a new word2vec
model combined with the Ising model design (Ising-
word2vec), which is used to flexibly capture global and
local connections in the process of generating word
embedding. Tokens extracted from SMILES were input
to the model, and the corresponding global gradient
modified word embedding model was obtained through
the model.

At this point, the chemical structure entity vector will
no longer evenly distribute the weight to update the
embedding but redistribute the combination with WISM

to form a new chemical structure entity embedding.
Compound chemical structure embedding is repeatedly
trained by a negative sampling function, and a stable rep-
resentation of compound chemical structure embedding
is finally obtained as follows:

Step 1: The token data of the compound structure
extracted from SMILES were used to construct the sparse
matrix according to the Ising model data structure Ising
sparse matrix (WISM).

Step 2: The whole correlation matrix (WWCM) was
obtained by large-scale sparse data processing of sparse
learning with efficient projections.

In this study, logistic regression is adopted to solve the
regularization logic problem of the Ising spares matrix.

min
Xk

all∑
t=1

wtlog
(
1 + exp

(−zkt
(
XTzt + c

)))

+ρ

2
||Xk||22 + λ||Xk||1 (1)

WWCM = (X1X2, . . . , Xall) + (X1X2, . . . , Xall)
T (2)

Formula (1) shows the process of solving WWCM, where
wt is the weight of the tth entity in all chemical structure
entities, zt is the tth column of the WISM we input and zktis
the tth column of the kth row extracted from the sparse
matrix, which is used to solve the correlation between
zkt and other entities. Xk is the solution of the correlation
corresponding to zkt, λ is the regularization parameter of
the �1 norm and ρ is the regularization parameter of the
square 2 norm.

Step 3: To solve the problem of memory crash caused
by a large amount of data, the input text data enti-
ties are divided into N batches to process data, and
the ith batch is taken as Batchi. The entities in Batchi

are(Vmi1, Vmi2, . . . , Vmij)
T.

(Vm1, Vm2, . . . , Vmall)
T =

n∑
i=1

(
Vmi1, Vmi2, . . . , Vmij

)T (3)

Step 4: Input the chemical structure entities of Batchi

(Vmi1, Vmi2, . . . , Vmij)
T to obtain the initialization of

chemical structure entity embedding(Vei1, Vei2, . . . , Veij)
T.

(
Vei1, Vei2, . . . , Veij

)T = (
Vmi1, Vmi2, . . . , Vmij

)T· WVe (4)

In formula (4), j in Vmij is the jth entity in Batchi, and
correspondingly, Veij is the corresponding embedding of
the jth entity. WVe is the weight matrix during vector
generation.

Step 5: Batchi was paired to generate a skip-gram rela-
tion, and Con(Vmij) and NEG(Vmij) of each chemical struc-
ture were obtained. According to the study, the predicted
probability P(u|w̃) is calculated. w̃ ∈ Con(Vmij) ,u ∈
NEG(Vmij).

Among them:

P
(
u|w̃) =

⎧⎨
⎩

σ
(
Veij

Tθu
)

,
(
L

Vmij(u) = 1
)

1 − σ
(
Veij

Tθu
)

,
(
L

Vmij(u) = 0
) (5)

According to formula (5) above, w̃ ∈ Con(Vmij), ∈
NEG(Vmij), σ is the sigmoid activation function and θu ∈
R

m indicates that the working parameters corresponding
to u are also to be trained.

The loss function formula (6) is calculated according
to the prediction probability between word pairs in Batchi

Veij count context Con(Vmij)and negative sampling word
spaceNEG(Vmij).

Loss = ∑
Vmij ∈
Batchi

∑
w̃ ∈

Con
(
Vmij

)

∑
u ∈

NEG
(
Vmij

)
P

(
u|w̃)

= ∑
Vmij ∈
Batchi

∑
w̃ ∈

Con
(
Vmij

)

∑
u ∈

NEG
(
Vmij

)

{
L

Vmij(u) log
[
σ

(
Veij

Tθu
)]

+
[
1 − L

Vmij(u)
]

log
[
1 − σ

(
Veij

Tθu
)] }

(6)
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Step 6: According to the loss function obtained in Equa-
tion (6), multiple optimization schemes can be adopted to
obtain the gradient to optimize the parameters, and the
gradient descent method is adopted for detailed analysis
to facilitate understanding.

Might as well set:

L
(
Vmij, w̃, u

) = ∑
u ∈

NEG(w)

{
L

Vmij(u) log
[
σ

(
Veij

Tθu
)]

+ [1 − Lw(u)] log
[
1 − σ

(
Veij

Tθu
)] }

(7)

The gradients of θu (8) and Veij (9) are calculated
according to Equation (7):

∂L
(
Vmij, w̃, u

)
∂θu

=
[
L

Vmij(u) − σ
(
Veij

Tθu)] Veij (8)

∂L
(
Vmij, w̃, u

)
∂Veij

=
[
L

Vmij(u) − σ
(
Veij

Tθu)] θu (9)

Step 7: Entities in Batchi are used to construct skip-
gram pairing relationships and negative sampling pair-
ing relationships between entities in Step 5. Based on
the pairing of entities, the subcorrelation matrix (WSCM)
corresponding to the entity pairing relationship and the
negative correlation matrix (WNCM) corresponding to the
negative sampling pairing relationship were obtained
from WWCM.

Step 8: WSCM and WNCM are combined with the gradient,
and the weights are redistributed instead of distributed
evenly. Then, backpropagation updates Vmij word embed-
ding Ṽeij, and the corresponding auxiliary vector ufor
word θ̃u.

θ̃u := θu + η [1 + softmax(Wscm)]
[
L

Vmij(u) − σ
(
Veijθ

u)] Veij

(10)

Ṽeij := Veij + η [1 + softmax (WNCM)]
∑

u ∈
NEG(w)

∂L
(
Vmij, w̃, u

)
∂Veij

(11)

Evaluation of anti-HBV activity and cytotoxicity
All the synthesized compounds were evaluated for in
vitro anti-HBV activity and cytotoxicity in HepG2 2.2.15
cells using real-time quantitative PCR and MTT methods,
respectively. The concentration of compound required
for 50% inhibition of DNA replication was defined as the
IC50, and the concentration of compound that induced
the death of the HepG2 2.2.15 cell cultures by 50% was
defined as the CC50 [42–44].

Detailed wet-lab experimental operations are described
in the supplementary file.

Results
Embedding generation
In this study, the performance difference of the word2vec
model before and after the Ising model was compared.

Dataset collection

To reduce the computational dimension required by
training and generate a unique vector space with
the chemical structure distribution of specific target
compounds to accurately represent the spatial distri-
bution relationship of the chemical structure, all the
compounds targeted at HBV and HepG2 were screened
to generate compound structure word embedding
models for HBV and HepG2. In Table 1, a total of 6705
experimental activity values were obtained for screening
HBV as a target, of which 4411 were semi-inhibitory
concentration values. A total of 182 550 results were
obtained targeting HepG2 cells, of which 2270 were
semitoxic concentrations.

Tokenization

Considering the SMILES to SC method and the influence
of different lengths on embedding performance, we use
different lengths for embedding generation. When the
split char length is 1 and 2, <100 tokens are gener-
ated, and word2vec cannot be used. However, when the
split char length is 5, a large number of SMILES cannot
generate a sufficient number of tokens. Therefore, we
chose 3 and 4 for comparative experiments. As shown
in Table 2, better performance can be obtained when
the tokenization character length is 4 than when the
token extract character length is 3. Therefore, in the
subsequent SMILES to SC method, the extracted length
defaults to 4.

For tokenization of the ECFP model, we took HBV as
an example to compare the model classification perfor-
mance under different ECFP sampling radii. As shown in
Table 3, in the word2vec and Ising-word2vec models, the
sampling radius of 1 is not significantly inferior to the
larger sampling radius (Radius = 2 or 3). Considering that
fewer tokens are generated when the sampling radius
is lower (when Radius is 1, 2, 3, n-token is 1474, 7187,
17 668, respectively), which avoids the generation of an
overly sparse matrix and greatly improves the calcula-
tion requirements. The default sampling radius is 1 in
subsequent experiments.

ChEMBL dataset validation
To verify whether anti-HBV compounds have potential
research prospects, it is necessary to verify their anti-HBV
ability (IC50) and hepatocellular toxicity (CC50).

The embedding model was verified in 4411 HBV inhi-
bition tests and 2270 HepG2 toxicity tests. Eight machine
learning models were used to construct compound clas-
sification models. In the initial biological data prediction
of compounds targeting HBV and HepG2 cells, the thresh-
old value of the semieffective inhibitory concentration
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Table 1. ChEMBL database filtering results

Target name Standard type Target organism Assays number

Hepatitis B virus ALL Hepatitis B virus 6705
Hepatitis B virus EC50/IC50 Hepatitis B virus 4411
HepG2 ALL Homo sapiens 182 550
HepG2 CC50 H. sapiens 2270

Table 2. Performance comparison of different split char lengths in SMILES with SC

Embedding
model

Splitted char
length

Score LR LDA KNN CART NB SVM XG-Boost RD-Forest

Ising-word2vec 4 Accuracy 0.790 0.788 0.794 0.736 0.706 0.854 0.849 0.834
Precision 0.698 0.701 0.655 0.597 0.544 0.832 0.827 0.883
F1 0.668 0.661 0.718 0.606 0.599 0.760 0.750 0.696
Recall 0.641 0.627 0.796 0.616 0.666 0.699 0.687 0.575

3 Accuracy 0.776 0.771 0.802 0.728 0.686 0.844 0.845 0.838
Precision 0.691 0.687 0.679 0.595 0.531 0.826 0.819 0.882
F1 0.654 0.641 0.732 0.610 0.584 0.750 0.753 0.716
Recall 0.621 0.602 0.795 0.626 0.650 0.687 0.697 0.603

word2vec 4 Accuracy 0.786 0.784 0.798 0.721 0.709 0.851 0.848 0.835
Precision 0.692 0.693 0.665 0.573 0.548 0.831 0.826 0.887
F1 0.661 0.655 0.720 0.587 0.603 0.754 0.749 0.696
Recall 0.634 0.621 0.786 0.603 0.671 0.690 0.685 0.573

3 Accuracy 0.777 0.772 0.799 0.736 0.693 0.844 0.847 0.839
Precision 0.690 0.689 0.676 0.610 0.541 0.822 0.826 0.881
F1 0.657 0.644 0.726 0.617 0.586 0.750 0.753 0.720
Recall 0.627 0.604 0.785 0.624 0.639 0.690 0.698 0.609

of HBV (IC50/EC50) was set at 1 μM. The threshold of the
HepG2 semitoxic concentration (CC50) was set at 100 μM
to convert the activity data of the compound against the
target into binary data for prediction. The experimen-
tal results with different units in the dataset were all
converted in μM. The model evaluation parameters were
obtained using tenfold cross-validation.

ChEMBL (https://chembl.gitbook.io/chembl-interface-
documentation/downloads) was used for the latest ver-
sion of the drug activity database. Filter fixed targets
based on fields such as target names and target organi-
zations. Considering that the inhibition rate of HBV (IC50

and EC50) has the same effect, we reserved the EC50 and
IC50 data for training and testing of the classification
model to reserve as many samples as possible.

HBV inhibition rate (IC50)

Tables 4 and 5 show the comparison of the classification
performance of the word2vec model and Ising-word2vec
model in the two tokenization methods. Table 4 uses
the split SMILES to generate tokens, and Table 5 uses
the tokens generated by Morgan’s algorithm. Conclu-
sion word2vec combined with the Ising model has a
better classification effect than the original word2vec in
predicting molecular activity, and RandomForest is the
best classifier. Comparing the two different tokenization
methods, SMILES to SC (Accuracy: 0.841, Precision: 0.843,
Recall: 0.881, F1: 0.853 and AUC:0.92) has better classifi-
cation results than ECFP generated by Morgan algorithm
(Accuracy: 0.837, Precision: 0.835, Recall: 0.878, F1: 0.845

and AUC: 0.90). This may be because the split SMILES
method has more advantages than Morgan’s algorithm
in representation of the chemical structures of rings and
branched chains.

Figure 2 shows that when using ECFP as a tokenization
method, both word2vec and Ising-word2vec will yield the
same AUC score (0.90). In Figure 3, the AUC score of Ising-
word2vec (0.92) is better than word2vec (0.91). Therefore,
in the calculation of HBV IC50, word Ising-word2vec can
lead to a better classification model.

Toxicity of HepG2 (CC50)

We used the same method to train the classifica-
tion model and obtain conclusion statistics for the
toxicity of HepG2 cells. In Tables 6 and 7, we can
see that SMILES to SC and SMILES to ECFP were
used for tokenization directly, and the Ising-word2vec
model with the addition of SMILES to SC produced
a slight improvement in performance compared with
the direct use of word2vec (SMILES to SC: Accu-
racy = 0.902, Precision = 0.908, Recall = 0.972, F1 = 0.935,
AUC = 0.91;SMILES to ECFP: Accuracy = 0.912, Preci-
sion = 0.974, Recall = 0.973, F1 = 0.943 and AUC = 0.94).
Moreover, the AUC value is also excellent, which means
that the expressions of SMILES can be accurately
learned from the Ising model by adding the word2vec
model. The Ising-word2vec model can be used to train
and accurately predict the drug-like properties and
other parameters of a variety of compounds, which
will help pharmaceutical personnel avoid compounds

https://chembl.gitbook.io/chembl-interface-documentation/downloads
https://chembl.gitbook.io/chembl-interface-documentation/downloads
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Table 3. Comparison of classification effects of ECFP models with different sampling radii

Embedding method Radius N-Token Model Accuracy Precision Recall F1

Ising-word2vec 1 1474 LR 0.825 0.827 0.830 0.828
LDA 0.830 0.835 0.829 0.832
KNN 0.823 0.824 0.830 0.826
CART 0.810 0.825 0.795 0.810
NB 0.699 0.653 0.873 0.747
SVM 0.832 0.830 0.842 0.836
XGBoost 0.835 0.825 0.858 0.841
RDForest 0.837 0.820 0.871 0.845

2 7187 LR 0.829 0.826 0.841 0.833
LDA 0.834 0.837 0.837 0.837
KNN 0.829 0.820 0.851 0.834
CART 0.813 0.830 0.794 0.812
NB 0.690 0.646 0.866 0.740
SVM 0.836 0.837 0.841 0.839
XGBoost 0.841 0.833 0.859 0.846
RDForest 0.834 0.819 0.865 0.841

3 17 668 LR 0.816 0.818 0.822 0.819
LDA 0.825 0.833 0.821 0.826
KNN 0.830 0.830 0.839 0.834
CART 0.805 0.823 0.786 0.804
NB 0.695 0.653 0.857 0.741
SVM 0.841 0.843 0.845 0.844
XGBoost 0.833 0.823 0.857 0.839
RDForest 0.839 0.824 0.868 0.846

word2vec 1 1474 LR 0.823 0.824 0.829 0.826
LDA 0.823 0.831 0.818 0.824
KNN 0.828 0.825 0.841 0.833
CART 0.815 0.831 0.799 0.815
NB 0.696 0.649 0.878 0.746
SVM 0.830 0.829 0.841 0.834
XGBoost 0.836 0.826 0.860 0.842
RDForest 0.837 0.821 0.868 0.844

2 7187 LR 0.816 0.816 0.824 0.819
LDA 0.820 0.825 0.822 0.823
KNN 0.828 0.826 0.839 0.832
CART 0.807 0.828 0.783 0.805
NB 0.701 0.654 0.875 0.748
SVM 0.839 0.841 0.846 0.843
XGBoost 0.841 0.831 0.864 0.847
RDForest 0.836 0.819 0.870 0.844

3 17 668 LR 0.816 0.816 0.824 0.820
LDA 0.817 0.819 0.821 0.820
KNN 0.825 0.826 0.832 0.828
CART 0.807 0.824 0.790 0.806
NB 0.702 0.662 0.849 0.744
SVM 0.838 0.837 0.847 0.842
XGBoost 0.832 0.821 0.856 0.838
RDForest 0.838 0.821 0.871 0.845

with no medicinal potential in advance during drug
screening, reduce drug screening input and improve
drug screening efficiency. In Figure 4, the Ising-word2vec
model yielded the highest AUC value (0.94). In Figure 5,
the word2vec model yielded the highest AUC value (0.93).
This seems to indicate that a higher classification effect
can be achieved when different embedding methods are
selected.

In vitro validation
To verify the reliability of the model, we used in vitro
cell experiments to test the prediction model of the
compound inhibition rate of HBV and the prediction

model of the compound exclusivity of HepG2 cells.
Throughout the trial, we tested data on the activity of 56
compounds, including HBV half-inhibitory concentration
(IC50 and EC50) and HepG2 half-toxic concentration
(CC50).

After unifying the units of data, SMILES was input
into the model corresponding to the compound, and
the binary classification results of the compound for
the specified threshold were obtained. A post predic-
tion confusion matrix was established to calculate the
accuracy, precision, recall and F1 value. The ROC curve
was drawn to calculate the AUC value of the area under
the curve.
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Table 4. Prediction result of inhibition (IC50) using SMILES to ECFP

Embedding method Classification Accuracy Precision Recall F1

word2vec LR 0.823 0.824 0.829 0.826
LDA 0.823 0.831 0.818 0.824
KNN 0.828 0.825 0.841 0.833
CART 0.815 0.831 0.799 0.815
NB 0.696 0.649 0.878 0.746
SVM 0.830 0.829 0.841 0.834
XGBoost 0.836 0.826 0.860 0.842
RDForest 0.837 0.821 0.868 0.844

Ising-word2vec LR 0.825 0.827 0.830 0.828
LDA 0.830 0.835 0.829 0.832
KNN 0.823 0.824 0.830 0.826
CART 0.810 0.825 0.795 0.810
NB 0.699 0.653 0.873 0.747
SVM 0.832 0.830 0.842 0.836
XGBoost 0.835 0.825 0.858 0.841
RDForest 0.837 0.820 0.871 0.845

Table 5. Prediction result of inhibition (IC50) using SMILES to SC

Embedding method Classification Accuracy Precision Recall F1

word2vec LR 0.824 0.834 0.830 0.832
LDA 0.825 0.835 0.831 0.833
KNN 0.825 0.828 0.841 0.834
CART 0.812 0.834 0.800 0.817
NB 0.688 0.665 0.815 0.732
SVM 0.838 0.843 0.849 0.846
XGBoost 0.840 0.833 0.870 0.851
RDForest 0.838 0.824 0.881 0.851

Ising-word2vec LR 0.818 0.825 0.829 0.826
LDA 0.811 0.825 0.812 0.818
KNN 0.831 0.836 0.845 0.840
CART 0.809 0.835 0.794 0.813
NB 0.681 0.660 0.807 0.726
SVM 0.836 0.842 0.847 0.844
XGBoost 0.837 0.831 0.867 0.848
RDForest 0.841 0.828 0.881 0.853

Figure 2. The ROC curve of prediction model with using ‘SMILES to ECFP’ for tokenization to predict inhibitory effect on HBV (IC50). (A) Embedding
generated by word2vec. (B) Embedding generated by Ising-word2vec.
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Figure 3. The ROC curve of prediction model with using ‘SMILES to SC’ for tokenization to predict inhibitory effect on HBV (IC50). (A) Embedding
generated by word2vec. (B) Embedding generated by Isingword2vec.

Table 6. Prediction result of toxicity (CC50) using SMILES to ECFP

Embedding method Classification Accuracy Precision Recall F1

word2vec LR 0.879 0.913 0.929 0.921
LDA 0.874 0.916 0.918 0.917
KNN 0.886 0.911 0.942 0.926
CART 0.858 0.915 0.897 0.906
NB 0.710 0.833 0.772 0.801
SVM 0.893 0.893 0.977 0.933
XGBoost 0.912 0.918 0.971 0.943
RDForest 0.907 0.911 0.972 0.940

Ising-word2vec LR 0.888 0.914 0.941 0.927
LDA 0.883 0.921 0.925 0.923
KNN 0.884 0.910 0.940 0.924
CART 0.861 0.912 0.904 0.908
NB 0.710 0.832 0.774 0.802
SVM 0.889 0.890 0.975 0.930
XGBoost 0.912 0.916 0.971 0.943
RDForest 0.904 0.907 0.973 0.939

Table 7. Prediction result of toxicity (CC50) using SMILES to SC

Embedding method Classification Accuracy Precision Recall F1

word2vec LR 0.870 0.908 0.917 0.912
LDA 0.863 0.904 0.911 0.907
KNN 0.875 0.900 0.935 0.917
CART 0.835 0.892 0.885 0.888
NB 0.692 0.819 0.750 0.782
SVM 0.892 0.892 0.972 0.930
XGBoost 0.900 0.907 0.965 0.934
RDForest 0.894 0.898 0.967 0.931

Ising-word2vec LR 0.869 0.908 0.916 0.912
LDA 0.859 0.900 0.911 0.905
KNN 0.876 0.899 0.939 0.918
CART 0.816 0.884 0.866 0.874
NB 0.692 0.817 0.753 0.783
SVM 0.892 0.892 0.972 0.930
XGBoost 0.902 0.907 0.966 0.935
RDForest 0.897 0.899 0.971 0.933

In compound activity tests, the evaluation criteria
for compound activity are not fixed values, and a real-
time response threshold change interval should be

formed according to the overall activity distribution of
the current set of compounds to be tested. In the drug
activity test, we tried the HBV IC50 threshold from 1
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Figure 4. The ROC curve of prediction model with using ‘SMILES to ECFP’ for tokenization to predict liver toxicity (CC50). (A) Embedding generated by
word2vec. (B) Embedding generated by Ising-word2vec.

Figure 5. The ROC curve of prediction model with using ‘SMILES to SC’ for tokenization to predict liver toxicity (CC50). (A) Embedding generated by
word2vec. (B) Embedding generated by Ising-word2vec.

to 20 μM and the HepG2 CC50 threshold from 10 to
100 μM.

To establish a relative threshold ratio between com-
pounds to IC50 and CC50, IC50 and CC50 can maintain a
large concentration difference to maintain a reasonable
active toxicity ratio, which is entirely dependent on the
screening needs of drug testers. In this study, we focused
more on the drug’s ability to inhibit HBV. Therefore, the
IC50 threshold was set on a low level. In contrast, the
toxicity threshold for HepG2 cells was set loosely at
30 μM.

Tables 8 and 9 show the validation results of the pre-
diction model for HBV drug IC50 with a threshold value
of 1 μM and HepG2 drug CC50 with a threshold value
of 30 μM, respectively. In the in vitro anti-HBV experi-
ment, the model still obtained relatively high prediction
accuracy under a specific threshold value. When using
the XGBoost classification model, the highest accuracy
of IC50 is 0.732, and the highest AUC value is 0.962. When
using the SVM classification model, the highest accuracy
of CC50 is 0.893, and the highest AUC is 0.943. The results

for other thresholds of IC50 and CC50 are described in the
supplementary file (Supplementary Table S1 and S2).

Discussion and conclusion
In this work, we propose a word2vec model combined
with Ising gradient correction, which shows better per-
formance than traditional word2vec in different target
datasets. In addition, in the downstream task after vector
training, we have a definite advantage in predicting the
compound’s HBV inhibition rate and hepatocyte toxicity.
This method has a good ability to screen potential anti-
HBV drugs. In addition, in the process of generating
tokens, a variety of methods were compared to try to find
token extraction parameters that could achieve the opti-
mal performance of the model. We not only demonstrate
the advantages of the model for compound representa-
tion learning in a public dataset but also demonstrate
the predictive power of the classification model based on
Ising-word2vec pretraining results in cell experiments.
We demonstrate the potential of word2vec combined

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab593#supplementary-data
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Table 8. HBV Drug experimental compound model prediction validation

Threshold Train set (Pos/Neg) Test set (Pos/Neg) Model Accuracy AUC

1 3582/829 37/19 LR 0.661 0.463
LDA 0.643 0.736
KNN 0.679 0.718
CART 0.714 0.579
NB 0.536 0.393
SVM 0.661 0.748
XGBoost 0.732 0.962
RDForest 0.714 0.927

Table 9. HepG2 drug experimental compound model prediction validation

Threshold Train set (Pos/Neg) Test set (Pos/Neg) Model Accuracy AUC

30 1502/768 50/6 LR 0.893 0.427
LDA 0.875 0.800
KNN 0.750 0.517
CART 0.804 0.722
NB 0.321 0.558
SVM 0.893 0.943
XGBoost 0.821 0.763
RDForest 0.875 0.360

Figure 6. Screen capture of the web tool driven by S2DV.

with the Ising gradient correction model for screening
new potential drug-like compounds. This method can be
widely applied to predict the drug-like properties of other
compounds with different targets, thus simplifying the
drug development process.

In Figure 6, tool S2DV is published for anti-HBV
drug screening by predicting inhibitory effect on

HBV (IC50) and liver toxicity (CC50) of potential com-
pounds on the web (http://www.vectorspaceai.cn/S2DV/
home).

Since our experiment demonstrated the superior
performance of word2vec combined with Ising gra-
dient modification for drug compound classification
tasks, we also wanted to explore the universality of

http://www.vectorspaceai.cn/S2DV/home
http://www.vectorspaceai.cn/S2DV/home
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word2vec combined with Ising gradient modification in
different fields. Not only can it effectively improve the
performance of models, but its inherent global gradient
correction mechanism can also provide many interesting
insights.

The scheme still has shortcomings: from the perspec-
tive of the model algorithm itself, the model combines
local and global, but the global matrix is not optimized
with vector time; i.e. the global relational matrix is not
completely correct in correcting the gradient. Second,
from the perspective of model training and testing, the
data amount is limited in the training and verification
process of compound medicinal properties. Most of the
drugs collected in the database are reported to have
higher target activity, and a large number of negative
samples are not needed to train a more accurate model,
which means that more data of the same target test
results are needed to comprehensively optimize the
model in later work. In addition, the model only focuses
on the compound activity association of a certain target
drug and does not make in-depth use of the compound
activity data of similar targets and related targets.
Therefore, the application of the model needs to be
extended to more target data for overall optimization
and improvement.

Key Points

• By using the inherent global relationship between molec-
ular SMILES strings, the Ising model can effectively
improve the performance of the gradient correction
mechanism.

• S2DV demonstrates the superior performance of Ising-
word2vec for drug compound inhibition and toxicity
classification. The generated molecular embeddings can
be reused through GitHub.• S2DV was developed as an online tool to predict the
inhibitory effects of potential compounds on HBV (IC50)
and liver toxicity (CC50).

Supplementary data
Supplementary data are available online at https://
academic.oup.com/bib.
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