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Superoxide dismutase type 1 (SOD1) mutations cause protein aggregation and decrease protein stability, which are linked to
amyotrophic lateral sclerosis (ALS) disease. This research utilizes the world’s largest traditional Chinese medicine (TCM) database
to search novel inhibitors of mutant SOD1, and molecular dynamics (MD) simulations were used to analyze the stability of protein
that interacted with docked ligands. Docking results show that hesperidin and 2,3,5,4-tetrahydroxystilbene-2-O-𝛽-D-glucoside
(THSG) have high affinity to mutant SOD1 and then dopamine. For MD simulation analysis, hesperidin and THSG displayed
similar value of RMSD with dopamine, and the migration analysis reveals stable fluctuation at the end of MD simulation time.
Interestingly, distance between the protein and ligand has distinct difference, and hesperidin changes the position from initial
binding site to the other place. In flexibility of residues analysis, the secondary structure among all complexes does not change,
indicating that the structure are not affect ligand binding.The binding poses of hesperidin and THSG are similar to dopamine after
molecular simulation. Our result indicated that hesperidin and THSG might be potential lead compound to design inhibitors of
mutant SOD1 for ALS therapy.

1. Introduction

Mutations in Cu/Zn-binding superoxide dismutase type 1
(SOD1) could decrease protein stability and increase aggre-
gation; SOD1 variants are associated with amyotrophic lat-
eral sclerosis (ALS) [1–4]. ALS belongs to motor neuron
degenerative disease in the cortex, brainstem, and spinal cord
[5, 6], which is similar to Alzheimer’s disease, Parkinson’s
disease, and Huntington’s disease, and the symptoms of ALS
include degenerative disorder of upper/lower motor neurons
and denervation of muscle fibres, leading to loss of motor
neuron, progressive muscular paralysis, and muscle atrophy
[7, 8], resulting in weakness of voluntary muscles till death

because of respiratory failure [9]. A recent study indicated
that mutation of SOD1 gene has genetic linkage in ALS
disease, ALS-associated SOD 1 mutations including alanine
4 by valine (A4V) [10–13], histidine 46 by arginine (H46R)
[14–16], and I113T mutation [17–19]. The most popular ALS-
causing mutation is A4V mutant type in United States; near
50% of SOD1-ALS patients are associated with the A4V
mutation [20]. H46R has been identified in Japanese, about
80% Japanese familial ALS in the affectedmembers [21]. I113T
typemutation is another one of the common SOD1mutations
of FALS [22], and many cases of clinical manifestations are
linked to the I113T SOD1 mutation [23]. They proposed
a toxic gain of function caused by mutant SOD due to
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the aggregation [24, 25]; hence, designing novel drugs for
inhibition of SOD1 aggregation and stabilization have been
used in ALS treatments [26].

The aim of this study is to focus on drug design of
mutant SOD1. The complex of mutant SOD1 and dopamine
was used to investigate the novel inhibitors of mutant SOD1
for inhibiting aggregation. Computer-aided drug design
(CADD) is rapid approach for drug discovery [27–30], which
is based on risk factor studies [31–36], theory [37], and web
server [38] for developing novel leading compounds. CADD
has been wildly used to design new drugs in many cases,
such as virus [39, 40], inflammation [41], cancer [42–45],
insomnia [46], weight loss [47], erectile dysfunction [48–
50], nerve system [51–53], and diabetes [54]. Traditional
Chinese medicine (TCM) has been used over two thousand
years in clinical therapy, and many studies utilized TCM
to investigate new therapies [55–58]. In our study, small
molecules from the world TCM database [59] was used to
screen for searching potential compounds with high affinity
in mutant SOD1 active site, and we further utilizedmolecular
dynamics (MD) simulation to verify the stability between
protein and ligands for binding assay. Synthetic drug often
has side effect in clinical treatments, and our results provided
nature product as drug candidate, which is safer and reduce
adverse reactions.

2. Materials and Methods

2.1. Database Screening. The crystal structure of mutant
SOD1 was obtained from PDB database (PDB code: 4A7V)
[60]. We employed Prepare Protein module of Accelrys
Discovery Studio 2.5.5.9350 (DS 2.5) software [61] to clean
up mistakes of each residue on mutant SOD structure, such
as deleting alternate conformations, modeling missing loops,
and removing water molecules. This module also predicts
titration site pKs for each amino acid, and the pH value of
7.4 was used to protonate all residues. PONDR-FIT [62] was
used to predict the order/disorder in mutant SOD1 structure.
The 61000 TCM compounds were downloaded from the
TCM Database@Taiwan [59] for database screening, we also
employed TCM compounds from Chang’ lab for binding
assay [63], and MM2 force field [64] of ChemBioOffice 2010
software was carried out to optimize and calculate the 3D
conformation of TCM compounds. All compounds generate
different conformations by Monte-Carlo techniques under
LigandFit module [65] of DS 2.5, which were docked into
mutations SOD1 binding site for protein-ligand interaction
analysis. Minimization of all docking poses was based on
CHARMm force field [66], and we used Smart minimizer
algorithm as minimization algorithm for ligands minimiza-
tion [67, 68], which contains steepest descent and conjugate
gradient. The steepest descent performed 1,000 steps and
followed by conjugate gradient minimization.

2.2. Molecular Dynamics (MD) Simulation. Protein-ligand
structures were obtained from results of docking study,
and the starting conformation of protein-ligand complex

was performed using GROMACS 4.5.5 package [69] for
molecular dynamic simulation, using charmm27 force field.
The protein structure was placed in cubic box containing
TIP3P water molecules. The distance between protein and
box was set to 1.2 nm, and the van der Waals cutoff to 1.4 nm.
Particle mesh Ewald (PME) method is regard as coulomb
type for calculating electrostatic interaction, and LINCS
algorithmwas used to restrain the lengths of all bonds among
all simulations. For obtaining topology file and parameters
of small compounds, we employed SwissParam to generate
these data and compatible with the CHARMMall atoms force
field for GROMACS simulation. In system neutralization,
we added Na and Cl ions to randomly replace solvent
molecules in simulation systems, and the concentration of
NaCl model was set as 0.145M. The time step was set to
0.002 ps for MD simulation. Steepest descent algorithm was
applied to energy minimization for 5,000 cycle steps. The
following procedure is equilibration, which was performed
under position restraints for 100 ps to relax solvent in pro-
tein structure under constant temperature dynamics (NVT)
condition. Production simulations perform 5000 ps at final
step for all simulation systems under constant pressure and
temperature (NPT) dynamics. Temperature of all simulation
systems was set to 310 K. All MD frames were saved every
20 ps for trajectory analysis.

2.3. Analysis of MD Simulation. Trajectory analysis of MD
conformations was calculated by GROMACS 4.5.5 [69],
including root mean square deviation (RMSD), root mean
square fluctuation (RMSF), and mean square displacement
(MSD). The secondary structures analysis was performed by
DSSP program under GROMACS 4.5.5. Linkage clustering
algorithm was used to identify the most populated structural
representations of conformation duringMD simulations.The
RMSD cutoff for cluster analysis was set as 0.13.

3. Results and Discussion

3.1. Docking Results of Database Screening. To analysis dis-
order region, we employed PONDR-FIT [62] to predict the
order/disorder inmutant SOD1 structure.The sequence num-
ber from 21 to 32 and from98 to 100 are binding site ofmutant
SOD1 (Figure 1). The disorder disposition values among this
range are below 0.5, which indicates that the binding site is
folded orderly and that the protein structure may not affect
ligand binding [70, 71]. For docking analysis, we based on -
PLP1, -PLP2, -PMF, and Dock Score to evaluate the docking
pose of traditional Chinese medicine (TCM) compounds.
From scoring analysis, dopamine was regarded as control for
comparing with TCM compounds. The score values from
docking poses of TCM compounds are shown in Table 1. All
docked ligands are ranked by Dock Score, and we found
that hesperidin and 2,3,5,4-tetrahydroxystilbene-2-O-𝛽-D-
glucoside (THSG) [63] with Dock Score (including score
values of -PLP1, -PLP2, and -PMF) are higher than dopamine.
We selected hesperidin, THSG and dopamine for further
studies, and chemical scaffolds of these small molecular
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Table 1: Results of TCM compounds interacted with mutant SOD1 structure by LigandFit docking analysis.

Name -PLP1 -PLP2 -PMF DOCK SCORE
Hesperidin 33.72 39.61 95.25 91.91
THSG 37.36 41.61 101.23 88.16
Hyperoside 32.16 41.58 79.96 79.85
Dopamine∗ 26.79 30.68 37.71 51.94
Nobiletin 44.73 44.01 109.57 41.14
Ursolic acid 36.61 36.50 114.59 34.69
Tangeretin 29.24 32.45 73.20 33.28
Nobiletin 59.41 46.54 117.14 29.82
Lupeol 42.26 42.03 115.03 23.97
Emodin 30.29 32.13 84.07 22.02
Physcion 39.79 37.57 98.34 19.94
∗Control.
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Figure 1: Disorder analysis of sequence of mutant SOD1 from result
of PONDR-FIT prediction. The value of disorder disposition above
0.5 in disorder disposition is indicated as disorder residues.

are shown in Figure 2. Docking poses of dopamine, which
displayed H bond with Glu100, the surrounding residues
include Lys30, Lys23, Glu21, Pro28, and Gln22 (Figure 3(a)).
For hesperidin, there are three amino acids (Glu21 and
Glu100) generated H-bond interaction, and the surrounding
residues are Trp32, Pro28, and Lys30 (Figure 3(b)). THSG
has two amino acids generated H-bond for ligand binding,
which are Glu21, Lys30 and Glu100, and amino acids that
include Lys23, Pro28, and Trp32 are near the docked ligand
(Figure 3(c)). It is worth to know that Glu100 is the common
residue for each ligand binding, and the Lys30 can be found
in all binding residues of mutant SOD1. In further study, we
utilized molecular dynamics simulation to analyze variation
of each ligand in protein structure.

3.2. Stability Analysis of Molecular Dynamics Simulation. To
determine stability of conformations amongMDsimulations,

Table 2: Time of middle structure in each cluster among MD
simulation times.

Cluster Time of middle frame (ps)
Dopamine Hesperidin THSG

1 460 160 300
2 940 360 2080
3 1520 1480 3060
4 2180 1880 3140
5 2220 2040 3180
6 2500 2140 3280
7 2740 2200 3460
8 2820 2920 3540
9 2960 3240 3660
10 3140 3380 3840
11 3380 3580 4000
12 3300 3740 4040
13 3560 3800 4080
14 3780 3840 4160
15 3900 3900 4260
16 4020 4180 4580
17 4280 4620 4700
18 4740 — 4860

we utilized root mean square deviation (RMSD), radius of
protein gyration, and total energy to analyze deviation of
all complexes with docked ligand. The RMSD values of
protein structure were used to verify stability among MD
simulations. Figure 4 shows all values within the range from
0.16 to 0.24 nm, which indicate that all protein structures
from protein-ligand complexes are stable during 5000 ps
simulation, and the 5000 ps simulation time is enough for
decreasing the fluctuation of all complexes. For ligand RMSD
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Figure 2: Chemical scaffold of dopamine, hesperidin, and THSG.
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Figure 3: Binding poses of docking result: (a) dopamine, (b) hesperidin, and (c) THSG.
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Figure 4: RMSD values of complex structures with docked ligand:
dopamine, hesperidin, and THSG among 5000 ps simulation.

(Figure 5), it is obvious that the conformation of dopamine
displayed high degree of difference during dynamic simula-
tion, and the value of ligand RMAD increased to 0.24 nm
from 3000 ps to the end. Ligand RMSD of TCM candidates
shows slightly deviation, and the values of hesperidin and
THSG are in average of 0.15 and 0.10, respectively.

3.3. Migration Analysis of Molecules. In order to assess the
variation of each ligand after being docked into protein
binding site,MSD analysis was used tomeasure themigration
of docked ligand during MD simulation. MSD value of hes-
peridin is the most distinct from the other TCM candidates,
which displayed a rapid increase during initial simulation to
the end of 5000 ps (Figure 6). In further study, we measured
the distance between centers mass of protein and each ligand
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Figure 5: RMSD values of three compounds: dopamine, hesperidin,
and THSG in protein complex during 5000 ps simulation time.

among all simulation times to understand movement of
docked compounds. Interestingly, hesperidin shows a long
distance with 2.6 nm (Figure 7) and turned to 2.0 nm after
2000 ps. Indicating that hesperidin moved away from the
initial binding position and transferred to another site of the
protein structure. The results suggest that each ligand could
bind with mutant SOD1 during 5000 ps.

3.4. Flexibility of Residues Analysis. We calculated root mean
squared fluctuation (RMSF) to analyze the flexibility of
residues on protein structure, and the binding region (from
21 to 32 and from 98 to 100 residues) shows no significant
increment on structure of mutant SOD1 with all ligands
(Figure 8). From DSSP analysis, all helices and beta-sheets
of secondary structure for all complexes continued to exist
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Figure 6: MSD values of three compounds: dopamine, hesperidin,
and THSG in protein complex during 5000 ps simulation time.
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Figure 7: Distance between the centers ofmass ofmutant SOD1 and
ligands.

during 5000 ps simulation times, and the number of residues
is not variable among all conformations (Figure 9). The
results suggest that the protein structure in each complex
remained stable after MD simulations.

3.5. Snapshots Analysis. In order to identify the most stable
structure during the entireMD simulation for understanding
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Figure 8: RMSF values of protein residues with docked ligand:
dopamine, hesperidin, and THSG among 5000 ps simulation.

the interaction of docked ligands, all conformations from
MD simulation were clustered into seventeen or eighteen
groups (Figure 10). We pick up the middle conformation
from final groups of clusters as represented structure, and
each middle frame is listed in Table 2. In the next study, we
analyze protein-ligand interactions of represented structure
(Figure 11). Dopamine has H-bond with Glu100 and Glu21,
and the pi interaction is formed in Lys23 (Figure 11(a)). Hes-
peridin generate two H bonds with Lys23 and Glu21; besides,
there are two pi interactions displayed on Lys30 and Trp32,
respectively (Figure 11(b)). For THSG binding interaction, H
bond was found on Glu24 and pi interaction was formed on
Lys30 (Figure 11(c)). This result shows that hesperidin and
THSG have similar binding residues to dopamine, suggesting
that the binding conformations of two candidates are not
significantly variable after MD simulations.
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Figure 9: DSSP analysis of complexes with ligands: (a) dopamine (b) hesperidin, and (c) THSG. The “Structure” is summarized by residue
number of A-Helix, B-Sheet, B-Bridge, and Turn.
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Figure 10: Clustering analyses of all conformations of mutant SOD1 complexes among 5000 ps simulation times.
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4. Conclusion

For docking analysis, both Hesperidin and THSG have
higher Dock Score than dopamine, and they displayed stable
movements for mutant SOD1 from MSD and center mass
distance analysis, which was correlated with the low affinity
in docking results. For RMSF and DSSP assay, the secondary
structure of mutant SOD1 did not change significantly during
MD simulation, suggesting that the docked ligands are not
affected by protein structure. Hesperidin and THSG have
high affinity with SOD1 and the binding interactions are
similar to dopamine among all molecular simulations. Our
result indicated that hesperidin and THSGmight be potential
lead compound to design inhibitors of mutant SOD1 for ALS
therapy.
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