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Background: The effective combination of texts and knowledge may improve performances of natural language
processing tasks. For the recognition of chemical-induced disease (CID) relations which may span sentence
boundaries in an article, although existing CID systems explored the utilization for knowledge bases, the effects of
different knowledge on the identification of a special CID haven't been distinguished by these systems. Moreover,
systems based on neural network only constructed sentence or mention level models.

Results: In this work, we proposed an effective document level neural model integrated domain knowledge to
extract CID relations from biomedical articles. Basic semantic information of an article with respect to a special CID
candidate pair was learned from the document level sub-network module. Furthermore, knowledge attention
depending on the representation of the article was proposed to distinguish the influences of different knowledge
on the special CID pair and then the final representation of knowledge was formed by aggregating weighed
knowledge. Finally, the integrated representations of texts and knowledge were passed to a softmax classifier to
perform the CID recognition. Experimental results on the chemical-disease relation corpus proposed by BioCreative
V show that our proposed system integrated knowledge achieves a good overall performance compared with

Conclusions: Experimental analyses demonstrate that the introduced attention mechanism on domain knowledge
plays a significant role in distinguishing influences of different knowledge on the judgment for a special CID

Keywords: Chemical-induced diseases, Document level, Knowledge, Attention mechanism, Neural network, Text

Background
Identifying chemical-disease relations (CDRs) are signifi-
cantly crucial to improve some researches and applications
in the biomedical and healthcare domains [1, 2]. For ex-
ample, it can contribute to biocuration of some bioinfor-
matics databases such as Comparative Toxicogenomics
Database! (CTD) [3, 4]. However, manual annotation of
CDRs from literature is not only expensive but also difficult
to catch up with the rapid literature growth [4, 5].

There has been currently an increased interest in
exploiting computational approaches such as text-mining
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techniques to automatically detect relations between bio-
medical entities. Therefore, the BioCreative V challenge
included a task on automatical extraction of CDRs from
curated Medline articles (only abstracts and titles). This
challenge facilitates the identification of CDRs and pro-
motes the development of text-mining techniques. In this
task, all articles were manually annotated with chemical
and disease mentions, their concept identifiers-MeSH 1D
(the identifier in Medical Subject Headings), and true
chemical-induced disease (CID) relations within the scope
of an article [6]. In the CDR corpus, nearly 1/3 of all rela-
tions are described as inter-sentential CID relations [5].
Arguments of inter-sentential CID relations may cross
sentence boundaries and never co-occur in the same sen-
tence. This task remains difficult and challenging mainly
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because it requires recognizing inter- and intra-sentential
causal relationships between chemical and disease concept
identifiers (entities) rather than their special mentions
(mention level) in an article.

The CID task is usually regarded as a binary classifica-
tion problem. The current state-of-the-art systems [7—18]
mainly use three types of methods: the traditional ma-
chine learning (ML) method, the rule-based method and
the deep learning (DL) method. On the whole, those sys-
tems with a combination of knowledge bases (KB) and
textual information outperform ones with textual infor-
mation alone in performance. The importance of back-
ground knowledge in natural language understanding has
been recognized [19-24]. Leveraging external knowledge
to improve performances of natural language processing
(NLP) applications attracts more and more researchers. In
this work, what we are interested in is how to integrate
knowledge bases with texts together to effectively learn
the semantic representations of an article and improve
performances of a DL-based CID system.

With the recent advances in deep learning technolo-
gies, the neural-network (NN) based systems in many
NLP tasks, such as question answer, relation extraction
and entity recognition, have obtained good performances
due to the adaptively automatically learning capability
for text representations. However, few systems exploit
NN approaches to perform the CID task. Only the
CNN-based mention level system [17] used knowledge
from CTD and improved their F-score by 13.2%. In
addition, only two systems [12, 13] without KB applied
convolution neural network (CNN) and recurrent neural
network (RNN) to extract sentence level CID relations,
respectively.

Most of systems [7-9, 11, 18] exploit traditional ML-based
approaches such as support vector machine (SVM). Take the
top-ranked system [9] during the BioCreative V evaluation
for an example, its F-score changed from 50.73 to 67.16%
after exploiting features from four types of knowledge bases
including MeSH, Side Effect Resource (SIDER), MEDication
Indicaton Resource (MEDI) and CTD. Similarly, Pons et al.
[8] made use of a graph database which contains entities and
relations from (curated) structured databases (UniProt, CTD
and UMLS) and from scientific abstracts. In addition to
using knowledge features derived from some databases, these
systems also extracted the sentence level and document level
features. The sentence level features derived from a sentence
usually include various lexical and syntactic features. The
document level features related to chemicals and diseases
often consist of information of relevant sentences, statistical
features, high-frequent entities and trigger words. Besides
the SVM-based systems, the rule-based system [10] achieved
competitive performances. This system built a disease
dictionary derived from MeSH, the disease ontology and
Wikipedia. Furthermore, the system [7] combining the

Page 2 of 12

advantages of rule- and ML-based approaches not only used
features from CTD but also augmented their training data
from existing curated data of the CTD-pfizer collaboration.
However, since these systems depend on specialized designs
of domain experts for features or rules, it is difficult to
generalize them to other relation extraction tasks.

In summary, one of the reasons for good performances
of the above all systems with KB in the CDR task may
be due to the direct or indirect exploitation of CTD. In
these systems, chemical-disease relationships from CTD
serve as features during machine learning. CTD provides
four types of manually curated chemical-disease rela-
tions which often are called as knowledge in the subse-
quent sections.

However, whether SVM-based systems or NN-based
systems, they all didn’t distinguish the effects of different
knowledge on the CID judgement. SVM-based systems
[7-9, 11] took advantages of knowledge either as fea-
tures of equal importance or as Boolean features, while
the NN-based system [17] concatenated one-hot repre-
sentations of knowledge as a feature of the model indis-
criminately. Because these relations in CTD are in
nature different from each other, it is impossible for
them to make the same contribution to assisting a classi-
fier to recognize a CID relation. Therefore, a system
employing chemical-disease relations from CTD should
make a distinction between the influences of different
knowledge on identifying a special CID according to the
semantic meaning of an article. Accordingly, its model
should learn the representations of texts and knowledge
in a way of interdependence rather than in isolation.

In this work, because of the above mentioned two rea-
sons, we explored the issue of how to distinguish the in-
fluences of different knowledge on the judgment of a
special CID relation when knowledge is used as features
to incorporate into a NN-based model. Currently,
attention-based models have shown great success in
many NLP tasks such as question answering [24, 25],
machine translation [26, 27] and relation extraction [28—
30]. In the context of relation classification, by learning
a scoring function to weigh concerned feature represen-
tations, attention mechanism allows a model to pay
more attention to the most influential representations
for a relationship category. Thus, the different know-
ledge from CTD may be weighed by a scoring function
depending on the semantic representation of an article.
Consequently, mutual influences between texts and
knowledge can be revealed because of the exploiting of
attention mechanism.

Overall, the contributions of this work are as follows.
(1) We proposed an effective document level model in-
corporated domain knowledge to detect CID relations
from biomedical articles. (2) A knowledge attention de-
pending on the learned semantic representation of an
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article was proposed to distinguish the influences of dif-
ferent relations from CTD on identifying a special CID.
On this basis, the final representation of knowledge was
formed by aggregating weighed relations. (3) The high
level representations of an article and knowledge were
further weighted to evaluate their importance to final
classifying results.

The experimental results on the CDR corpus demon-
strate that the proposed system integrated KB are highly
competitive compared with other state-of-the-art CID
systems in spite of the use of less features. Moreover, ex-
perimental analyses indicate that the introduced atten-
tion mechanism on knowledge may not only distinguish
the influences of different knowledge on recognizing
special CID relations but also improve the performances
of the proposed system.

Methods

In the section, text processing adopted in the pro-
posed system is first introduced. Next, an overview of
the network architecture is shown. Then, the hier-
archical document level sub-network module and
knowledge with attention mechanism are described in
detailed, respectively.

Text processing

Appropriate text processing in NLP tasks may generally
improve performances of a system to some extent. In
the proposed model, the following processing operations
were applied to articles of all datasets. Numbers (inte-
gers and decimals) without letters were transformed into
a special token. The MeSH ID of a disease (or a chem-
ical) substituted for the corresponding mentions. In
addition, since each candidate entity often occurs mul-
tiple mentions in an article, it is crucial for a document
level model to distinguish between candidate entities
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and other tokens of an articles to pick up the contexts
more specifically. Therefore, special marks were
employed to indicate the mentions of different candidate
entities. For example, in the replaced sentence “The pre-
cipitating cause of ds_d012640 was believed to be a
ds_start ds_d062787 ds end of ch_start ch_d014148
ch_end”, substrings “ch” and “ds” are used to distinguish
between the chemical and the disease; substrings
“d014148” and “d062787” are MeSH IDs of the replaced
chemical and disease, respectively; substrings “_start”
and “_end” represent the beginning and end of each can-
didate entity, respectively. Finally, each article was di-
vided into sentences and each sentence was parsed by
our improved Standford CoreNLP Tool [31] to get the
PoS (Part of Speech) tag of each word.

Network architecture

Both knowledge representation derived from CTD and
the semantic representation learned from an article will
play an important role for judging the relationship of a
special candidate pair. Therefore, a model should have
the ability to discern which knowledge is more influen-
tial to the considered pair when it learns the semantic
meaning effectively and automatically from the original
text segments. Moreover, the two types of representa-
tions might have the different effects on the recognition
of a chemical-disease relation. On these grounds, Fig. 1
gives an overview of the network architecture. Each art-
icle is inputted to the proposed model by sentence se-
quences. The main layers of the proposed model are as
follows: (1) the document level hierarchical sub-network
to learn the basic semantic meaning of a candidate pair
only from the original text segments of an article , which
is implemented by learning the semantic representation
of each sentence, relations among sentences and the
theme of an article; (2) the embedding layer to look up
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Fig. 1 The overall architecture of the proposed model
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the knowledge embedding vocabulary to encode rela-
tions of CTD into vectors; (3) knowledge attention to
act the semantic representation of an article on the dif-
ferent knowledge candidates to highlight the most influ-
ential relations for the candidate pair; (4) weighted
relations to be aggregated to serve as the final know-
ledge representation for a given pair; (5) representations
of texts and knowledge to be weighted to reflect their
different effect on final classifying results; (6) the soft-
max layer to conduct relation classification according to
the above combined semantic meanings.

Input representations

Given an article with n; sentences D = {S1,S,,...,S;, ...,
Sn, }» each sentence S; = {wy, wy, ..., wj, ..., Wy, }has a max-
imum of n, words. Since word embedding [32] maps words
to low-dimensional real space where semantic meanings of
words can be represented by vectors, the embedding layer of
the proposed model will look up the embedding vocabulary
to perform this transformation process according to the cor-
responding index of each input token. Here, each embedding
vocabulary can be initialized either by a random process or
by some pre-trained word embedding vectors.

(1) Word and PoS: In the proposed model, the
semantic meaning of each word w is represented by
concatenating the corresponding /;-dimension word
embedding vector wS and /,-dimension PoS (part of
speech) embedding vector pS. The PoS feature of a

word is valuable for relation classification tasks [28].
After the word wjis passed through the
embedding layer, it is denoted as a new vector
W= [wj?;p‘j’] w; € R' (I=1, +1,) where the
symbol “;” means the concatenation operation.
Hence, the sentence S; is represented as an array
S =Wy, Wy, W,,...., Wy .

(2) Knowledge: For a pair of chemical and disease, it
has at most four types of relations in CTD, namely
“marker/mechanism”, “theapetic”, “infered” and
“null”. Thus, knowledge about relations is denotes
as R={r1,ra, ..., k; ... ny } (n3=4). If the number
of relations extracted from CTD is less than ng, the
fixed-length representation will be obtained through
padding with the relation “nu/l”. By looking up the
knowledge embedding vocabulary to obtain the m-
dimension embedding vector 7} of each relation ry,
knowledge R is denoted as an array R® = [r§,75, ...,

e €
R

The document level sub-network

As the above mentioned, the CDR corpus consists of two
types of CID relations: intra- and inter-sentential relations.
Candidate entities in inter-sentential CID relations may
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occur either among the adjacent sentences or among the
nonadjacent sentences. A true CID relation is recognized
according to the theme of an article, regardless of whether
it is an intra-sentential relation or an inter-sentential rela-
tion. The document level hierarchical sub-network is ap-
plied to adapt to these characteristics of the CDR corpus.

(1) The semantic meaning of sentences and the theme
of an article

Above all, the CDR corpus contains a great number of
long sentences with the more complicated structure
compared with corpora of the general domain. RNN
[33], especially RNN with long short term memory
(LSTM) units [34], has been demonstrated to suit many
NLP tasks. LSTM is superior in capturing unbounded
contexts due to the introduction of the gating mechan-
ism, especially when it is used to model variable length
of long texts. However, the LSTM’s hidden state /. col-
lects contexts only from the previous words (the past)
and knows nothing about the subsequent texts (the fu-
ture). Therefore, for the sentence S; of an article, the
proposed model makes use of a bidirectional LSTM
(BLSTM) which is composed of forward and backward
LSTM. BLSTM can capture past and future contextual

informaiton of the current word. Hidden states (/,,and
—
h,, ) of the two LSTMs at the last time step n, are

’ —_—
concatenated to form a new vector S; = [y, ; h,,] which
is regarded as the represention of the sentence S;. Thus,
all sentences of the document D are denoted as an array

Dt =[S\,8,,....8,,....8, ]

In addition, the theme of an article is expressed by the
semantic meaning of the title of the article which is usu-
ally a sentence. Likewise, utilizing the BLSTM network

learns the representation T of the theme of an article.
(2) The semantic meaning of an article for a given pair

Furthermore, two types of sub-networks are con-
structed on the representation D° of all sentences to
capture the document level semantic meaning of a given
candidate pair within the scope of an article. The one is
the BLSTM network on all sentences, which captures
the temporal-based dependency A' among nonadjacent
sentences. The other one is the CNN network on all
sentences, which extracts local contexts among adjacent
sentences. CNN is prone to capturing the local features
to generate an informative latent semantic representions
of text segments such as the sentence and the paragraph.
In the proposed model, a convolution layer involves f fil-
ters which are applied to a window of w sentences to
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obtain the representation LC of local dependencies. Sub-
sequently, a max pooling operation on the representa-
tion LC collects the global significant contexts to
produce the document level representation A° of the
candidate pair. Similar to Collobert et al. [35], the defin-
ition of the equations is as follows:

LC = ReLU(W .D* + b,) (1)

A° = maxLC( -,i) 0<i<f (2)

Where W, is the learned matrix, b, is a bias vector,
LC(.,i) denotes the i-th column of the matrix LC, and
ReLU means the rectified linear activation function. So
far, for the two types of inter-sentential CIDs, the
sub-network has the ability to capture the relevant con-
texts by exploiting the different advantages of CNN and
LSTM in pattern learning.

Finally, the three document level vectors are concatenated
to represent the semantic meaning of the given pair in an
article, which is denoted as A = [A% A% T.

Knowledge with attention mechanism

Attention mechanism has been successfully applied to
some NLP tasks. The CDR task requires classifying the
relation between a pair of candidate chemical and dis-
ease according to the discussed topic of an article. It is
obvious that not all relations of CTD have equal contri-
butions to helping to determine the relationship type of
the candidate pair. Therefore, it is necessary for each re-
lation from CTD to learn a weight to reflect its level of
effect on the final classification. Since the relation type
of a given pair mainly relies on the semantic meaning of
an article, acting the semantic meaning of the article on
each relation from CTD may highlight which relation
from CTD is the most influential for the considered pair.
For this purpose, the proposed model applies attention
mechanism to original knowledge vectors for weighing
each relation in CTD. We exploit the item a; of a row
vector a to quantify the relevance degree of each relation
r from CTD with respect to the semantic meaning Aof
an article, the related equations are defined as follows:

exp(s(4’, 1}))

o = (3)
Z exp(s(A 7))
K=1
: AWrg
s(Are) = 5Tk (4)
re=ry (5)

Here, s(A,r{) is the score function, W is the learned
weight matrix and m is the dimensionality of a know-
ledge vector. The dot-product operation is used to
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perform the calculation in Eq. (4). The new representa-
tion ri( of each relation from CTD is calculated by the
element-wise multiplication between its original embed-
ding vector ry and the corresponding weight a;. Then,
the final representation of knowledge is derived from the
aggregating effect ATT_KB_Sum of all relations from
CTD:

K=Y ©)

For the sake of comparison, we still provide other two
types of knowledge representations including ATT_KB_-
Max and ATT_KB_Con:

K = R°(argmax(ay), -) (7)

K = con () (8)
K

Where R°(argmax(ay), -) denotes a row of the matrix
R°® which corresponds to the relation with the maximum
weight ay, and the symbol “C(lm" denotes the concatenat-

K

ing operation acting on all knowledge vectors ri(.

Training and classification

The softmax layer performs relation classification for a
pair of candidate chemical and disease. After weighted
representations of texts and knowledge are
concatenated, the new vectors D; will be passed to the
softmax layer. And then, the probability distribution
over each category will be output.

D, = [/31A/§ﬁ21(/] ©)
p(y = t|D) = soft max(D;W + b) (10)
y = arg max(p(y =¢|D)) (11)

Where f; and f5, denotes weights, W; is a weigh
matrix, by is a bias vector, ¢ is the label of a category,
and ydenotes the predicted label of a candidate pair. The
training objective is cross-entropy cost function and
RMSprop (Resilient Mean Square Propagation) [36] is
used to update parameters with respect to the cost
function.

Post processing

The CID task is concerned with the relations between the
most specific diseases and chemicals in an article. For ex-
ample, the kidney disease (general/ hypernymy) vs.
chronic kidney failure (special/ hyponymy), if a chemical
and chronic kidney failure hold a CID relation, the chem-
ical and the kidney disease may not been annotated as a
CID relation even if they have a semantic induced relation.
Only relying on machine learning automatically may
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result in wrong judgements. Therefore, similar to our pre-
vious work [37], if an article includes specific diseases than
a disease d; which does not appear in the title, extracted
chemical-disease pairs with the disease d; are seen as
negative instances. The hypernymy/hyponymy relations
among diseases may be calculated by MeSH Tree
Number.

Results and discussion

Dataset and evaluation settings

The CDR corpus [6] consists of a total of 1500 Medline
articles: 500 each for the training, development and test
set. For each given article of the CDR corpus, we first
constructed relation instances because each article only
annotates real CID relations. Candidate pairs <chemical
MeSH 1D, disease MeSH ID > were generated by match-
ing chemical and disease entities co-occurring in an art-
icle. Moreover, entities of the inter-sentential candidate
pairs were limited to co-occurrance within K consecu-
tive sentences to avoid selecting unlikely candidates. Fur-
thermore, if a candidate pair hasn’t been annotated as a
CID relation in a given article, it will be labeled as nega-
tive. Table 1 shows the statistics of the constructed can-
didate pairs.

Next, we combined the original training set with the
development set to argument the training set due to the
limited number of samples of the CDR corpus. Similar
to the common training approach of samples in
NN-based systems, the union set was randomly divided
into 10 equal subsets, one of which was for the new de-
velopment set and the others of which all were for the
new training set. The test set is still original. The mini-
mum sentence span K strategy (K =4 based on our pre-
vious work) only was applied to the new development
and the original test datasets because of the above men-
tioned same reason. In addition, some real CID relations
filtered by this strategy were treated as false negative
instances.

The performances of the proposed model were assessed
by the standard evaluation measures: precision (P), recall
(R) and F-score (F). Furthermore, gold standard entities of
the CDR corpus were employed to objectively evaluate each
related model in this task because named entity recognition
has the strong effect on the classifying performances. We

Table 1 The statistics of the CDR corpus

Dataset CID pairs  CD pairs  Inter-sentential  Intra-sentential
CID pairs CID pairs

Training 1038 5432 283 755

Development 1012 5263 246 766

Test 1066 5405 303 763

Total 3116 16,100 832 2284

The column “CD pairs” represents the total number of candidate instances
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used Keras library with theano backend to implement the
proposed model.

The pre-training corpora of embedding vectors
With respect to the training corpus for domain know-
ledge, since most articles (1400) of the CDR corpus
come from the related CTD-Pfizer dataset, we down-
loaded the package “CTD_Chemicals_diseases.xml.gz”2
from the CTD database and extracted the corresponding
chemical MeSH 1D, the disease MeSH ID and their rela-
tionship for all chemical-disease pairs (2,048,652 pairs). The
CTD database provides with manually curated interactions
between chemical, gene and disease. After that, TransE® im-
plemented by Tsinghua University was used to train the ex-
tracted triples and generate the embedding vectors of
entities and relations. TransE [38] is an effective approach
when it deals with embedding a large scale knowledge graph
composed of entities and relations into a continuous vector
space. The proposed model only exploited relation vectors.
Articles of the bioconcepts package (bioconcepts2pub-
tator_offsets.gz, about 22 gigabytes) downloaded from
PubTator* [39] were used as the training corpus of the
word representation. The training corpus of the PoS rep-
resentation comes from one fifth of texts randomly
chosen from the above training corpus of the word rep-
resentation. The word2vec tool® [40] was employed to
train the above two corpora and output word and PoS
embedding vectors, respectively.

Hyperparameters
We tuned the hyperparameters on the new development
set (the subset with the index 0) to optimize perfor-
mances of the proposed model. Table 2 lists these pa-
rameters and their corresponding values used in the
proposed model.

The proposed model was tested with different dimensions
of word embedding. Figure 2 shows that the 100-dimension
word embedding makes the system achieve the highest

Table 2 Hyperparameters

Parameter Name Value
;. Word emb.Size 100
I,. POS emb.Size 10
m: Knowledge emb.Size 200
The number n; of sentences in an article 30
The number n, of words in a sentence 120
The window size w for CNN 5
The number f of filters for CNN 300
Mini-batch 8
The number of hidden units of two LSTMs 220,440
The learning rate Ir of RMSprop 0.001
The dropout rate 0.5
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F-score. The dimension of PoS embedding was set as 10 as
used by Zeng [41]. Based on the statistics of CDR texts, each
article includes up to 30 (n;) sentences and each sentence
contains a maximum of 120 (ny) words. In addition, the
evaluation for the dimension of knowledge vectors is shown
in Fig. 3. The proposed system obtains the best F-score when
the dimension of knowledge vectors is 200. Furthermore,
two initialization methods of knowledge embedding vectors
including random and TransE were compared to evaluate
their impact on performances of the proposed system.
Table 3 shows that using knowledge vectors trained by
TransE makes the system obtain the higher precision and
E-score than that by random. The reason might be due to
the fact that the TransE method exploiting a large scale
knowledge graph brings knowledge embedding vectors more
targeted semantic meanings than the random method.

The numbers (220 and 440) of hidden units of two
LSTM layers are equal to the size of their corre-
sponding input dimensions in order to simplify the re-
search process. Considering that two sentences before

84 T
79 £ —
—p—p
74 + — -
afyF

69: /;\‘/-_—___‘

64 -+

59; /

54
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Fig. 3 Performance evaluation for the number f of filters on the test
set of the CDR corpus

. Table 3 Performance evaluation for different initialization
: methods of the knowledge embedding on the test set of the
CDR corpus
» . Methods P(%) R%) )
75
I ——F Random 57.1 810 67.0
TransE 61.5 787 69.0
I The post processing step wasn't applied to the experimental results in
70 )
| this table
! and after the current sentence may generally embody
657 Y the semantic meaning of the inter-sentential candidate
pair, we empirically set the window size w=5. As shown
' '\,..——-———"‘"" in Fig. 4, the proposed system achieves a good F-score
60 : when the number f of filters in CNN is 300. The
50 100 200 Dim .. .
mini-batch was set as 8. The learning rate /r of RMSprop
Fig. 2 Performance evaluation for the dimension of the word t 0.001 ted by Tieleman et al. [36]
embedding on the test set of the CDR corpus was set as . as suggested by lieleman et al :

The dropout strategy was applied on the LSTM and
softmax layers to prevent the over-fitting problem, re-
spectively. The dropout rate was assigned to 0.5 as sug-
gested by Hinton et al. [42].

Effects of input representations and the architecture
In NLP tasks, input features and post processing may
partly influence performances of a system. Table 4 lists
their effects on performances of the proposed system.
Table 4 shows that the proposed system achieves an
F-score of 57.7% when it takes only the word embedding
as input. When knowledge from CTD is incorporated
into the proposed model, the F-score of the system in-
creases by 8.6%, which demonstrates that the model
which integrates domain knowledge with the semantic
meaning of an article may effectively promote perfor-
mances of the proposed system. The effect of domain
knowledge will further be analysed in the following sec-
tion. Furthermore, with the introduction of the PoS fea-
ture, the precision, the recall and the F-score all are
improved, which indicates that PoS tags contain a cer-
tain amount of effective information for identifying rela-
tions. Finally, post processing applied appropriately in

F F-Dim
70
639
68 ——
67
66 [—
65
100 200 200 500 900 Dim
Fig. 4 Performance evaluation for the dimension of the knowledge
embedding on the test set of the CDR corpus
A\
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Table 4 Performance changes with different input
representations and post processing on the test set of the CDR
corpus

Feature P (%) R(%) F(%)
(1): word 520 64.9 577
(2): (1)+CTD 59.5 74.8 66.3
(3): (2) + POS 61.5 787 69.0
(4): (3)+PP 644 76.7 70.0

the proposed system improves the precision and F-score
to some extent.

Besides, Table 5 lists the performance changes with
different components of the document level sub-network
(see the right section of Fig. 1) on the test set of the
CDR corpus when knowledge isn’t incorporated into the
proposed model.

Effects of knowledge with attention mechanism
(1) The final representation of knowledge

Knowledge obviously contributes to the performance
improvement in many NLP tasks. As mentioned above,
there are four types of relations in CTD. In the proposed
model, knowledge associates with the semantic meaning
of an article together to perform the CID classification.
Therefore, it is crucial to make the final representation
of knowledge play its role more effectively. Table 6 lists
different final representations of knowledge and related
performances on the test set of the CDR corpus. In this
table, the prefix string “ATT_KB_” denotes a model
employing the proposed attention mechanism.

On the whole, except for “ATT_KB_Max”, models
exploiting knowledge with attention mechanism obtain
the better recall and F-score than the corresponding
models without attention mechanism. Compared with
the approaches “Sum” and “Con” without attention
mechanism, “ATT_KB_Sum” and “ATT_KB_Con” make
the F-score increase by 1.2 and 0.6%, respectively.
Among all approaches, “ATT_KB_Sum” achieves the
best F-score. For the approach “ATT_KB_Con”, the ex-
panded dimension of the knowledge representation

Table 5 Performance changes with different components of
the document level sub-network on the test set of the CDR
corpus when knowledge isn't incorporated

Architecture P(%) R(%) F(%)
(1): Istm+Istm 480 62.8 544
(2): Istm+cnn 548 59.2 569
(3): Istm+cnnlstm 56.5 613 588
(4): Istm+cnnlstm+topic 543 65.9 59.5

The post processing step wasn't applied to the experimental results in
this table
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Table 6 Performance changes with the different final
representations of knowledge on the test set of the CDR corpus

Methods P(%) R(%) F(%)
(1): Without KB 543 659 59.5
(2): Con 615 749 67.5
(3): Sum 65.3 704 67.8
(4):ATT_KB_Con 596 795 68.1
(5): ATT_KB_Max 60.6 699 64.9
(6): ATT_KB_Sum 61.5 78.7 69.0

The post processing step wasn't applied to the experimental results in this
table. The highest F-score is highlighted in bold

derived from the concatenating operation is closer to the
dimension of the semantic meaning of the article. Conse-
quently, the redundant noise information brought by the
knowledge presentation without any processing slightly
weakens the learning capacity of the model. On the con-
trary, “ATT_KB_Sum” not only retains the proper dimen-
sion of the knowledge presentation but also highlights and
fuses the most relevant knowledge representations related
to a special article. This reason might also explain why
“ATT_KB_Max” doesn’t achieve a relatively good per-
formance. “ATT_KB_Max” only picks up the relation with
the maximum weight as the final knowledge representa-
tion. On this basis, if an ineffective or wrong knowledge is
learned, the model might partly be misled to make the
wrong judgment for the relation type.

(2) Learned attention values

In addition, we manually examined the weights (atten-
tion values) of four relation types for all instances of the
test set. The CID relations mainly refer to two types of re-
lations between a chemical and a disease in the CTD task:
putative mechanistic relationships and biomarker relation-
ships. Therefore, the relation type “marker/mechanism” in
CTD shows more obvious weight change than the other
relation types because of its strong informativity. This re-
sult indicates that the type “marker/mechanism” makes a
significant contribution to recognizing CID relations.
Among the other three relation types, the relation types
“infered” and “null” have the nearly weights. Accordingly,
they play the minor effect on relation extraction of CID.
The weight change of the type “theapetic” is at the inter-
mediate level among all relation types.

Figure 5 shows the weight of each relation learned by
the proposed model with the approach “ATT_KB_Sum”
for a true CID candidate (D007213 and D007022 from
Doc ID 439781 in the test set) and not a true CID candi-
date (D009538 and D003866 from Doc ID 24114426 in
the test set). The two candidate pairs contain all four
types of relations in CTD. It can be seen from Fig. 5 that
the relation type “marker/mechanism” has the relatively
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Fig. 5 Attention value learned by the model with the approach “"ATT_KB_Sum” for chemical and disease pairs
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higher weight than other relation types for the true CID,
while the weight of the relation type “therapeutic” is
relatively higher for the not true CID. These results
seem to agree with the semantic meanings of the corre-
sponding articles. For the article containing the aboved
true CID, indomethacin induced hypotension in sodium
and volume depleted rats. In contrast, the article con-
taining the above not a true CID candidate only men-
tions the experiments related to nicotine and depression.
Hence, with respect to the recognition of the candidate
relation, it might be inferred that the proposed model can
learn more beneficial representations from domain know-
ledge bases to some extent by introducing attention mech-
anism targeting the document level semantic meaning of
an article.

Furthermore, we assigned different weights (3; and )
to semantic representations of an article and knowledge.
Experimental results indicate that the learned weights
didn’t improve system performances. Therefore, these
two values were assigned as 1 for each candidate pair.

Performance comparisons with other systems
To evaluate our approach, we compared the proposed
model mainly with the relevant models with gold stand-
ard entity annotations on the CDR corpus. Table 7 lists
performances and relevant descriptions of these systems.
In particular, we used each of the ten subsets as a devel-
opment set and finished CID classifications on the ori-
ginal test dataset in turn. The average performances of
ten experimental results were shown in Table 7. The
standard deviation oF of F-scores is 0.67% and 0.49% be-
fore and after post processing, respectively.

These systems are divided into two groups: with KB and
without KB. Obviously, most systems with KB have higher
F-score than those without KB except two systems. This

result further demonstrates that the effective combination
of textual information and domain knowledge would im-
prove performances of many CID systems.

For two types of CID systems including the tradition
al-ML-based systems and the NN-based systems, the
NN-based systems can automatically learn semantic rep-
resentations of text segments and domain knowledge,
while the traditional-ML-based systems commonly rely
on carefully handcrafted features, elaborately designed
kernels and statistical features.

(1) Comparison with NN-based systems

Among NN-based systems, the proposed system
“ATT_KB_sum” achieves the best precision and F-score.
Verga et al. [16] encoded full paper abstracts using an
efficient self-attention encoder and formed pairwise pre-
dictions between all mentions with a bi-affine operation.
Moreover, they improved the system performances by
adding extra PubMed abstracts annotated in the
CTD-pfizer dataset to their training set as Peng et al. [7]
did. The chemical-disease relations from CTD were not
directly applied to their system. Conversely, Li et al.
[17] and our system incorporated knowledge from
CTD with the semantic meaning of texts. However, Li
et al. integrated knowledge only in a simple way, des-
pite that their system achieved better performances.
They used a hidden layer to covert one-hot represen-
tations of all knowledge into dense real value vectors
which will be further concatenated with the semantic
meaning of texts related to the nearest chemical and
disease pair. They didn’t distinguish the influences of
different relation types from CTD on a given
chemical-disease candidate in different articles. On
the contrary, attention mechanism in our system
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Table 7 Performance comparisons with relevant systems using gold standard entity annotations on the test dataset of the CDR

corpus
Methods System Methods Text and concept level P(%) R(%) F(%)
NN with KB ATT_KB_sum LSTM+CNN + CTD Doc_E 60.7 78.7 68.5
LSTM+CNN + CTD + pp 636 76.8 69.6
Lietal [17] CNN Doc_M 57.8 542 559
CNN+CTD 60.0 815 69.1
Verga et al. [16] Transformer Doc_E 55.6 708 62.1
Transformer+ Extra data 64.0 69.2 66.2
Tradional ML with KB Alam et al. [11] SVM +CTD + pp Doc_E +Sen_M 437 804 56.6
Xu et al. [9] SVM + CTD + SIDER+MEDI Doc_E +Sen_M 65.8 68.6 67.2
Pons et al. [8] SVM + Graph DB Doc_E 73.1 676 70.2
Peng et al. [7] SVM + CTD + Rules Doc_E 68.2 66.0 67.1
SVM + CTD + Rules +Extra data 71.1 726 71.8
Lowe et al. [10] rules+Ontology+WIKI+PP Sen_M 593 623 60.8
NN without KB Gu etal. [13] CNN + ME+pp Doc_M+ Sen_M 55.7 68.1 61.3
Zhou et al. [12] LSTM+SVM + pp Sen_M 55.6 684 61.3
Gu et al. [18] ME Doc_M+ Sen_M 62.0 55.1 583

The 4-th column denotes the text level and the concept level when candidate instances are constructed. “Doc” denotes the document level, “Sen” denotes the
sentence level, “_E” denotes entity-based candidate pairs and “_M" denotes mention-based candidate pairs. In addition, all results listed in this table come from
the corresponding improved systems after the CDR challenge. The highest F-scores in each group of methods are highlighted in bold

integrated the semantic representation of an article
into knowledge from CTD. Thus, the importance of
different knowledge with respect to a special article is
discerned. Moreover, their mention level system has
to define heuristic rules to determine the final rela-
tion type of a candidate pair because the CDR corpus
only provides the annotations at the entity level. In
contrast, we not only designed the neural network
architecture at the document level but also considered
the contiguity and temporality among associated sen-
tences as well as the theme of an article.

Table 8 lists recognizing results of two types of CID
relations including the intra- and inter-sentential CIDs
before and after knowledge is introduced into the pro-
posed model. It has been observed from Table 8 that, in
addition to the promotion of the precision and the

Table 8 The recognizing performance of the inter-sentential
and intra-sentential CIDs before and after knowledge is
introduced into the proposed model

Knowledge  CIDs P(%) R%) F) TP FP POS
Without KB inter-sentential 450 429 439 130 159 303

intra-sentential 595 779 674 594 405 763
With KB inter-sentential 528 60.1 562 182 163 303

intra-sentential 688 834 754 636 289 763

The experiments were performed when the new development set is the
subset with the index 0 (similarly hereinafter). TP, FP and POS denotes the
number of predicted true positive instances, predicted false positive instances
and true positive instances of the test dataset, respectively

recall, F-scores of inter- and intra-sentential CID rela-
tions increase by 12.3 and 8.0%, respectively, after know-
ledge is added into the proposed model. Hence, it might
be inferred that the introduction of knowledge will help
to further improve overall performances of recognizing
complicated inter-sentential CID relations.

(2) Comparison with tradition ML-based systems

As shown in Table 7, NN-based systems obtain com-
petitive performances compared with traditional-ML-
based systems, most of which performed the recognition
of CID relations by SVM classifier. Similar to Li et al.
[17], these SVM-based systems didn’t distinguish the im-
portance of different relations from CTD on the candi-
date pair of a special article. In addition to directly and
indirectly utilized knowledge features, they explored a
great deal of features (approximately 20 types) including
entity features, various context features and statistic fea-
tures. Therefore, it can be observed from Table 7 that
SVM-based systems generally achieve relatively high pre-
cisions due to elaborate feature selection. On the con-
trary, NN-based systems exploited fewer features besides
the word embedding. For example, our model only used
the PoS embedding, while Li et al. only employed the
position embedding. As a result, NN-based systems gen-
erally obtained relatively high recalls. However, Table 9
indicates that the proposed model has the potential for
growth of the precision and F-score with the increasing
number of training samples.
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Table 9 The recognizing performance on the test dataset of
the CDR corpus when different training sets were applied
without postprocessing

Training set Knowledge P(%) R(%) F(%)
Only original training set Without KB 452 68.1 543
With KB 558 814 66.1
Train +development set Without KB 543 659 595
With KB 615 787 69.0

As for the running time, the proposed system took the
server about 33 seconds to finish relation classification of
CID on the CDR test set when it ran on the server
equipped with 3G CPU, 125G memory and 12GB TITAN
Xp GPU. Undoubtedly, the SVM-based systems run more
quickly than the NN-based systems in the context of the
same hardware configurations. However, with the devel-
opment of hardware technologies such as processor and
memory technologies, the time performance will be no
longer a main problem for the classification task.

On the whole, each of traditional ML-based and
NN-based systems has its advantages and disadvantages.
The traditional ML-based systems not only don’t require
too much training samples but also have the straightfor-
ward characteristic in the usage and the interpretability
of features as well as less computational time, while the
NN-based systems are able to partly automatically learn
the high level representations of texts to reduce manual
interventions if there are the moderate number of train-
ing samples.

Conclusion

In this work, we proposed an effective document level
neural network model integrated domain knowledge for
classifying complicated relationships between chemicals
and diseases from biomedical articles. Depending on the
learned semantic meaning of an article, the proposed
system employed attention mechanism on domain
knowledge to avoid learning representations of texts and
knowledge in isolation to some extent. Experimental
analyses indicate that the introduced knowledge
attention has the ability to distinguish the effect of
different knowledge on a special candidate pair and
improves performances of the proposed system. More-
over, the proposed model constructed at the document
level has more advantages over sentence level or men-
tion level models for the recognition of inter-sentential
CID relations. In spite of only three types of embedding
vectors, experimental results on the CDR corpus show
that the proposed system achieves a good overall
performance compared with other state-of-the-art sys-
tems. Furthermore, the proposed model is flexibly
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scalable by replacing its document level sub-network
with the other high-performance sub-network modules
learning the document level semantic representation of
an article. Essentially, the proposed model is easy to
generalize to the analogous applications integrating
domain knowledge.

Endnotes
'http://ctdbase.org/
*http://ctdbase.org/downloads/;jsessionid=9A
140902CFAF161528E3DB29E4A70DCA#cd
>https://github.com/thunlp/Fast-TransX
“ftp://ftp.ncbi.nlm.nih.gov/pub/lu/PubTator/
*https://code.google.com/p/word2vec/
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