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Introduction
With the advance of the next-generation sequencing (NGS) 
technology, large-scale omics data are accumulating at an 
exponential growth rate. It drives the biomedical study and the 
understanding of the life science to be increasingly data inten-
sive. Scientific discoveries are based more and more on the 
genome-wide scale data and systematic data analysis. How-
ever, genome research is still facing significant challenges, 
including the shifts of the bottleneck from data generation to 
data analysis and data interpretation and aggravation of the 
difficulty of the integrative analysis in dimensions.

The field of epigenetics and epigenomics is attracting 
immense interest with countless studies. Epigenetics is defined 
as the “stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence”.1 Epi-
genetic regulation comprises many different pathways such as 
DNA methylation, histone modifications, histone variants, 
nucleosome positioning, and noncoding RNAs (ncRNAs). 
These factors work on the interface of the environment and 
the genome and play an essential role in fundamental biologi-
cal processes, which touch upon the main central problems of 
biology: How do the epigenetic mechanisms work as a driving 

force in the cell specialization during development2? Which 
molecular mechanisms contribute to phenotypic inheritance 
and evolutionary adaptation3,4? And how epigenetic factors 
influence the complex diseases4–6?

Different categories of epigenetic regulatory factors are 
involved in an interactive network and act coordinately within 
or between chromosomes to shape the genomic architecture, 
regulation, and transcriptional and translational outcomes. 
Epigenomics extends the epigenetics study from locus and 
single factors to global and multiple layers of regulatory cues. 
It is essential studies for the landscapes establishment of epi-
genetic marks under various conditions, which facilitates the 
understanding that the epigenetic profiles are maintained 
and affected via machinery that is regulated by the cross talk 
among these layers and the interplay with binding proteins, 
chromatin accessibility, and 3D conformation.7,8 From the 
genome and interaction network points of view, NGS was 
widely adopted promptly after its development in this field and 
generated comprehensive massive genome-wide datasets in all 
the epigenetic regulation layers.9 Hence, the joint analysis of 
multilayer epigenomic data, together with genomic, transcrip-
tomic, and proteomic data through integration methods, is 

Integrating Epigenomics into the Understanding 
of Biomedical Insight

yixing han1,2 and Ximiao he3,4

1Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA. 
2Present address: Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of 
Health, Bethesda, MD, USA. 3Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 
Bethesda, MD, USA. 4Present address: Department of Medical Genetics,  School of Basic Medicine, Tongji Medical College, Huazhong 
University of Science and Technology, Wuhan, Hubei, China.

AbstrAct: Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation 
sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting 
from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental 
biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, 
their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make 
a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the 
epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, sum-
marize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.

Keywords: epigenetics, computational epigenomics, chromatin, DNA methylation, histone modification, ncRNAs, NGS, integrative analysis

CItatIon: han and he. integrating Epigenomics into the Understanding of Biomedical 
insight. Bioinformatics and Biology Insights 2016:10 267–289 doi: 10.4137/BBi.s38427.

tYPE: review

RECEIvEd: June 17, 2016. RESUBmIttEd: november 01, 2016. aCCEPtEd foR 
PUBlICatIon: november 06, 2016.

aCadEmIC EdItoR: thomas dandekar, associate Editor

PEER REvIEw: four peer reviewers contributed to the peer review report. reviewers’ 
reports totaled 573 words, excluding any confidential comments to the academic editor.

fUndIng: the intramural research Program of the national institutes of health, 
national cancer institute, center for cancer research supported this work. the authors 
confirm that the funder had no influence over the study design, content of the article, or 
selection of this journal.

ComPEtIng IntEREStS: Authors disclose no potential conflicts of interest.

CoRRESPondEnCE: yi-xing.han@nih.gov

CoPYRIght: © the authors, publisher and licensee libertas academica limited. this is 
an open-access article distributed under the terms of the creative commons cc-By-nc 
3.0 license.

 Paper subject to independent expert blind peer review. all editorial decisions made 
by independent academic editor. Upon submission manuscript was subject to anti-
plagiarism scanning. Prior to publication all authors have given signed confirmation of 
agreement to article publication and compliance with all applicable ethical and legal 
requirements, including the accuracy of author and contributor information, disclosure of 
competing interests and funding sources, compliance with ethical requirements relating 
to human and animal study participants, and compliance with any copyright requirements 
of third parties. this journal is a member of the committee on Publication Ethics (coPE). 
Provenance: the authors were invited to submit this paper.

 Published by libertas academica. learn more about this journal.

http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://www.la-press.com
http://dx.doi.org/10.4137/BBI.S38427
mailto:yi-xing.han@nih.gov
http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Han and He

268 Bioinformatics and Biology insights 2016:10

critical to comprehend how epigenetic information contribut es 
controlling complex regulatory processes.

Here, we review pioneering epigenomic studies and 
computational analyses that have contributed to biomedical 
research. In addition, we summarize the data, tools, and 
resources and outline future challenges in computational epi-
genetics that is super valued in addressing the full picture of 
the biological system.

epigenetic Mechanisms
In eukaryotic cells, genomic DNA is compacted more than 
10,000-fold in the nucleus by wrapping around highly con-
served proteins termed as histones. This highly assembled 
DNA–protein structure is called nucleosome that forms the 
building blocks of chromatin. In general, the tighter the 
DNA is wrapped up, the more likely the gene is repressively 
expressed, while more accessible chromatin (less condense 
chromatin structure) indicates that the transcription machin-
ery will be easy to bind and start up the gene transcription. It 
is the covalent modification that the epigenetic inheritance is 
encoded in, rather than the DNA sequence (which is the genetic 
inheritance encoded in). Epigenetic information can faithfully 
propagate between generations of cells (mitotic inheritance)2 
and between generations of species (meiotic inheritance),10 but 
with substantially lower fidelity than genetic information.11,12

There are four types of epigenetic regulators: DNA 
methylation, histone modification, nonhistone binding pro-
teins, and ncRNAs that act synergistically to control the 
chromatin architecture for cellular processes such as tran-
scription, replication, and DNA repair.13 DNA is subject to 
be methylated at specific regions, so that it can foster a locally 
more compact chromatin structure and influence the acces-
sibility for transcription factors.14 The histones consist of four 
core histones (two copies of H2A, H2B, H3, and H4) that 
are subject to a large number of posttranslational modifica-
tions on the unstructured N-terminal tails, including lysine 
and arginine methylation, lysine acetylation, and serine phos-
phorylation.15 Moreover, nonhistone proteins can affect the 
chromatin structure by interacting with histone and DNA 
in a variety of ways. ATP-dependent chromatin remodeling 
factors can directly mobilize nucleosomes or work together 
with enzymes in DNA methylation pattern determination 
and histone code programming.16–19 Epigenetic modifiers 
can dynamically “write”, “read”, and “erase” modifications 
to program/reprogram the chromatin accessibility to regu-
late gene expression during cell differentiation and disease 
occurrence.20,21 They work jointly with DNA, histone, and 
nonhistone proteins to form a complex interaction network 
in regulating chromatin accessibility for transcription.22 ncR-
NAs are RNAs that are transcribed from DNA but func-
tion as structural, functional, and regulatory molecules rather 
than serving as templates for proteins, which take up to 70% 
of the genome.23–26 Based on the length of the ncRNAs and 
the biogenesis procedure, the epigenetic-related ncRNAs 

can be grouped into long noncoding RNAs (lncRNAs) 
(.200 nt), mid-size RNAs (20–300 nt), which include small 
nucleolar RNAs (snoRNAs),27,28 promoter-associated small 
RNAs (PASRs), TSS-associated RNAs (TSSa-RNAs),29 
and short ncRNAs (,200 nt), which include microRNAs 
(miRNAs; 21–23 nt),30,31 short interfering RNAs (siRNAs; 
20–30 nt),31 Piwi-interacting RNAs (piRNAs; 27–30 nt),32 
and tRNA-derived RNAs (tDRs; 20–35 nt).33,34 The mech-
anism by which a vast void of these ncRNAs function and 
process remains to be discovered; however, well-studied cases 
show that these ncRNAs can interact with DNA, RNA, 
and proteins and generally function as cis-acting silencers 
and also trans-acting mediators for site-specific transcrip-
tional and posttranscriptional processes, nuclear organiza-
tion, RNA processing, and transposon suppression through 
sequence complementary.35–38 The study of mid-size ncRNAs 
and lncRNA is still in its infancy, and their biological func-
tions are predicted to be transcription relevant but remain to 
be well defined. However, several possible mechanisms for 
lncRNA have been proposed based on the few relatively well-
studied examples. It has been uncovered that lncRNAs can 
form complexes with other factors against cis- (eg, enhancer-
like activities) or trans-targets (eg, Hox transcript antisense 
intergenic RNA [HOTAIR] binding with polycomb repres-
sive complex) and function both in nuclear and cytoplasm to 
regulate transcription and translation.39–46 Thus, epigenetic 
mechanisms are fundamental to the regulation of many cellu-
lar processes, including the spatial and temporal expressions of 
gene and ncRNA, cell differentiation, embryogenesis, DNA 
replication, DNA repair, alternative splicing, X- chromosome 
inactivation, genome imprinting, and suppression of trans-
posable element mobility.23,47–53

Beyond the epigenetic modifications occurring at linear 
chromatin domains, higher order chromatin territories are 
emerging with NGS technology as an important regulator of 
genes, which confirmed the findings by microscopy studies 
decades ago that chromosomes are positioned with preferential 
spatial in a nucleus to facilitate necessary long-range domain 
interaction and regulation.54 Interactome studies revealed that 
the boundaries of topological domains are highly conserved 
across species and enriched for essential genes, repeat elements, 
and insulator-binding motifs.55 Histone modification patterns 
can also be identified at topologically associating domains.56 
Active chromatin reorganizations occur in and regulate exten-
sive biological procedures, including cell differentiation and 
tumorigenesis,57,58 and have been found playing more and 
more instrumental roles in the epigenomics network.

epigenomics complex diseases
The faithful propagation of epigenetic information is as 
important as the genetic information, which ensures the pre-
cise regulation of biological process over multiple cell divisions. 
Stochastic and environment-induced epigenetic defects are 
known to play a major role in occurrence of complex diseases, 
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including cancer, aging, mental disorders,59 and autoimmune 
diseases.60 Epigenetic mutations accumulate along with age 
and may result in nonproper activation of normally down-
regulated genes,61,62 affecting genome stability.63 These 
changes underlie general effects of aging and aging-related 
diseases, like cancer and neurodegenerative diseases.59,64 For 
instance, DNA methylation pattern, due to the delicate bal-
ance between stability and plasticity, has been suggested to 
provide a lifetime record of environmental exposures and a 
valuable biomarker for risk stratification and disease diag-
nosis. Monozygotic twins, as they age, exhibit remarkable 
difference in genome methylation patterns that result in dif-
ferential gene expression and, ultimately, life span.65 A global 
demethylation occurred in DNA repeat elements in cancer 
and aging,66,67 while the cancer epigenome is characterized 
by a massive global loss of DNA methylation68 and a certain 
promoter CpG islands hypermethylation69 that frequently 
overlaps with enhancers and other regulatory elements. The 
genome-wide DNA methylation changes mediate genome 
instability, chromosomal translocations, gene mutations, and 
reactivation of endoparasitic sequences. DNA methyltrans-
ferases (DNMTs) have been identified in elevated expression 
during aging and tumorigenesis, which are responsible for the 
hypomethylation feature.70–72 Accumulating evidence sup-
ports the notion that DNA methylation constitutes a promis-
ing and reliable biomarker in clinical practice for earlier and 
more reliable cancer diagnosis73,74 and more precise tumor 
subtype classification.75,76

Global profile changes of histone modifications and 
chromatin-modifying enzymes expression are also critical in 
aging62,77 and cancer initiation and progression.67,78 For exam-
ple, cancer cells suffer a global reduction of activation markers 
H4K16ac79 and H3K4me380 and a gain in the repressive 
markers H4K20me3,79 H3K9me3,81 and H3K27me3,82 while 
H4K16ac,83 H3K4me2,62 H3K4me3,84 and H4K20me385 are 
increased with age. Distribution alteration of the histone mod-
ifications is mainly due to the abnormal expression of histone-
modifying enzymes, such as histone deacetylases (HDACs) 
in the sirtuin family,86 SETD2,87 and EZH2,88 which lead to 
nonadaptive alterations of epigenetic landscape, thereby gene 
expression change. Deregulated epigenetic mediators that lead 
to the complex disorders may serve as potential targets of ther-
apeutics, termed as epigenetic therapy. A great example is the 
sirtuin family of protein deacetylases that can be used as target 
to extend the health span of life. Small molecules that increase 
nicotinamide adenine dinucleotide phosphate (NADP) level 
can activate the sirtuins to mimic the effect of caloric restric-
tion on genome-wide gene expression,89,90 so that it represents 
an epigenetic interventional path to prevent neurodegenera-
tion,91 type II diabetes,92 cancer,93 and aging.94

ncRNAs are instrumental regulatory elements for cellu-
lar homeostasis. Rapidly growing evidences have consistently 
proved that the deregulation in their precise transcription 
and maturation, correct interaction with target mRNAs, and 

mutations in the ncRNA-processing machinery are causal 
factors in neurological, tumor genesis, and cardiovascular 
and developmental diseases. Among the variety of ncRNAs, 
miRNA is the most thoroughly studied one, especially in 
cancer and neurological disorders. miRNA can serve as both 
oncogenes and tumor suppressors, and the expression pro-
files are different between tumor and normal tissues and also 
among different cancer types,95,96 which provide important 
information for cancer prognosis and classification. For exam-
ple, the dysregulation of miR-15, miR-16,97 and miR-20098 
family is associated with genetic alterations that affect their 
primary processing, maturation, and interaction with mRNA 
targets and leads to chronic lymphocytic leukemia (CLL), 
ovarian cancer, and breast cancer. The impairs in miRNA 
processing complexes that cause the abnormal maturation are 
involved in cancer, for example, mutations on TARBP299 and 
DICER1,100 which are key processors in primary miRNA mat-
uration, can cause downregulation of miRNA and then tumor 
genesis. It has been documented that approximately 70% of 
miRNAs are expressed in brain and specifically function in 
neural differentiation, maintenance, and synapsis plasticity, 
and their dysregulation has been found in almost all of the 
neurological disorders. For example, miR-29,101 miR-107,102 
miR-298, and miR-328103 regulate the beta-amyloid precur-
sor protein-cleaving enzyme I and can accelerate Alzheim-
er’s disease progression. Mutations on miRNA-processing 
machinery factors and RNA-binding proteins (RBPs) such 
as fragile X mental retardation 1 protein (FMRP) in RISC 
complex can cause fragile X syndrome (FXS),104 lucine-rich 
repeat serine/threonine-protein kinase 2 (LRRK2) is a cause 
of Parkinson’s disease,105 and RBP Musashi1 is associated 
with many cancers, including breast, colon, glioblastoma, and 
medulloblastoma, as well as neurodegenerative diseases.106 
Numerous evidences are rapidly increasing about the lncRNA 
dysregulation in diseases, such as HOTAIR107 and lincRNA-
p21108 in cancer and H19 in Silver–Russell syndrome and 
Beckwith–Wiedemann syndrome.109

Further understandings of the global patterns of 
these epigenetic modifications and their corresponding 
changes in complex diseases have enabled the diagnosis 
improvement, therapy target discovery, and better treatment 
strategy design.

epigenomics data Generation
Different approaches have been developed to capture the 
multiple levels of epigenetic signal for finally disentangling 
the epigenetic regulation network. Actually, most of these 
approaches follow a three-phase strategy. First, epigenetic 
information is converted into genetic information through 
biochemical methods. Next, standard DNA array technol-
ogy or high-throughput sequencing is applied. Finally, com-
putational and statistical analyses are then used to extract 
the sequence and infer the outcomes for biological insight 
interpretation.

http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39


Han and He

270 Bioinformatics and Biology insights 2016:10

With the combination of experiment and high-throughput 
sequencing technology, we have been able to acquire the data 
at large genomic regions and even genome-wide scale. Various 
experimental methods have been developed to identify DNA 
methylation patterns. Pretreatments for these methods use 
endonuclease digestion (such as CHARM110 and MCA111), 
affinity enrichment (such as MeDIP112 and MIRA113), and 
bisulfite conversion.114 With the advances in NGS technolo-
gies, bisulfite conversion of unmethylated Cs to Ts followed 
by high-throughput sequencing (BS-seq) is a golden standard 
method to study the methylation status of every cytosine in the 
genome and produce the detailed DNA methylation maps.115 
Among them, the popular strategies include Whole-Genome 
Bisulfite Sequencing (WGBS)116 and Reduced Representation 
Bisulfite Sequencing (RRBS).117 These popular new methods 
produce huge volume of DNA methylation datasets (from 
hundred gigabytes to terabytes), which pose enormous chal-
lenges in terms of computational approaches to analyze and 
interpret these data.114,115

The histone modification signals and chromatin-binding 
factors can be captured by chromatin immunoprecipitation 
(ChIP)-based techniques, such as ChIP-seq118,119 and ChIP-
chip,120 in which specific antibodies were used to enrich the 
DNA fragments at modification sites. The ultra high through-
put flow approaches are becoming more and more popular due 
to its high coverage, high resolution, and low cost.118,119,121,122 
At specific region of the genome, chromatin has lost its con-
densed structure and exposed the DNA and makes it accessible 
for DNA degradation enzymes such as DNase I and transcrip-
tional machinery. DNase-seq123 utilizes the dynamic DNase I 
hypersensitive sites (DHSs) and combines the NGS to under-
stand the chromatin package under various circumstances.

Recently, chromosome conformation capture (3C)-based 
techniques have been used increasingly to facilitate the detec-
tion of genome folding, chromosome spatial conformation, 
and long-range gene–gene interaction.124 Particularly, an 
advanced 3C – Hi-C has been developed as a powerful tool for 
genome-wide intra- and interchromosomal interplay, which 
provides unbiased large-scale information for reconstruc-
tion of the 3D structure of the chromosome.125 Furthermore, 
single-cell Hi-C significantly promoted the discovery of cell-
to-cell variability in chromosome structure under normal cell 
status and disease conditions.126,127

Increasing novel classes of ncRNA are emerging from 
the 90% transcribed genome25 with the application of NGS, 
which offers unprecedented opportunity to obtain higher 
throughput and accuracy and lower experimental complexity. 
The discovery and detection of the ncRNAs are mostly based 
on the size fractionation methods in the isolated RNAs that 
led to the identified classes of ncRNAs as small, mid-size, and 
long. Small RNA-seq is the popularly used approach for small 
ncRNA identification; the library construction has a large 
overlap with the RNA-seq with ribosome RNA elimination, 
cDNA synthesis, 3′-A addition, adaptor ligation, and PCR 

enrichment.128 However, precise size selection of 18–30 nt or 
30–200 nt fragments instead of the RNA fragmentation step 
is critical.129 Due to the poly(A) tail and mRNA-like features, 
lncRNAs are able to be detected in the cDNA cloning, till-
ing array, and polyadenylated transcriptome data. For exam-
ple, cDNA cloning followed by Sanger sequencing was used 
in the first large-scale (.34,000) lncRNAs cataloging from 
the FANTOM project130,131 and in the lncRNA annotation 
from RefSeq and Ensembl projects.132,133 Genome-wide tiling 
array of transcriptome also contribute more efficiently in the 
ncRNA identification,26 and recently, high-throughput RNA-
seq promotes the discovery sensitive dramatically and enables 
the reconstruction of the transcript models with or without a 
reference genome.134,135

The question that how the ncRNAs interact with DNA, 
mRNA, and proteins is in the central place of the ncRNA 
epigenetic regulation and functional annotation studies. 
Experimental approaches that were used for mRNA detec-
tion and quantification such as qPCR, Northern blots,136 
fluorescence in situ hybridization (FISH),137 and RNA inter-
ference (RNAi)138,139 can also be applied to the characteriza-
tion of ncRNAs. RNA-binding protein immunoprecipitation 
(RIP)140 followed by chip141 or NGS sequencing142 and UV 
cross-linking and immunoprecipitation (CLIP)143 enable vari-
ous RNA–RBP interaction studies with lower background 
and higher affinity. The application of CLIP-seq is expand-
ing from mRNA to miRNA,144 lncRNA,145 cirRNA,146 and 
mitochondrial RNA.147 The genome-wide CLIP experiments 
should be designed specifically to accommodate the differ-
ent aims of each study, for example, studies may focus on 
RBP-binding site identification, RBP interactions with other 
factors, and RBP function in different biological processes 
including transcription, splicing, and translation. Further-
more, chromatin isolation by RNA purification (ChIRP)-seq 
can apply to illuminate the interaction of RNA, chromatin, 
and protein.148

We summarized these approaches in Table 1. These rap-
idly advancing technologies create ample opportunities for 
epigenome research; however, at the meantime, they also pose 
substantial challenges in terms of large datasets’ storage and 
processing, statistical analysis, and biological interpretation 
for observed differences.

epigenomics data Analysis
dNA methylations. In vertebrates, the most common 

form of DNA methylation is 5-methylcytosine (5-mC), which 
mainly occurs in the sequence context of CG dinucleotides. 
The non-CG methylation in a CHG or CHH context (where 
H stands for A, C, or T) exists in embryonic stem cells,116 
brain,149,150 and plant.151 In mammalian genomes, CG dinu-
cleotides are rare but tend to occur in clusters called CG 
islands (CGI) that are often located in the proximal promoters 
of genes, particularly housekeeping genes,152–154 but are typi-
cally not methylated. In the early embryo, there is little CG 
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methylation, but CG dinucleotides outside of CGI typically 
become methylated during the blastula stage of development.14 
It is mainly CG-rich regions outside of proximal promoters 
that become demethylated upon cellular differentiation.117,155 
However, genomic analyses have identified low CG promoters 
that are both methylated and transcriptionally active.156–158

Since the principles, computational methods, and chal-
lenges of DNA methylation have been heavily reviewed,114,115,159 
this review aims to put a particular emphasis on the computa-
tional approaches to BS-seq data (WGBS and RRBS), includ-
ing essential steps of mapping BS-seq reads to the reference 
genome, determining DNA methylation level, detecting the 
differentially methylated regions (DMRs) between cases and 
controls, as well as storing, retrieving, and visualizing DNA 
methylation data.

Mapping bs-seq reads. Bisulfite treatment of DNA fol-
lowed by PCR amplification and then sequencing leads to the 

vast majority of unmethylated Cs that are changed to Ts in the 
sequencing reads, without affecting As, Gs, Ts, or methylated Cs.  
To calculate the absolute DNA methylation level for each 
C from BS-seq data, the sequencing reads are required 
to align to the reference genome to determine the position 
where the reads were most likely to be derived. Various align-
ment tools, including the general aligners with BS-seq mod-
ule and the specific BS-seq aligners, have been developed to 
map the BS-seq short reads (Table 2). Due to the specificity 
of the BS-seq reads, some general aligners are developed with 
BS-seq modules (such as GSNAP,160 LAST,161 Novoalign,162 
RMAP,163 and segemehl164). Specific BS-seq aligners were 
also developed to map the BS-seq reads. Among these tools, 
two alternative approaches have been widely used. The three-
letter aligners (such as Bismark,165 BRAT,166 BS-Seeker,167 
and MethylCoder168) simplify the alignment by convert-
ing all Cs into Ts for the BS-seq reads and both strands of 

table 1. main epigenomics data generation methods.

aPPlICatIon mEthodS PRInCIPlE REfS

dna methylation  
pattern detection

methylated dna  
immunoprecipitation  
(mediP)

Purified DNA is immunoprecipitated with an antibody  
against methylated cytosines, giving rise to genomic  
maps of dna methylation

111

Bisulfite sequencing Bisulfite to convert the unmethylated cytosines to uracils 114

reduced representation  
bisulfite sequencing (RRBS)

Combines restriction enzymes and bisulfite sequencing  
in order to enrich for the areas of the genome that have a high 
cpg content

116

histone  
modification patter  
detection,  
chromatin binding  
protein pattern  
detection

chiP chip Specific antibodies used for enrichment of the DNA  
fragments at modification sites followed by array  
hybridazation

119

chiP-seq Specific antibodies used for enrichment of the DNA  
fragments at modification sites followed by high- 
throughput sequencing

117,118

3d structure of  
chromatin

dnase-seq at dnase i hypersensitive sites (dhss), chromatin are  
sensitive to cleavage by the dnase i enzyme. these  
accessible chromatin zones are functionally related to  
transcriptional activity

122

hi-c chromosome  
conformation capturing 
technique

chromosome contacts are captured by formaldehyde  
cross-linking

124,125,127

rna-protein  
and rna-dna  
interaction

riP-chip Specific antibodies used for immunopreciptation of the  
rna fragments at rna-binding sites followed by reverse  
transcription and microarray

141

riP-seq Specific antibodies used for immunopreciptation of the  
rna fragments at rna-binding sites followed by  
reverse transcription and high-throughput sequencing

142

cliP-seq UV cross-linking with immunoprecipitation to analyze  
protein interactions with rna to precisely locate rna- 
protein binding site and RNA modifications. Modified  
versions including Par-cliP (photoactivatable- 
ribonucleoside-enhanced cliP) can improve the  
signal-to-noise ratio and icliP (individual-nucleotide  
resolution CLIP) can achieve a higher efficiency in  
reverse-transcription.

143,321,322

chirP-seq Biotin labeled oligos that are complement to interested  
rna are used to hybridize crosslinked chromatin  
fragments to capture biotin-oligo-rna-dna-protein  
complexes, dna then isolated from the complexes for 
high-throughput sequencing to illustrate the rna-dna  
interaction

148
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the reference genome (only three alphabets of A, G, and T 
remaining in the converted sequences) then using the standard 
aligner. In contrast, the wild-card aligners (such as BSMAP,169 
Pash,170–172 and RRBSMAP173) only convert Cs to the wild-
card letter Y (stands for pyrimidine: C or T), which matches 
both Cs and Ts in the BS-seq reads. The three-letter aligners 
reduce the sequence complexity, resulting in a higher percent-
age of discard reads owing to multiple alignments in the refer-
ence genome, while the wild-card aligner can achieve a higher 
genomic coverage but with some bias toward increased DNA 
methylation level.115 After the alignment, the DNA methyla-
tion level can be determined by comparing the frequency of Cs 
and Ts that align to each C in the reference genome.

detecting dMrs. After BS-seq reads mapping, the next 
step is typically the detection of DMRs that show significantly 
different DNA methylation levels between sample groups, 
such as disease versus normal, or cases versus controls. Based 
on the biological question of interest and different computa-
tional approaches of identification, these DMRs can range in 
size from as small as a single C site (differentially methylated C 
site [DMC]) to as large as an entire gene locus with length of 
megabase pairs. The most common methods to detect DMRs 
involve testing single C to identifying the DMCs by differ-
ent statistical analysis and merging the significant DMCs 
into DMRs using various approaches.115 The basic statistical 
tests for comparing the DNA methylation levels of each C 
with sufficient pooled data between sample groups are t-test, 
Wilcoxon rank-sum test, or linear regression.115,174 Some more 
advanced models have been employed to improve the DMR 
detection, including beta regression and hierarchical testing 
(BiSeq175), weighted generalized linear model (BSmooth176), 
bump hunting with batch effect removal and peak detec-
tion (bumphunting177), tunable kernel smoothing (DMR-
cate178), nonparametric and kernel-based method (M3D179), 
beta-binomial model (methylSig180), beta-binomial hierar-
chical model (MOABS181), hidden Markov model (NHM-
Mfdr182), three-state HMM (MethPipe183), Shannon entropy 
(QDMR184), and a binary segmentation algorithm combined 
with a two-dimensional statistical test (metilene185). Usually, 
the latest software compares with some previous methods 
and claims best performance, such as MOABS, which can 
detect the DMRs with a relative low coverage (~10×)181 and 
metilene can identify DMRs with unrivaled specificity and 
sensitivity.185 However, without a systematic benchmarking 
study, it is difficult to determine which methods will work best 
for the DNA methylation datasets. To address this issue, it is 
necessary to carry out the comprehensive comparison between 
these different DMR callers.

Currently, there are still some limitations for the BS-
seq technology, such as its inability to distinguish between 
5-mC and 5-hmC (5-hydroxymethylcytosine), and single-cell 
DNA methylation profile is yet to be developed. To over-
come these limitations, the technologies such as oxidative 
bisulfite sequencing (oxBS-seq)186 and Tet-assisted bisulfite 

sequencing (TAB-seq)187 to distinguish 5-hmC from 5-mC, 
single-cell bisulfite sequencing using RRBS188 or PBAT 
(post-bisulfite adaptor tagging),189 and technologies enabling 
direct detection of modified bases (5-mC or 5-hmC) within 
individual DNA190–192 have been introduced. With these new 
technologies, more elaborate and powerful bioinformatics 
software as well as web-based tools and resources will be 
developed, which is another great opportunity for computa-
tional epigenomics.

Major bioinformatics challenges in Interpreting 
dNA Methylation differences
There are some major bioinformatics challenges in down-
stream interpretation of DNA methylation differences after 
DMR detecting and DNA methylation data visualizing. First 
of all, as mentioned in the detecting DMR section, it is dif-
ficult to compare the different methods without knowing the 
true methylation status in a certain biological sample. Sec-
ond, it is more complicated when considering the variation 
of biological samples.115 There are four major different levels 
of variations: (1) allele-specific DNA methylation is wide-
spread even in the same cell, and some bioinformatic methods 
have been introduced to identify the DNA methylation dif-
ferences between alleles193,194; (2) age-related and interindi-
vidual differences in DNA methylation is common and may 
be influenced by genetic differences195–198; (3) cell-specific 
methylation is observed in different cell types in the same tis-
sue or organ199,200; and (4) the most complicated case is cancer 
sample, which is a mixture of tumor and normal cells with 
increased methylation variations.201 Several bioinformatic 
tools have been developed to estimate the tumor purity.202,203 
Third, the most challenging computational analysis is corre-
lating the DNA methylation differences with diseases. The 
challenges include the following: (1) the correlation of DNA 
methylation in promoter and gene expression is modest200,201; 
(2) the methylation changes can occur not only in promoter 
regions but also in other genic and intergenic regions204; and 
(3) the correlation does not necessarily mean causation. How-
ever, epigenome-wide association study (EWAS) has been 
introduced to identify the loci with DNA methylation varia-
tion, which is associated with common diseases.205 Abnormal 
DNA methylation status (either in a CpG-rich region or a sin-
gle CpG site) has been heavily studied as potential biomark-
ers for different cancer types,206 such as colon cancer,207–209 
prostate cancer,210–212 and lung cancer.213,214

Histone Modifications and dNA-binding Proteins
The modifications on the unstructured histone tails con-
trol the accessibility of the chromatin for the transcription 
machinery as actively transcribed euchromatin or transcrip-
tionally inactive heterochromatin. Euchromatin is character-
ized by high levels of acetylation and trimethylated H3K4, 
H3K36, and H3K79, while heterochromatin is characterized 
by low levels of acetylation and high levels of methylation on 
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H3K9, H3K27, and H4K20.215 DNA-binding proteins bind 
preferentially to certain DNA sequences (termed as motif) and 
work together with histone marks to carry out cellular func-
tions. Evidences are accumulating that the gene expression 
is predictable by the key factors binding, the histone modifi-
cation levels, and the cross talks among the different modi-
fications that occurred on the histone simultaneously,216,217 
for example, the active mark H3K4me3 and repressive mark 
H3K27me3 occupied “bivalent domain”, which is pivotal for 
the embryonic stem cells (ESCs) pluripotent and differentia-
tion states determination.218

ChIP followed by microarray or sequencing has become the 
widely used technique for identifying the histone modification 
and protein-binding locations and patterns genome widely.219,220 
Moreover, there are various adaptations of the standard ChIP 
protocol to overcome the limitations for a certain specific appli-
cation. For instance, in order to use limited cells instead of the 
conventional 10 million cells for one ChIP reaction, Nano-
ChIP-seq for H3K4me3 in 10,000 cells221 and single-tube linear 
DNA amplification (LinDA) for Erα in 5,000 cells222 have 
been successfully applied. ChIP-exo using the lambda phage 
exonuclease feature is able to remarkably enhance the binding 
precision to single base pair and significantly decrease the signal-
to-noise ratio.223 Sequential ChIP assays (ChIP-reChIP)224 and 
ChIP followed bisulfite sequencing (BSChIP-seq)225,226 assays 
have been developed to identify the multiple binding events and 
determine whether these events are simultaneously present or 
occur on different chromosomes in the same cell or different 
cells. Numerous tools have been developed for ChIP-seq data 
analysis, and here, we review the computational processing pipe-
lines emphasizing the essential steps of aligning the reads to the 
reference genome and detecting peaks.

short-read alignment. During the ChIP procedure, the 
genomic DNA is sonicated or digested by MNase into a few 
hundred base pairs of DNA fragment, and during the sequenc-
ing procedure, 25–50 bp are sequenced at the two ends. Thus, 
short-read aligners must be fast and precise to locate their 
original position. There are two main strategies to achieve this 
goal: algorithms based on hash tables and algorithms based 
on suffix/prefix tries.227 The classical BLAST,228 ELAND 
(Illumina), SOAP,229 MAQ ,230 RMAP,163 and ZOOM231 
are hash table-based algorithms with different modifications 
on the spaced seed and sensitivity tolerance according to the 
reference genome. The algorithms based on suffix/prefix tries 
convert the inexact matching problem to the exact matching 
problem, which accelerate the computing speed remarkably. 
Of published aligners using this strategy, Bowtie,232 BWA,233 
and SOAP2234 are gaining increasing popularity. The choice 
of alignment method and the parameters selection such as 
mismatch allowance can impact the percentage of the success-
fully aligned reads, thus the next peak calling. More number 
of tools are summarized in Table 2.

differential peak detection. The aligned unique ChIP-
seq reads are usually identified as sets of enriched signals, 

termed peaks, on certain genomic regions. Data from DNA 
input control experiments are used as background levels of 
signal to compute the enrichment that would be expected by 
chance, thus pointing the position of the histone modifica-
tion or protein binding sites. Peak detection requires a series 
of distinct steps before generating the final peak list as fol-
lows: reads shifting, background subtraction, peak identifi-
cation, significance test, and artifacts removal.235 Based on 
the signal characteristics, a variety of peak calling tools have 
been developed, and usually parameters in each step can be 
adjusted so that they dramatically affect the final peak. His-
tone modifications, histone variants, and histone-modifying 
enzymes usually give rise to diffuse signals and form peaks 
from several nucleosomes to large domains encompassing 
multiple genes, SICER236 and BroadPeak237 perform well 
under this circumstance. While for the exact binding loca-
tions of transcription factors and chromatin remodeling fac-
tors, MACS238 and SISSRS239 are of good achievements. 
There are comparison analyses for different peak callers, 
which may provide critical assessment idea when handling 
ChIP-seq data.240,241 Comprehensive peak detection tools are 
listed in Table 2.

ncrNAs
ncrNA discovery and quantification. Transcriptome 

studies have confirmed that the genome sequences are greatly 
transcribed, and the vast amount of genetic information tran-
scribed indicates that there are hidden categories, and the func-
tions and biological significance of ncRNAs remain unclear. 
Rapidly accumulating evidences suggest that ncRNAs act as 
regulatory molecules in an epigenetic manner that associate 
with almost all biological processes,242–245 and the complexity 
of the regulatory mechanisms stays in line with the complexity 
of organisms.246 With the wide use of the NGS, it is becom-
ing more powerful to discover new classes of ncRNA and 
investigate their functions from deep sequencing data. Earlier 
ncRNA endeavors were based on machine learning methods 
prediction and experimental validation, which were based 
on the ncRNA features such as evolutionary sequence con-
servation, RNA secondary structure and distinct expression 
patterns across developmental stages, different tissues, and 
conditions.247 It has been proved that integrated analyzing of 
the RNA sequence, structure, and expression feature enables 
the ncRNA differentiation from protein-coding RNAs and 
regulatory elements and potentially different ncRNA cat-
egories,248,249 so that paving a way to detect novel ncRNAs 
from unannotated genomic regions with systematic searching. 
Recently developed high-throughput ncRNA sequencing data 
analysis tools are emerging as systematic analysis pipelines, 
which are usually compromising three main aspects includ-
ing ncRNA identification and quantification, interactions 
with RBPs and target mRNAs, and function characterization. 
The general workflows are first filtering the adapters and 
aligning the deep sequencing reads or conducting the de novo 
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assembly, next the known ncRNAs quantification and novel 
ncRNAs identification by inferring annotation databases, 
following the functional interaction analysis based on struc-
tural features and database annotations. iMir250 is such an 
integrated pipeline with graphical user interface (GUI) that 
allows ncRNAs’ identification such as miRNA and piRNA 
by miRAnalyzer251 or miRDeep2,252 differential expression 
analysis by DESeq,253 and prediction of target using Target-
Scan254 and miRanda.255 Besides the alignments, quantifi-
cation of known ncRNAs, CAP-miRSeq,256 can detect and 
quantify precursor, mature, and novel miRNAs, analyze dif-
ferential expressions by edgeR,257 detect single-nucleotide 
variants (SNVs) by Genome Analysis Tool Kit (GATK),258 
which represents a unique feature of this kind of pipelines, 
and visualize by IGV genome browser. omiRas259 and UEA 
sRNA workbench260 can take the raw small ncRNA seq data 
and visualize the ncRNAs interaction network through a web 
service leveraging on several miRNA–mRNA databases after 
differential expression and comprehensive analysis.

LncRNA discovery and analysis has also been pro-
moted by deep sequencing technology, while the challenges 
are the sensitivity and specificity of the detection due to the 
low expression level comparing to the protein-coding RNAs 
and limited annotation, so that it is difficult to uncover the 
biological functions. iSeeRNA261 is a support vector machine 
(SVM)-based classifier that utilized lncRNA features of con-
servation, ORFs, and sequences characteristics to precisely 
separate them from coding genes. Self-estimation-based novel 
lincRNA filtering (Sebnif)262 accurately detects linc RNAs 
through filtering the known and unknown, single-exon and 
multi-exon, size between 200 bp and 10 kb and other fea-
tures based on iSeeRNA and annotates the detected linc-
RNAs with weighted gene coexpression network.263 Based 
on the idea that similar expression patterns across different 
conditions may share similar functions and biological path-
ways, LncRNA2Function264 provides an approach to anno-
tate lncRNA by calculating the Pearson correlation coefficient 
(PCC) of lncRNA–mRNA pairs for the 10,000 lncRNAs in 
GENCODE project.265

ncrNA and protein interactions detection. Besides the 
chromatin modifications’ regulation on gene expression, post-
transcriptional mechanisms play a crucial role to tune the RNA 
level and protein level. A principal mechanism under intensive 
study is the RBP binding and action mechanism, for which 
CLIP-seq protocols enable the transcriptome-wide examina-
tion of interaction regions for particular RBPs. Hence, com-
putational data analysis is key to the further understanding of 
transcriptome level regulation mechanisms. CLIP-seq gener-
ates the selected short reads from the RBPs binding regions, 
so that the reads alignment or reads mapping to the genome 
and transcriptome are usually the first step of the data analysis 
pipelines. Many software developed for genomic sequencing 
reads mapping can be directly implemented such as Bowtie, 
RMAP,266 and Novoalign.267 The mapping tools that consider 

the splicing and can detect the exon–exon junctions are also 
commonly used, which includes TopHat268 and STAR.269 It is 
worth to note that at least one nucleotide mismatch should be 
allowed in alignment especially for the PAR-CLIP sequencing 
data since the cross-link step can induce the T to C transi-
tion. After the reads mapping and cluster detection, the fol-
lowing step will be peak calling and binding site detection, 
which greatly depend on the transcript abundance and cluster 
length. The most commonly used strategy for this step is to 
find the precise cluster distribution profiles through enhanc-
ing the signal-to-noise ratio and decreasing the false-positive 
rate. Data analysis methods developed for this purpose include 
PIPE-CLIP,270 PARalyzer,271 Piranha,266 wavClusteR,272 and 
dCLIP.273 The next downstream of the pipeline is the motif 
discovery, higher level structure prediction, and functional 
characterization. Previously developed tools for DNA and pro-
tein motif discoveries can be implemented to the RNA datasets 
and performed well, which include HOMER,274 MEME,275 
cERMIT,276 GLAM2,277 MatrixREDUCE,278 and RNA-
context.279 Although there are tools for the ncRNA second-
ary structure prediction and functional annotation, such as 
GraphProt,280 CapR,281 and LncRNA2Function,264 there 
are still significant challenges in this field including increas-
ing the sensitivity and specificity, decreasing the false-positive 
discovery rate, and expanding the algorithms for global predic-
tion. After a complete understanding of the ncRNA and RBP 
regulatory mechanism is achieved, integrative approaches for a 
network-level interference can be explored.

storing, retrieving, and Visualizing epigenomics 
data
Once the most fundamental analysis of epigenomics data, 
including reads mapping and either DMR or peak calling, have 
been completed, the next main step is to store, retrieve, and 
visualize the epigenomic data across the sample groups. 
A common interest is to inspect or compare the DNA methy-
lation and histone modification levels in a selected genomic 
region, such as gene locus, regulatory regions by a genome 
browser, either a Web-based genome browser (such as UCSC 
Genome Browser,282 Ensembl,283 WashU Human Epig-
enome Browser,284 DaVIE285) or desktop-based local genome 
browser (such as IGV286). To do so, the specialized format files 
such as bigBed or bigWig converted from the BED or WIG 
files are required to be uploaded or imported into a genome 
browser. Among them, UCSC Genome Browser is widely 
used by allowing uploading custom tracks as well as display-
ing the tracks publicly. A general user can store the large 
volumes of epigenetic data in Gene Expression Omnibus287 
(GEO) from National Center for Biotechnology Informa-
tion (NCBI) or DaVIE.285 Additionally, several large-scale 
initiatives host the data in the public hub, as described in 
the next section. Researchers can retrieve the datasets from 
either these public hubs or the specialized databases, such as 
MethyBase,183 MethDB,288 MethyCancer,289 and PubMeth290 
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table 2. software and tools for epigenomic data analysis.

SoftwaRE/tool dESCRIPtIon URl REfS

1. dna methylation   

1.1. mapping BS-seq reads

1.1.1. general aligners with a BS-Seq module

gsnaP A wild-card bisulfite aligner included  
in a general-purpose alignment tool  
(genomic short-read nucleotide  
alignment Program)

http://share.gene.com/gmap 323

last A wild-card bisulfite aligner included  
in a general-purpose alignment  
tool

http://last.cbrc.jp 161

rmaP A Wild-card bisulfite aligner included  
in a general-purpose alignment tool

http://rulai.cshl.edu/rmap/ 6

segemehl A wild-card bisulfite aligner included  
in a general-purpose alignment tool

http://www.bioinf.uni-leipzig.de/software/segemehl 304

1.1.2 Specific BS-Seq aligner that use a three-letter approach

Bismark A widely used three-letter bisulfite  
aligner based on Bowtie/Bowtie2

http://www.bioinformatics.babraham.ac.uk/
projects/bismark

165

Brat A bisulfite-treated reads tool using  
the three-letter alignment

http://compbio.cs.ucr.edu/brat 166

Bs-seeker A three-letter bisulfite aligner based  
on Bowtie

https://github.com/Bsseeker/Bsseeker2 324

methylcoder A three-letter bisulfite aligner based  
on Bowtie/gsnaP

https://github.com/brentp/methylcode 168

1.1.3 The specific BS-Seq aligner by wild-card approch

BsmaP a widely used wild-card aligner for  
bisulfite sequencing reads

http://code.google.com/p/bsmap 325

Pash A wild-card bisulfite aligner using  
gapped k-mer and multi-positional  
hash table

http://brl.bcm.tmc.edu/pash 170–172

1.1.4 other BS-seq aligners

Bisma Mapping and clustering of bisulfite  
sequencing data for individual clones 
from unique and repetitive sequences

http://biochem.jacobs-university.de/BdPc/Bisma/ 326

Brat-BW A fast, accurate and memory-efficient 
Bs aligner using the fm-index  
(Burrows-Wheeler transform)

http://compbio.cs.ucr.edu/brat/ 304

B-solana A aligner for bisulfite-sequencing  
data of aBi solid sequencers

http://code.google.com/p/bsolana 327

rrBsmaP a wild-card aligner for rrBs reads http://rrbsmap.computational-epigenetics.org 328

1.2. detecting differential methylated regions (dmRs)

1.2.1 Software for dmR calling only

Biseq an r package for detect differentially  
methylated regions (dmrs) for Bs  
data

https://www.bioconductor.org/packages/release/
bioc/html/Biseq.html

175

bumphunter Bump hunting to identify differentially  
methylated regions

http://bioconductor.org/packages/release/bioc/html/ 
bumphunter.html

177

dmrcate an r package for detecting  
differentially methylated regions  
(dmrs) based on tunable kernel  
smoothing

www.bioconductor.org/packages/release/bioc/html/
dmrcate.html

178

ima an r package for high-throughput  
analysis of Illumina’s 450K Infinium  
methylation data

http://www.rforge.net/ima 329

m3d an r package for detecting  
differentially methylated regions  
(dmrs) using a non-parametric,  
kernel-based method

https://www.bioconductor.org/packages/release/
bioc/html/m3d.html

330

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

methylsig an r package for detecting  
differentially methylated sites (dmcs) 
or regions (dmrs) using a beta- 
binomial model

https://github.com/sartorlab/methylsig 331

metilene a fast and sensitive tool for  
detecting dmr by a binary  
segmentation algorithm combined 
with a two-dimensional statistical test 

http://www.bioinf.uni-leipzig.de/software/metilene/ 185

moaBs a tool for detecting differentially 
methylated sites (dmcs) or regions 
(dmrs) based on a Beta-Binomial 
hierarchical model with relative low 
cpg coverage (~10X)

https://code.google.com/archive/p/moabs/ 332

nhmmfdr an r package for detecting  
differential dna methylation based on 
non-homogeneeous hidden markov 
model (nhmm) by estimating false 
discovery rates (fdrs)

http://www.ams.sunysb.edu/~pfkuan/nhmmfdr/ 182

Qdmr a tool for detecting dmr based on 
shannon entropy

http://bioinfo.hrbmu.edu.cn/qdmr 333

1.2.2 Pipeline for both BS-seq mapping and dmR calling

Bsmooth Bsmooth is a pipeline for analyzing 
whole genome bisulfite sequencing 
(WgBs) data. it includes tools for 
aligning the data, quality control, and 
identifying differentially methylated 
regions (dmrs).

http://rafalab.jhsph.edu/bsmooth/ 304

methPipe a computational pipeline for analyzing 
bisulfite sequencing data (WGBS and 
rrBs), including Bs mapping  
(Wild-card aligner) and dmr calling

http://smithlabresearch.org/software/methpipe/ 334

reffreedma mapping for rrBs reads and dmr 
calling without a reference genome

https://github.com/jklughammer/reffreedma 335

2. Histone Modifications and DNA-binding Proteins

2.1 Short-read alignment

BWa A fast and efficientlight-weighted 
tool that aligns short sequences to 
a sequence database; based on the 
Burrows–Wheeler transform

http://bio-bwa.sourceforge.net 233

Bowtie Ultrafast, memory-efficient short read 
aligner. Uses a Burrows-Wheeler-
transformed (BWt) index

http://bowtie-bio.sourceforge.net 232

Eland Efficient Large-Scale Alignment 
of nucleotide databases. Whole 
genome alignments to a reference 
genome

http://support.illumina.com/help/
SequencingAnalysisWorkflow/content/Vault/
informatics/sequencing_analysis/casaVa/
swsEQ_mca_referencefiles.htm

illumina

genomemapper genomemapper is a short read  
mapping tool designed for accurate 
read alignments. it quickly aligns  
millions of reads either with ungapped 
or gapped alignments

http://1001genomes.org/software/genomemapper.
html

336

gnUmaP genomic next-generation  
Universal maPper is a program 
designed to accurately map sequence 
data obtained from next-generation 
sequencing machines back to a 
genome of any size. it seeks to align 
reads from nonunique repeats using 
statistics 

http://dna.cs.byu.edu/gnumap/ 323

hicUP a tool for mapping and performing 
quality control on hi-c data

http://www.bioinformatics.babraham.ac.uk/
projects/hicup/

337

gsnaP considers a set of variant allele inputs 
to better align to heterozygous sites

http://research-pub.gene.com/gmap 160

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

maQ mapping and assembly with  
Qualities (renamed from maPass2). 
Particularly designed for illumina with 
preliminary functions to handle aBi 
solid data 

http://maq.sourceforge.net/ 230

soaP soaP (short oligonucleotide  
alignment Program). a program for 
efficient gapped and ungapped  
alignment of short oligonucleotides 
onto reference sequences

http://soap.genomics.org.cn/ 229

soaP2 soaP2 used a Burrows Wheeler 
transformation (BWt) compression 
index to substitute the seed strategy 
for indexing the reference sequence 
in the main memory

http://soap.genomics.org.cn/soapaligner.html 234

Zoom Zoom (Zillions of oligos mapped) 
is designed to map millions of short 
reads, emerged by next-generation 
sequencing technology, back to the 
reference genomes, and carry out 
post-analysis

http://omictools.com/zoom-tool 231

2.2 Peak detection

2.2.1 Peak Caller

BroadPeak a novel algorithm for identifying  
broad peaks in diffuse chiP-seq 
datasets

http://jordan.biology.gatech.edu/page/software/
broadpeak/

237

macs MACS fits data to a dynamic Poisson 
distribution; works with and without 
control data

http://liulab.dfci.harvard.edu/macs 238

Peakseq Peakseq takes into account  
differences in mappability of genomic 
regions; enrichment based on fdr 
calculation

http://info.gersteinlab.org/Peakseq 338

sicEr a clustering approach for  
identification of enriched domains 
from histone modification ChIP-Seq 
data

http://home.gwu.edu/~wpeng/software.htm 236

sissrs a novel algorithm for precise  
identification of binding sites from 
short reads generated from chiP-seq 
experiments 

http://sissrs.rajajothi.com/ 239

ZinBa ZinBa can incorporate multiple 
genomic factors, such as mappability 
and gc content; can work with  
point-source and broad-source peak 
data

http://code.google.com/p/zinba 339

2.2.2 differential Peak Caller

bayseq an r package that uses empirical 
Bayes approach to identify significant 
differences; assumes negative  
binomial distribution of data

http://www.bioconductor.org/packages/release/
bioc/html/bayseq.html

340

chiPdiff a toolkit for the genome-wide  
comparison of histone modification 
sites identified by ChIP-seq,  
differential histone modification sites 
(DHMS) identification, uses binomial 
distribution, Baum-Welch expectation 
maximization (Em) algorithm,  
forward-backward algorithm

http://cmb.gis.a-star.edu.sg/chiPseq/paperchiP-
diff.htm

341

edger an r package that uses negative 
binomial distribution to model  
differences in tag counts; uses  
replicates to better estimate  
significant differences

http://www.bioconductor.org/packages/2.9/bioc/
html/edger.html

257

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

dEseq dEseq uses negative binomial  
distribution, but differs in the  
calculation of the mean and variance 
of the distribution

http://www-huber.embl.de/users/anders/dEseq 253

samseq samseq based on the popular sam 
software; a non-parametric method 
that uses resampling to normalize for 
differences in sequencing depth

http://www.stanford.edu/~junli07/research.
html#sam

342

3. ncRnas

3.1 ncRNAs detection and quantification

mirdeep mirdeep was developed to discover 
active known or novel mirnas from 
deep sequencing data after the 
removal of adapters with a number of 
scripts to preprocess and score the 
mapped data

https://www.mdc-berlin.de/8551903/en/ 248

mirdeep2 mirdeep2 is more sensitively and 
robustly to carry out identifying known 
and novel mirnas by evaluating the 
structure and signature for each pre-
cursor, quantifying known mirnas 
based on the annotation in mirBase 
and predicting secondary structure by 
rnafold tool 

https://www.mdc-berlin.de/8551903/en/ 252

mirdeep* mirdeep* is an integrated standalone 
miRNA identification application with 
a user-friendly graphic interface to 
conduct sequence alignment, pre-
mirna secondary structure calcula-
tion, and graphical display with low 
memory requirement

http://www.australianprostatecentre.org/research/
software/mirdeep-star

249

dario dario is a web service for studying 
short read data from small rna-seq 
experiments. it provides a wide range 
of analysis features, including quality 
control, read normalization, ncrna 
quantification and prediction of puta-
tive ncrna candidates

http://dario.bioinf.uni-leipzig.de/index.py 343

ncPro-seq ncPro-seq is a tool for annotation 
and profiling of ncRNAs from small-
rna sequencing data. it aims to inter-
rogate and perform detailed analysis 
on small rnas derived from anno-
tated non-coding regions in mirBase, 
pirBase, rfam and repeatmasker, 
and regions defined by users. The 
ncPro pipeline also has a module to 
identify regions significantly enriched 
with short reads that cannot be classi-
fied as known ncRNA families

https://sourceforge.net/projects/ncproseq/ 344

coral coral is a machine-learning pack-
age that can predict the precursor 
class of small rnas present in a high-
throughput rna-sequencing dataset 
and produces information about the 
features that are most important for 
discriminating different populations of 
small non-coding rnas

http://wanglab.pcbi.upenn.edu/coral/ 345

rna-codE rna-codE is designed for ncrna 
identification in NGS data that lack 
quality reference genomes. given 
a set of short reads, it classifies the 
reads into different types of ncrna 
families. The classification results can 
be used to quantify the expression 
levels of different types of ncrnas in 
rna-seq data and ncrna

http://www.cse.msu.edu/~chengy/rna_codE/ 346

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

composition profiles in metagenomic 
data, respectively 

caP-mirseq a comprehensive analysis pipeline for 
deep microrna sequencing that inte-
grates read preprocessing, alignment, 
mature/precursor/novel mirna quali-
fication, variant detection in miRNA 
coding region, and flexible differential 
expression between experimental 
conditions

http://bioinformaticstools.mayo.edu/research/cap-
mirseq/

256

imir a modular pipeline for comprehen-
sive analysis of smallrna-seq data, 
comprising specific tools for adapter 
trimming, quality filtering, differential 
expression analysis, biological target 
prediction and other useful options by 
integrating multiple open source mod-
ules and resources in an automated 
workflow

http://www.labmedmolge.unisa.it/inglese/research/
imir

250

UEa srna  
workbench

UEa srna workbench performs com-
plete analysis of single or multiple-
sample small rna datasets to identify 
novel micro rna sequences and pro-
filing small RNA expression patterns 
in genetic data

http://srna-workbench.cmp.uea.ac.uk/ 260

omiras omiras is a web server for annota-
tion, comparison and visualization of 
interaction networks of non-coding 
rnas derived from small rna-
sequencing

http://tools.genxpro.net/omiras/ 259

srnatoolbox srnatoolbox provide several tools 
including srnabench for srna 
expression profiling and prediction 
of novel micrornas, srnade for dif-
ferential expression analysis, mirna-
constarget for prediction of mirnas, 
srnajBrowserdE for visualization 
differential expression as a fuction 
of read length and srnafuncterms 
for determination of over represented 
functional annotations in target  
gene set 

http://bioinfo5.ugr.es/srnatoolbox 347

iseerna iseerna is a support vector machine 
(SVM)-based classifier for the identifi-
cation of lincrnas

http://137.189.133.71/software.html 261

sebnif sebnif is an integrated Bioinformatics
Pipeline for the Identification of Novel 
large intergenic noncoding rnas 
(lincrnas) base on iseerna

http://137.189.133.71/sebnif/ 262

lncrna2function lncrna2function – a comprehensive 
resource for functional investigation of 
human lncrnas based on rna-seq 
data

http://mlg.hit.edu.cn/lncrna2function/ 264

3.2 RIP-seq and ClIP-seq

3.2.1 differential Peak Caller and Binding site detector from ClIP-seq

novoalign an accurate ngs short reads aligner 
for aligning to reference genome

http://www.novocraft.com/products/novoalign/ 267

PiPE-cliP a galaxy framework-based compre-
hensive online pipeline for reliable 
analysis of data generated by three 
types of cliP-seq protocol

http://pipeclip.qbrc.org/ 270

Paralyzer it utilizes this nucleotide ubstation in 
a kernel density estimate classifier 
to generate the high-resolution set of 
Protein-rna interaction sites

https://ohlerlab.mdc-berlin.de/software/
Paralyzer_85/

271

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

Piranha Piranha is a peak finding and  
differential binding detection  
algorithm

http://smithlabresearch.org/software/piranha/ 266

wavcluster an integrated pipeline for the analysis 
of Par-cliP data

https://bioconductor.org/packages/release/bioc/
html/wavcluster.html

272

dcliP dcliP is designed for quantitative 
cliP-seq comparative analysis is able 
to effectively identify differential  
binding regions of rBPs in four  
cliP-seq datasets 

http://qbrc.swmed.edu/software/ 273

3.2.2 motif discovery

graphProt graphProt is a machine learning 
computational framework for learn-
ing sequence- and structure-binding 
preferences of rna-rBPs from high-
throughput experimental data

http://www.bioinf.uni-freiburg.de/software/
graphProt/

280

mEmE Perform motif discovery on dna, 
rna or protein datasets

http://meme-suite.org/ 348

cErmit cERMIT is a computationally efficient 
motif discovery tool based on  
analyzing genome-wide quantitative 
regulatory evidence

https://ohlerlab.mdc-berlin.de/software/
cErmit_82/

276

glam2 (gapped 
local alignment of 
motifs)

glam2 is a motif detection tool for 
discovering motifs allowing indels in a 
fully general manner from dna, rna 
and protein datasets

http://bioinformatics.org.au/glam2 277

matrixrEdUcE a motif discovery tool for  
genome-wide chiP-seq and cliP-seq 
data analysis

http://www.bussemakerlab.org/ 278

rna Bind-n-seq a quantitative assessment of the 
sequence and structural binding 
specificity

349

capr An efficient algorithm that calculates 
the probability that each rna base 
position is located within each sec-
ondary structural context

https://sites.google.com/site/fukunagatsu/software/
capr

281

rnacontext An efficient motif finding method  
ideally suited for using large-scale 
RNA-binding affinity datasets to 
determine the relative binding  
preferences of rBPs for a wide range 
of rna sequences and structures

http://www.cs.toronto.edu/~hilal/rnacontext/ 279

Viennarna  
Package 2.0

a widely used compilation of rna 
secondary structure

http://www.tbi.univie.ac.at/rna/ 279

4. Storing, retrieving and visualizing epigenomics data 

4.1 genome browser for visualizing dna methylation

Ensembl a widely used Web-based genome 
browser with various epigenome data 
sets

http://www.ensembl.org 283

igV a widely used graphical genome 
browser that is run locally on the 
user’s computer

http://www.broadinstitute.org/igv 286

Ucsc genome 
Browser

Widely used Web-based genome 
browser hosting all EncodE data

http://genome.ucsc.edu 282

BdPc Web-based tool for bisulfite  
sequencing data presentation and 
compilation

http://biochem.jacobs-university.de/BdPc 350

daViE the database with an intuitive user 
interface to perform visual  
comparisons across large dna  
methylation data sets

https://github.com/apfejes/epigenetics-software 285

(Continued)
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table 2. (Continued)

SoftwaRE/tool dESCRIPtIon URl REfS

EpiExplorer a web server provides an interactive 
gateway for exploring large-scale 
epigenetic datasets of the human and 
mouse genome

http://epiexplorer.mpi-inf.mpg.de 351

EpigraPh a user-friendly software for advanced 
(epi-) genome analysis and prediction 
by powerful machine learning 
algorithms

http://epigraph.mpi-inf.mpg.de 352

WashU Epi-
genome Browser

Web-based genome browser focusing 
on the human epigenome

http://epigenomegateway.wustl.edu 353

4.2 Specialized-dna methylation databases

methBase a central reference methylome 
database created from public Bs-seq 
datasets

http://smithlabresearch.org/software/methbase/ 334

methdB a database for dna methylation and 
environmental epigenetic effects

http://www.methdb.de 288

methycancer database of cancer dna methylation 
data

http://methycancer.psych.ac.cn 354

Pubmeth database of dna methylation 
literature

http://www.pubmeth.org 290

4.3 Specialized histone modification databases

chromatindB a database of genome-wide 
histone modification patterns for 
Saccharomyces cerevisiae

http://integbio.jp/dbcatalog/en/record/
nbdc00939?jtpl=56

294

cr cistrome a chiP-seq database for chromatin 
regulators and histone modification 
linkages in human and mouse

http://cistrome.org/cr/ 293

histome a relational knowledgebase of human 
histone proteins and histone  
modifying enzymes

http://www.actrec.gov.in/histome/ 292

hhmd The human histone modification 
database

http://202.97.205.78/hhmd/ 291

4.4 Specialized nc Rna and RBPs interaction database

starBase V2.0 starBase is designed for decoding 
ncrna and the rna-protein  
interaction networks and  
predicting functions especially in 
 cancer samples

http://starbase.sysu.edu.cn/ 296,297

cliPZ cliPZ supports the automatic  
functional annotation and visualization 
of CLIP-seq identified binding sites 

http://www.clipz.unibas.ch/ 298

dorina a database of rna interactions in 
post-transcriptional regulation

http://dorina.mdc-berlin.de/ 300

cliPdb an intergrated resource for  
characterizing the regulatory networks 
between rBPs and various rna  
transcript classes

http://lulab.life.tsinghua.edu.cn/clipdb/ 301

note: *the descriptions are adapted from the software/tools website descriptions.

for DNA methylation data and HHMD,291 Histome,292 CR 
Cistrome,293 and ChromatinDB294 for histone modification 
data. Accumulating CLIP-seq data generation and analy-
sis improves the annotation in terms of ncRNA category, 
secondary structure, and RBP binding regions. Besides the 
GEO and ArrayExpress form European Bioinformatics Insti-
tute (EBI),295 there are currently four databases focusing on 
ncRNA and RBPs binding information as follows: starBase 
V2.0,296,297 CLIPZ,298 doRiNA,299,300 and CLIPdb.301 These 

epigenomic data storing and visualizing websites, tools, and 
databases are summarized in Table 2.

Public resources for reference epigenome
Data analysis and algorithm development have been accelera ted 
by several collaborative projects in addition to data gene ration, 
which has leveraged by experimental pipelines built around 
NGS technologies. Multiple comprehensive epigenomic 
projects have been launched with the goal of providing  
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a public resource and delivering a collection of normal 
epigenomes as a reference framework to catalyze basic biology 
and disease-oriented research.

The International Human Epigenome Consortium 
(IHEC)302 (http://ihec-epigenomes.org/) launched with “a 
goal to understand to what extent the epigenome has shaped 
the human population genetically and in response to the envi-
ronment by coordinating the reference maps of human epig-
enomes for key cellular states in health and diseases status”. It 
has been distributed to multiple contributing projects includ-
ing the NIH roadmap, the Encyclopedia of DNA Elements 
(ENCODE), and the BLUEPRINT projects. The NIH Road-
map Epigenomics Mapping Consortium303 (http://www.road-
mapepigenomics.org/) aims to deliver a collection of normal 
epigenomes to provide a framework or reference for compari-
son and integration within a broad array of future studies. The 
Consortium has mapped DNA methylation, histone modifica-
tions, chromatin accessibility, and small RNA transcripts in 
representative tissues and cell lines that are the normal coun-
terparts of tissues and organ systems frequently involved in 
human disease. The ENCODE304 (https://www.encodeproj-
ect.org/) and the modENCODE (http://www.modencode.
org/) projects are dedicated to list all functional elements for 
gene expression regulation in the genome of human and model 
organisms by integrating epigenomic, transcriptomic, genomic, 
and proteomics data. It provides extensive epigenome data for 
cultured cell lines in addition if IHEC focus on primary cell 
types. GENCODE project (https://www.gencodegenes.org)305 
is a scale-up of the ENCODE project for integrated annotation 
of gene features in human and mouse. The endeavor focuses 
on accurate annotation with all evidence-based gene features 
including protein-coding loci with alternatively spliced vari-
ants, noncoding loci, and pseudogenes. The European BLUE-
PRINT project (http://www.blueprint-epigenome.eu/) studies 
a variety of blood cell types and their associated diseases, and 
the German DEEP project (http://www.deutsches-epigenom-
programm.de/) analyzes cell types that are related to metabolic 
and inflammatory diseases with high socioeconomic impact. 
The Human Epigenome Project (HEP) (http://www.epig-
enome.org/) focuses on the genome-wide DNA methylation 
pattern identification, catalog, and interpretation in all human 
genes with deciphering methylation variable positions (MVPs) 
to promise significant advance of human disease understand-
ing and diagnoses. All IHEC data are being distributed via 
its GEO database in the global bioinformatics hubs of the US 
NCBI, and its European Genome–Phenome Archive (EGA) 
database in the EBI. FANTOM project (http://fantom.org/)131 
is the first large-scale catalog for ncRNAs, from which over 
67,000 cDNAs have been sequenced and 3,652 with confident 
experimental evidences.306

Meanwhile, cancer genomic projects including The 
Cancer Genome Atlas (TCGA)307 (http://cancergenome.
nih.gov/) and International Cancer Genome Consortium 
(ICGC)308 (https://icgc.org/) aim to obtain a comprehensive 

and multidimensional description of genomic, transcriptomic, 
and epigenomic changes in different tumor types and help 
understanding what errors cause cells grow uncontrolled, how 
the cancer can be prevented, early diagnosis, and better treat-
ment. Aggregated data are freely accessible from the TCGA 
Data Portal and ICGC Data Portal, but an application is 
required to access raw sequencing data and genotype infor-
mation of individual patients. More comprehensive projects 
initiated in institutional and regional-wide that provide epig-
enomic data resources are listed in Table 3.

Integration Analysis
The experimental and bioinformatics methods for epigenetics 
data analysis have undergone a revolution in the past decade 
along with the advances of NGS technology, especially in the 
throughput and multiple dimension of detection. Over the 
coming years, with more epigenomics data becoming avail-
able through public consortia, researchers can investigate the 
biological process and disease in a comprehensive way by map-
ping the DNA methylation, histone modifications, transcrip-
tion factor binding, nucleosome positioning, and chromosomal 
organization combined with transcriptomic and proteomic 
data.309–311 Simple integration analysis is intersection analysis 
among features extracted from different approaches, such as 
histone modification data from ChIP-seq, DNA methylation 
data from BS-seq, and gene expression data from RNA-seq, 
exome, or whole-genome sequencing,128 which may facili-
tate understanding of developmental event or disease study. 
In addition, combination of different datasets from multiple 
projects and study of the feature of more subjects increasingly 
requires the integrative analysis.

Biological systems are being deeply investigated at an 
unprecedented scale along with the rise of novel omics tech-
nologies and through large-scale consortia projects. How-
ever, the heterogeneity and large volume of these datasets are 
still obstacles of the integrative analysis, which encourage 
researchers to develop novel data integration methodologies.

outlook
The advances of epigenomic study with NGS development 
has profoundly challenged the long-held traditional view of 
the genetic code being the key determinant of gene function 
and its alteration being the major cause of complex diseases. 
Advances in the epigenetic field have led to the realization 
that the packaging of the genome is as important as the 
genome sequence in regulating fundamental cellular processes 
and its alteration being an essential cause of human diseases. 
Comprehensive understandings of the global patterns and 
the interplays of these epigenetic regulators and their corre-
sponding changes upon environmental stimuli have enabled 
the better understanding of biology and better diagnosis and 
treatment strategies for diseases.

Computational analysis in epigenomics holding the great 
power of helping in revealing genome-wide landscape and 
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table 3. large-scale epigenome projects.

PRojECtS and wEBSItES SUmmaRY

ihEc (international human Epigenome consortium)  
(http://ihec-epigenomes.org)

ihEc launched with a goal to understand to what extent the epigenome 
has shaped the human population genetically and in response to the envi-
ronment by coordinating the reference maps of human epigenomes for 
key cellular states in health and diseases status. it has been distributed to 
multiple contributing projects including the nih roadmap, the EncodE 
and the BlUEPrint projects. 

nih roadmap Epigenomics mapping consortium  
(http://www.roadmapepigenomics.org/)

the nih roadmap Epigenomics mapping consortium was launched with 
the goal of producing a public resource of human epigenomic data to 
catalyze basic biology and disease-oriented research. the consortium 
expects to deliver a collection of normal epigenomes that will provide a 
framework or reference for comparison and integration within a broad 
array of future studies. 

EncodE (Encyclopedia of dna Elements)  
(https://www.encodeproject.org/)

the EncodE consortium is an international collaboration of research 
groups funded by the national human genome research institute 
(nhgri). the goal of EncodE is to build a comprehensive parts list of 
functional elements in the human genome, including elements that act at 
the protein and rna levels, and regulatory elements that control cells and 
circumstances in which a gene is active. although epigenome mapping is 
not its main goal, the project includes largescale mapping of dna methy-
lation, histone modifications and other epigenetic information.

BlUEPrint  
(http://www.blueprint-epigenome.eu/)

BlUEPrint is a large-scale research project receiving close to 30 million 
euro funding from the EU. 39 leading European universities, research 
institutes and industry entrepreneurs participate in what is one of the two 
first so-called high impact research initiatives to receive funding from 
the EU.

hEP (human Epigenome Project)  
(http://www.epigenome.org/)

the partially EU-funded hEP analyzed dna methylation in 43 unrelated 
individuals at single basepair resolution. although the analysis was con-
fined to selected regions on three chromosomes, it is the largest high-
resolution, multiindividual epigenome dataset published to date.

german dEEP project  
(http://www.deutsches-epigenom-programm.de/) 

dEEP focuses on the analysis of cells connected to complex diseases 
with high socio-economic impact: metabolic diseases such as steatosis 
and adipositas as well as inflammatory diseases of the joints and the 
intestine. dEEPs goal is to generate high-end data for comprehensive 
biomedical interpretation of healthy and diseased cells. With this dEEP 
will contribute to discover new functional epigenetic links useful for clinical 
diagnosis, therapy and health risk prevention. all data generated will be 
made publically available and will be integrated into a sustainable world-
wide data structure comprised by the ihEc initiative.

hEroic (high-throughput Epigenetic regulatory  
organisation in chromatin) (EU)  
(http://projects.ensembl.org/heroic/)

the hEroic project is a multi-center EU project that applies chiP-on-
chip, chromosome interaction analysis and whole-genome nuclear local-
ization assays to understanding human genome regulation.

ahEad (alliance for human Epigenomics and
disease) task force (international)  
(http://graphy21.blogspot.com)

the goal of the ahEad is to initiate and coordinate a comprehensive 
human epigenome-mapping project. initially, focus is set on developing a 
suitable bioinformatic infrastructure and on performing epigenome map-
ping in a selection of normal tissues, which may provide the reference for 
subsequent mapping in abnormal cells.

icgc (international cancer genome consortium)  
(https://icgc.org/)

the goal of the icgc is to obtain a comprehensive description of 
genomic, transcriptomic and epigenomic changes in 50 different tumor 
types and/or subtypes which are of clinical and societal importance across 
the globe.

tcga (the cancer genome atlas)  
(http://cancergenome.nih.gov)

the cancer genome atlas (tcga), collaboration between the national 
cancer institute (nci) and national human genome research institute 
(nhgri), aims to generate comprehensive, multi-dimensional maps of the 
key genomic changes in major types and subtypes of cancer. 

fantom project  
(http://fantom.gsc.riken.jp/)

fantom is an international research consortium established to assign 
functional annotations to the full-length cdnas that were collected dur-
ing the mouse Encyclopedia Project at riKEn. fantom developed and 
expanded over time to encompass the fields of transcriptome analysis. 
fantom database and the fantom full-length cdna clone bank are 
worldwide available resources that already fueled the iPs development.

gEnEcodE project  
(https://www.gencodegenes.org/)

gEncodE as a sub-project of the EncodE scale-up project are aiming 
to integrated annotation of gene features. currently running phase is con-
tinuously to improve the coverage and accuracy of the human and mouse 
gene set by enhancing and extending the annotation of all evidence-based 
gene features at a high accuracy, including protein-coding loci with alter-
natively splices variants, non-coding loci and pseudogenes.

note: *the descriptions are adapted from indicated website sources.
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interplay with genome will significantly increase in the coming 
years. It will increasingly take both the genome sequence and 
the proteins interacted with the genome into account as regu-
latory networks for the cellular processes. The decreasing cost 
of the NGS technologies will enable quantitative analysis of 
epigenetic variation from single-cell level to human individu-
als in a population level, which will greatly facilitate preci-
sion medicine and analysis of various effects of environmental 
factors on the human genome. Computational epigenomics 
data analysis will also promote the development of theoreti-
cal models and powerful tools, which will in turn facilitate 
further investigations toward the depiction of big picture of 
life science.
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