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Members of the Fc receptor-like (FCRL1–6) gene family encode transmembrane

glycoproteins that are preferentially expressed by B cells and generally repress responses

via cytoplasmic tyrosine-based regulation. Given their distribution and function, there

is a growing appreciation for their roles in lymphoproliferative disorders and as

immunotherapeutic targets. In contrast to FCRL1–5, FCRL6 is distinctly expressed

outside the B lineage by cytotoxic T and NK lymphocytes. Its restricted expression by

these orchestrators of cell-mediated immunity, along with its inhibitory properties and

extracellular interactions with MHCII/HLA-DR, represent a newly appreciated axis with

relevance in tolerance and cancer defense. The significance of FCRL6 in this arena

has been recently demonstrated by its upregulation in HLA-DR+ tumor samples from

melanoma, breast, and lung cancer patients who relapsed following PD-1 blockade.

These findings imply a potential mechanistic role for FCRL6 in adaptive evasion to

immune checkpoint therapy. Here we review these new developments in the FCRL field

and identify new evidence for the prognostic significance of FCRL6 in malignancies that

collectively indicate its potential as a biomarker and therapeutic target.

Keywords: lymphocytes, inhibitory signaling, regulation, tumor immunology, cell-mediated immunity, FCRL family

INTRODUCTION

The immune system maintains a careful balance of activation vs. inhibition signals to coordinate
restraint at homeostasis and promote effector responses when triggered. These cellular mechanisms
establish tissue surveillance and stand ready to mount a vigorous immune defense, but must also
suppress overzealous responses that could potentially harm the host. The growing significance of
inhibitory receptors in immune regulation and human health is underscored by their roles in a
variety of disorders including infectious diseases, autoimmunity, and cancer.

The discovery that malignancies have evolved mechanisms that exploit inhibitory receptors
to circumvent elimination by immune cells is fundamentally impacting our understanding
of tumor immunology and revolutionizing cancer therapy. Antibody (Ab)-mediated targeting of
the PD-1/PD-L1 and CTLA-4/B7 immune checkpoint inhibitor (ICI) axes enables disruption of
receptor-ligand interactions that shield tumors from infiltrating cytotoxic lymphocytes (1, 2). This
selective approach has reinvigorated the field of tumor immunology and ignited extraordinary
potential for new diagnostic, prognostic, and therapeutic strategies that deliver more targeted and
effective patient care. As of 2018, it is estimated that ∼44% of cancer patients are eligible for ICI
therapy (3). However, as treatment expands, many patients who enjoyed durable responses will
relapse as the tumor adapts and becomes resistant to recognition and rejection by tumor infiltrating
lymphocytes (TILs) (4, 5). Unfortunately, the mechanisms responsible for ICI resistance remain
incompletely defined. This issue is becoming a growing barrier for cancer patients who have limited
therapeutic options and require alternative strategies to overcome the tumor’s adaptive resistance.
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Here we review recent developments related to members
of the Fc receptor-like (FCRL1–6) immunoregulatory family
with a specific focus on the FCRL6 molecule in cell-
mediated immunity and its newly appreciated roles in tumor
immunology. Its restricted expression by cytotoxic NK and
T cells, cytoplasmic tyrosine-based inhibitory properties, and
extracellular interactions with MHCII/HLA-DR introduce a new
axis with relevance in tolerance and cancer defense (Figure 1). Its
importance was recently demonstrated in studies that identified
its upregulation in HLA-DR+ tumor samples from melanoma,
breast, and lung cancer patients who had relapsed following PD-
1 blockade (7). These findings imply a potential mechanistic role
for FCRL6 in adaptive evasion to ICI therapy. By investigating
its expression among The Cancer Genome Atlas (TCGA) tumor
samples, we identify new evidence for the prognostic significance
of FCRL6 in melanoma, breast, and lung cancer that collectively
indicate its potential as a biomarker and therapeutic target.

FC RECEPTOR-LIKE MOLECULES (FCRL)
IN B CELL REGULATION

An extended family of FCRL1–6 genes in humans and
mice encode type I transmembrane (TM) glycoproteins with
cytoplasmic immunoreceptor tyrosine-based activation (ITAM)-
like or inhibitory (ITIM) motifs [reviewed in (8, 9)]. FCRL1–5
are preferentially expressed by B lineage cells and modulate B
cell antigen-receptor (BCR)-mediated signaling (10). Notably,
FCRL3 is also detected outside the B lineage on subsets
of T and NK cells (11–13). While FCRL1 is a pan B cell
marker with ITAM-like motifs that promotes BCR activation in
humans and mice [unpublished studies and (14–16)], signaling
studies demonstrate that FCRL2–5 generally exert inhibitory
function. Consistent with their possession of cytoplasmic ITIM
sequences, following BCR cross-linking, FCRL2–5 are tyrosine
phosphorylated (pY) and can repress global pY, Ca2+ flux, and
MAP kinase activation via recruitment of the SHP-1 and/or
SHP-2 phosphatases (17–21). In mice (m), mFCRL5 has similar
inhibitory properties (22). However, the presence of both ITAM
and ITIM in the FCRL2–5 representatives implies more complex
signaling than the classical FCRs that are either activating or
inhibitory (23). Accordingly, mFCRL5 has the ability tomodulate
BCR signaling in a binary fashion. However, its functional
properties among B cell subsets vary according to the differential
recruitment of the Lyn Src-family kinase (SFK) to an ITAM-like
sequence and SHP-1 to an ITIM (21). The capacity for composite
activating and inhibitory signaling is also present in human
FCRL3 and FCRL4. These proteins possess dual regulatory
properties that appear to differ according to the innate (Toll-
like receptor/TLR) or adaptive (BCR) nature of B cell stimulation
(24, 25). Molecular dissection of the FCRL4 cytoplasmic tail has
demonstrated that its function is altered by the recruitment of
at least two different SFKs. FCRL4 wields suppressive activity
in B cells co-expressing FGR, but promotes activation in B cells
co-expressing HCK p59 (26). Thus, as opposed to the classical
FCR for IgG and IgE, these findings highlight that many FCRLs
possess multifaceted regulatory potential.

Beyond their intracellular signaling capability, ligands have
been identified for several FCRLs. The potential for Ig binding
was initially detected for FCRL4 and FCRL5, but was confirmed
in studies by Wilson et al. who found these receptors could
interact with IgA and IgG (27, 28). However, unlike the classical
IgG and IgE FCRs, IgG binding to FCRL5 is glycosylation
dependent and requires both the Fab and Fc portions (29). Recent
work has also identified secretory IgA as a ligand for FCRL3
and this relationship could impact inhibition in T regulatory
cells (30). How these receptor-ligand interactions influence the
systemic and cellular function of the lymphocytes that express
them or contribute to disease pathogenesis remains ripe for
future investigation.

RELEVANCE OF FCRL1-5 IN B CELL
LYMPHOPROLIFERATIVE DISORDERS

The preferential expression of FCRL1–5 by B cells has made these
molecules relevant clinical candidates in lymphoproliferative
disorders such as leukemias and lymphomas. In fact their initial
identification by the Dalla-Favera group as immunoglobulin
superfamily receptor translocation-associated (IRTA) genes,
resulted from the characterization of a t(1;14)(q21;q32)
translocation breakpoint in a multiple myeloma cell line
(28). These early studies also demonstrated dysregulated
FCRL5/IRTA2 transcript expression in follicular lymphoma
and myeloma cell lines with 1q21 abnormalities (31). Variable
upregulation of FCRL1–5 in B cell malignancies was further
revealed through the Lymphochip-based microarray analyses
led by the Staudt group (32), but have now been expanded in
ever-growing numbers of high-throughput RNA-seq studies.
Following the development of monoclonal Abs (mAbs), several
groups validated FCRL surface protein expression by malignant
B cell lines as well as B cell chronic lymphocytic leukemia
(CLL) cells, the most common leukemia in Western countries
(11, 33, 34). An analysis of FCRL1–5 in a cohort of CLL patients
well-characterized for standard prognostic factors, identified
FCRL2 as a marker for a subgroup of CLL patients with a more
indolent disease course as reflected by favorable progression free
survival and overall survival (34, 35). By flow cytometry, FCRL2
was able to segregate CLL samples according to the mutation
status of the IGHV gene expressed by the leukemic clone. Its
upregulation by mutated IGHV CLL samples introduced a novel
surface marker of this favorable disease subtype. This pattern of
FCRL2 expression was in contrast to CD38, ZAP-70, and CD49d,
which are chiefly upregulated in patients with unmutated CLL
who experience a more aggressive disease course (10, 36, 37).
The inhibitory function evident for FCRL2 in healthy B cells
(19) implies that its upregulation by indolent IGHV mutated
CLL might also contribute to biological suppression in this
favorable CLL subtype. Thus, the expression of these regulatory
proteins may not only have prognostic significance, but could
also have physiological impact on the clinical disease course and
pathogenesis of certain lymphoproliferative disorders.

The targetability of FCRLmembers in B cell malignancies is an
area of active investigation and FCRL5 has become a promising
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FIGURE 1 | Interactions of the cytotoxic lymphocyte-expressed FCRL6 immunoreceptor with MHCII-expressing cells. The schematic representation shows the

FCRL6 receptor (yellow box), which is composed of three extracellular Ig-like domains, an uncharged transmembrane region, and a cytoplasmic tail with two

tyrosines, including a consensus ITIM (red rectangle) that recruits the SHP-2 tyrosine phosphatase. FCRL6 is expressed by cytotoxic T and NK cells and has been

found to interact with MHCII/HLA-DR. Other pertinent adaptor-associated activating (ITAM-bearing, green rectangles and DAP-10, blue rectangles) and immune

checkpoint inhibitory (ICI) molecule pairs (CTLA-4/B7, PD-1/PD-L1, LAG3/MHCII, and NKp44/MHCII) highlight the regulatory balance of immune tolerance and tumor

evasion between cytotoxic lymphocytes and APCs or tumor cells. Note NKp44 also has an inhibitory splice isoform (6).

therapeutic candidate. Analysis of blood and tissue samples by
the Pastan laboratory identified elevated levels of soluble and
surface bound FCRL5 in multiple myeloma, CLL, and mantle
cell lymphoma patient samples (33). Studies targeting FCRL5
in myeloma have been conducted by investigators at Genentech
(38–40). Two approaches have been pursued including a mAb
drug conjugate and a T cell-dependent bispecific mAb. Pre-
clinical xenograft models employing multiple myeloma samples
indicated efficacy for a humanized IgG1 isotype FCRL5 mAb
conjugated to monomethyl auristatin E (MMAE) (38). This
microtubule inhibitor becomes active when surface receptors
bound by the mAb-conjugate are internalized in target cells.
A Phase 1 study of this anti-FCRL5-MMAE drug compound
(DFRF4539A) in relapsed and refractory multiple myeloma
patients (n = 39) showed tolerability as a single agent, but
demonstrated limited activity and may not be a successful
strategy for myeloma (39). The authors speculated that the
low response rates in this study could be due to the unknown
threshold for Ab-dependent cytotoxicity activity, shedding of
the FCRL5 target, limited internalization, and a less effective
role of MMAE in cells with a low proliferative index. However,
preclinical studies with a bispecific FCRL5/CD3 mAb has shown
encouraging activity against patient myeloma cells, can deplete B
cells and bone marrow plasma cells in cynomolgus monkeys, and
exhibits enhanced activity when combined with PD-L1 blockade
(40). These studies indicate that immunotherapeutic targeting of
FCRL5 and other FCRL family members expressed by B cells may
have utility in a variety of lymphoproliferative disorders.

HUMAN FCRL6 IS AN
IMMUNOREGULATORY PROTEIN
RESTRICTED TO CYTOTOXIC T AND NK
CELLS

Notably, the first member of the FCRL family identified was
a rat FCRL6 ortholog, termed gp42, that was discovered in a
search for markers of lymphokine activated killer (LAK) cells
(41). Following the discovery of human FCRL1–5, we and others
identified human and mouse FCRL6/Fcrl6 counterparts, both
of which encode type I TM glycoproteins (42–44). However,
the structure and distribution of these FCRL6 molecules among
lymphocytes has marked interspecies differences (43). Recent
studies with receptor-specific mAbs identified the expression of
mFCRL6, which has two Ig like extracellular domains and a short
cytoplasmic tail lacking a consensus ITIM or ITAM, by subsets
of progenitor B cells in the fetal liver and bone marrow (45). An
analysis of pro B cell subsets purified according to the presence or
absence of FCRL6 expression, revealed that FCRL6+ progenitors
have a distinct transcript signature, constrained diversity of
their IGHV repertoires, and hydrophobic and charged CDR-
H3 characteristics akin to innate-like B-1 cells that produce
natural Abs (45). However, the regulatory role ofmFCRL6 among
these pro B cells is not yet defined. Despite syntenic genomic
positions, the disparate structure and expression pattern of this
family member presents some barriers for in vivo translational
understanding of its human relative. In contrast, human FCRL6,
which has three extracellular Ig-like domains, an uncharged TM
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region, and a cytoplasmic tail featuring a consensus ITIM, is
restricted to cytotoxic T and NK cells (44, 46).

The development of receptor-specific mAbs facilitated
examination of its ontogeny and distribution in human tissues.
FCRL6 is present on mature NK and T lymphocytes from
adult spleen and blood, but not by these cells from primary
developmental sites such as the fetal liver, bone marrow, or
thymus (45). Inflammatory tonsillar tissue also lacks significant
numbers of FCRL6+ cells. Within the blood, FCRL6 marks more
terminally differentiated cytotoxic CD16+CD56dim NK cells, a
finding that correlates with cytoplasmic perforin and expression
of the keratin sulfate-related lactosamine carbohydrate epitope,
PEN5 (47). The possibility that FCRL6 expression increases as a
function of ontogeny was also confirmed by comparing CD16+

NK cells isolated from cord and adult blood samples. FCRL6 is
expressed at significantly higher levels among circulating adult
CD16+ cells suggesting that it emerges later in ontogeny than
CD16 and segregates NK cells that are more mature (45). Within
the T cell compartment, FCRL6 is present on innate-like γδ T
cells, but is not biased among Vδ1 or Vδ2 subsets. However,
its expression by γδ T cells similarly correlates with perforin
and is relatively more abundant on CD16hi Vδ2 cells that
have greater cytotoxic propensity (48). Among CD8+ T cells,
FCRL6 is primarily restricted to perforin-expressing effector
(CD45RA+CCR7− or CD28−2B4+) and effector memory
(CD45RA−CCR7− or CD28+2B4+) subpopulations, rather
than central memory or naïve cells. Interestingly, a small
(∼2%), but consistent population of FCRL6+CD4+ T cells that
co-express perforin, CD57, and NKG2D, but lacks CCR7 is
present in the blood of some donors (46). Such rare CD4+ T
cells possess cytolytic function (49). These data indicate that
FCRL6 distinctly marks mature NK and T cell subpopulations
with cytotoxic potential.

FCRL6 RECRUITS SHP-2 TO AN ITIM AND
IS AN MHCII/HLA-DR LIGAND

The presence of two tyrosines in the FCRL6 cytoplasmic tail
suggests that, like other FCRLs, it harbors regulatory function.
One of these tyrosines (Y371) is positioned among amino
acids that conform to a consensus ITIM, but the sequence
surrounding both tyrosines (Y356, Y371) could represent a non-
canonical ITAM. GST pull down assays of Y356F and Y371F
mutants performed with Jurkat lysates uncovered recruitment
of the SHIP1 inositol phosphatase as well as the GRB2 adapter
protein to the Y356 residue and the SHP1/SHP2 tyrosine
phosphatases to the Y371 site (50). Immunoprecipitation of
FCRL6 from pervanadate treated NK or T cells validated its
capacity for pY and interactions with multiple pY proteins
[unpublished data and (46)], including SHP-2 to the Y371
residue (44). These findings imply an inhibitory role for FCRL6
in cytotoxic lymphocytes. However, an important question for
understanding the fundamental biology of FCRL6 is the nature
of its extracellular partner(s).

In flow cytometry-based studies, we were unable to detect
Ig binding to FCRL6 by surface staining (46). To search

for FCRL6 binding partners, we engineered a cell-based GFP
reporter system that expressed a chimeric receptor comprised
of the FCRL6 ectodomain in frame with the cytoplasmic
tail of mouse CD3ζ (51). In co-culture assays with various
cell types, the FCRL6-CD3ζ reporter line was activated by
antigen presenting cells (APCs) including B lymphocytes and
dendritic cells. This work led to identifying MHCII/HLA-
DR as an FCRL6 ligand. Furthermore, interactions between
FCRL6 and HLA-DR appeared to differ according to the
nature of the β chain component of the heterodimer. This
observation suggests that binding affinities between FCRL6 and
MHCII may differ according to HLA-DR haplotype. Within
the context of this finding FCRL6 is not unique. Several
other surface immunoreceptors have also been found to bind
MHCII (see Figure 1). Intriguingly, the LAG-3 immunoreceptor,
a CD4 relative also expressed by T cells, is upregulated
by exhausted cells in chronic immune conditions including
malignancies, and exhibits inhibitory effects through interactions
with MHCII/HLA-class II (52, 53). Notably, LAG3 has become
an attractive immunotherapeutic target and at least three LAG3-
specific ICI mAbs are in development (54). However, recent
work has identified additional non-MHCII ligands for LAG3
(55). Furthermore, a third MHCII receptor expressed by NK
cells was recently identified. The natural cytotoxicity receptor
NKp44, which has different isoforms as well as expression outside
the NK lineage (6), was found to bind subsets of MHCII/HLA-
DP molecules (56). These findings collectively indicate the
existence of multiple immunoreceptors that may serve to
modulate relationships between cytotoxic lymphocytes and
MHCII-expressing cells in different settings [recently reviewed
by (57)].

FCRL6-MHCII INTERACTIONS REPRESS
EFFECTOR FUNCTIONS BY CYTOTOXIC
LYMPHOCYTES

Efforts to investigate the functional properties of FCRL6 were
initially unrevealing. While the genetic regulation of FCRL6 has
not yet been explored in detail, modulation experiments showed
that the receptor is down-regulated from the NK cell surface
when exposed to activating cytokines such as IL-2, IL-12, or IL-
15 and by CD8+ T cells upon anti-CD3 activation [(44) and our
unpublished data]. This analysis suggests that FCRL6 is sensitive
to cellular activation. Beyond its induction, re-directed killing
assays with FCRL6-expressing NK-92 transfectants or freshly
isolated NK or CD8+ T cells were used to target receptor-
specific mAb-coated P815 cells for cytolysis. Work by our group
and the Colonna laboratory found no effect for FCRL6 on
NK cell degranulation (surface LAMP1 detection), cytoplasmic
IFNγ production, or the anterograde cytolysis efficiency of
51Cr-labeled P815 target cells (44). Furthermore, FCRL6 did
not influence activation receptor (CD16)-mediated killing. A
potential regulatory role for FCRL6 on cytokine production was
also underwhelming. Cultured CD56+ NK cells cross-linked with
FCRL6 mAbs demonstrated only slight increases in IFNγ and
TNFα production when IL-2 was present, but no impact was
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found for IL-4, IL-5, or IL-10 (44). Furthermore, no differences
in cytokine production were observed in similar studies with
CD8+ T cells +/– anti-CD3 or IL-2. Thus, FCRL6 does not
appearmarkedly influence cytokine generation by these cytotoxic
lymphocytes in vitro.

In recent studies that identified the upregulation of FCRL6
and LAG3 in the microenvironment of HLA-DR+ solid
tumors [detailed below and (7)], we revisited FCRL6 function
with respect to its MHCII ligand. The regulation of NK
cell cytotoxicity by MHC class I molecules has been well-
characterized, and serves as the basis for the “missing-self ”
hypothesis (58), but evidence also exists that MHC class II
expression can protect target cells from NK cell-mediated killing.
Early work demonstrated that enforced expression of HLA-DR
by K562 cells, a classic human erythroleukemic MHCII–negative
target cell line, could inhibit lysis by freshly isolated human
NK cells (59). Furthermore, transplantation of HLA-DR+ K562
cells into NOD/SCID mice provided protection of tumors from
elimination by adoptively transferred human blood NK cells (60).
We thus generated NK-92 FCRL6 transductants and used them
for cytotoxicity assays by employing HLA-DR+ K562 target cells.
These experiments demonstrated that HLA-DR expression by
K562 cells inhibited the cytotoxicity of FCRL6-expressing NK
cells (7). Additional support for this inhibitory axis was found
for CD8+ T cell responses. By employing an FCRL6 mAb that
disrupts HLA-DR binding to FCRL6-CD3ζ reporter cells and
in cell staining assays (51), we investigated the effect of FCRL6
blockade during pathogen-specific peptide stimulation in vitro.
The addition of FCRL6 or PD-L1 blocking mAbs to healthy
donor mononuclear cells co-cultured in MHC class I–restricted
peptides from CMV, EBV, and influenza virus epitopes, resulted
in enhanced frequencies of IFNγ and TNFα cytokines upon
restimulation (7). These studies indicate that FCRL6 is a
potentially novel ICI target capable of suppressing effector cell
activity following engagement with HLA-class II molecules.

FCRL6+ NK AND T LYMPHOCYTES
EXPAND IN CHRONIC IMMUNE
DISORDERS

The significance of FCRL6 in immune-related disorders was
first shown by Wilson et al. who found significantly expanded
FCRL6+ effector and effector memory CD8+ T cell frequencies
in HIV-1 infected individuals (44). This expression pattern did
not seem to correlate with viral titers or CD4+ counts. An
increase in circulating FCRL6+CD4+ cells, which are typically
rare among healthy individuals, was also detected in HIV+ donor
samples. Initial evidence for a role in tumor immunology came
from studies in CLL. Unlike the other FCRL molecules that
are expressed by CLL B cells (34), FCRL6 expression by the
B cell clone was undetectable. Instead, increased frequencies of
FCRL6+ NK and T lymphocytes were evident in the circulation
of CLL patients (46). While blood CD8+ T cells are generally
expanded in CLL, T cells derived from these patients are also
known to have abnormal function (61, 62). An analysis of CLL
donors from our cohort demonstrated that, in addition to a

global increase in CD8T cells, the frequencies of effector and
effector memory cell populations were elevated compared to
healthy control samples (46). The frequency of FCRL6+ cells
among these CD8+ subsets was also greater in CLL patients, as
were FCRL6-expressing NK cells and cytotoxic CD4+ cells. These
findings suggest that the expansion of FCRL6+ cytotoxic T and
NK cells in different disease states could reflect the influence
of chronic immune activation on the terminal differentiation of
effector cells and contribute to their dysfunction. Furthermore,
the increased numbers of cytotoxic cells marked by FCRL6 could
reflect a blunted capacity for clearance of the inciting disease
process by taking advantage of its potential inhibitory properties.
This could infer a role for cytokines or some other systemic
influence on the expansion of FCRL6+ cells, but the mechanistic
basis for this remains undefined.

FCRL6 EXPRESSION IS UPREGULATED IN
SOLID TUMORS EXPRESSING HLA
CLASS II

Evidence that an inhibitory receptor restricted to cytotoxic
lymphocytes interacts with MHCII/HLA-DR suggests that
FCRL6 might have roles in tolerance through its interactions
with APCs as well as other non-traditional MHCII-expressing
cells including malignancies (see Figure 1). The endogenous
expression of MHCII/HLA-DR molecules by tumor cells has
been observed in many cancers including 40–50% of melanoma
cases (63, 64). Importantly, MHCII expression correlates with
favorable clinical responses to anti-PD-1 ICI in melanoma,
classical Hodgkin’s disease, breast cancer, and ovarian cancer
(64–67). In breast cancer, PD-1 inhibition is more efficacious in
the triple negative subtype (TNBC) (68), but responses vary by
PD-1/PD- L1 expression and TIL frequencies (69). Accordingly,
MHCII is expressed by ∼30% of TNBC cases (70) and portends
increased therapeutic responses and TIL recruitment (71, 72).
Despite the clinical favorability of MHCII+ status, chronic ICI
therapy typically leads to tumor resistance by adaptation and
the delivery of immunosuppressive signals through alternative
checkpoint pathways (4).

To investigate these evasion mechanisms, in collaboration
with Johnson and Balko, we recently performed transcriptome
profiling and tissue staining of patients who developed resistance
to PD-1 immunotherapy in melanoma, non-small cell lung
cancer (NSCLC), and TNBC (18). This study includedmelanoma
and NSCLC samples (n = 58) before and after targeted
PD-1 ICI. MHCII+ tumors, confirmed by dual RNA-in situ
and immunohistochemistry analysis, demonstrated an adaptive
immune signature including the upregulation of genes encoding
CD4, CD8a, and ICI receptors. Chiefly among these was LAG3,
which was exclusively expressed by infiltrating T cells with a
bias toward CD8+ rather than CD4+ cells. A comparison of
melanoma samples derived from patients pre and post anti-PD-
1 treatment revealed increased frequencies of LAG3+ TILs as a
function of developing adaptive resistance in paired specimens.
High levels of LAG3+ TILs were also found in MHCII+

TNBC (n = 112) and were associated with CD4+ infiltrates.
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FIGURE 2 | FCRL6 expression among various cancers. A violin plot demonstrating the expression (log2) of FCRL6 (ENSG00000181036) in non-hematopoietic

cancers (n = 30) from The Cancer Genome Atlas (TCGA) (73). LGG, lower grade glioma (n = 529); UVM, uveal melanoma (n = 80); UCS, uterine carcinosarcoma

(n = 56); ESCA, esophageal carcinoma (n = 173); PCPG, pheochromocytoma and paraganglioma (n = 186); BLCA, bladder carcinoma (n = 427); READ, rectum

adenocarcinoma (n = 177); HNSC, head and neck squamous cell carcinoma (n = 546); GBM, glioblastoma (n = 174); COAD, colon adenocarcinoma (n = 499);

KICH, kidney chromophobe (n = 89); PRAD, prostate adenocarcinoma (n = 548); ACC, adrenocortical carcinoma (n = 79); CESC, cervical squamous carcinoma

(n = 309); THCA, thyroid carcinoma (n = 568); UCEC, uterine corpus endometrial carcinoma (n = 579); OV, ovarian serous cystadenocarcinoma (n = 379); PAAD,

pancreatic adenocarcinoma (n = 182); SARC, sarcoma (n = 265); KIRP, kidney renal papillary cell carcinoma (n = 320); LIHC, liver hepatocellular carcinoma (n = 424);

STAD, stomach adenocarcinoma (n = 407); CHOL, cholangiocarcinoma (n = 45); BRCA, breast carcinoma (n = 1,205); SKCM, skin cutaneous melanoma (n = 472);

LUSC, lung squamous cell carcinoma (n = 551); MESO, mesothelioma (n = 86); LUAD, lung adenocarcinoma (n = 573); TGCT, testicular germ cell tumor (n = 156);

and KIRC, kidney renal clear cell carcinoma (n = 599). The median and quartiles are demarcated (black lines) for samples in the plot of each cancer subtype. RPKM

transcript data were downloaded from the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl), plotted using Prism software, and ordered by median

values of expression. The dotted black line indicates the mean expression value (FCRL6 log2 = 0.78) of the 30 cancer subtypes. Note that THCA and cancers to the

right on the plot exceed the mean.

Given the known interaction between LAG3 and MHCII (52,
53), these findings implied that tumors may exploit MHCII
expression to blunt eradication by TILs. This hypothesis was
further supported by studies in an in vivo MMTV-neu breast
cancer mouse model. Enforced MHCII expression generally
promoted tumor rejection and CD4 recruitment, but in mice
that formed refractory tumors, there was evidence of adaptive
resistance including the upregulation of chemokines that foster
T cell recruitment as well as the Pdcd1 (Pd-1) and Lag3
inhibitory receptor genes. Importantly, anti-tumor immunity
was enhanced by treatment with a combination of anti-PD-1 and
LAG3 ICI.

With clinical and mechanistic evidence that MHCII+ tumors
may actively suppress effector cell cytotoxicity, we turned to the
possibility that FCRL6 may operate similarly in this process. As
detailed above, FCRL6 suppressed NK cell cytotoxicity of HLA-
DR expressing target cells and enhanced effector T cell cytokine
production following Ab-mediated blockade. Like LAG3, FCRL6
wasmore highly expressed byMHCII+ melanomas andNSCLCs.
While a similar trend was evident for FCRL3, it did not reach
significance. A linear relationship was also evident for LAG3
and FCRL6 with the degree of HLA-DR+ tumor cells. Similarly,
both FCRL6 transcript and protein expression was elevated in
melanoma samples from patients who experienced relapse after
progression on anti-PD-1 ICI therapy. Consequently, FCRL6+

infiltrates also correlated with LAG3 and HLA-DR status in
TNBC. Staining of TNBC specimens showed that TIL co-
expression of FCRL6 and LAG3 was strongly correlated with

elevated tumor-specific HLA-DR expression. Finally, in these
breast tumors, an inverse correlation was found for FCRL6 and
LAG3 reactivity with the fraction of granzyme B+ cytotoxic
CD8+ cells present. This disclosed a potential suppressive role
for these ICI receptors in the tumor microenvironment. These
findings collectively implicate a novel inhibitory role for FCRL6
in cell-mediated responses toMHCII+ tumors and its potential as
a new ICI target that influences adaptive resistance mechanisms
to anti-PD-1 therapy.

FCRL6 UPREGULATION BY
MALIGNANCIES HAS PROGNOSTIC
SIGNIFICANCE

Given its discrete expression by cytotoxic T and NK
lymphocytes and newfound role in tumor immunity, we
explored the possibility that detection of FCRL6 in the tumor
microenvironment could have prognostic clinical significance.
To pursue this hypothesis, we analyzed FCRL6 transcript
expression from RNA-sequencing data performed on 30 non-
hematopoietic cancer types (10,683 samples) from TCGA (73)
(Figure 2). FCRL6 expression (log2) was heterogeneous among
these cancer types but, in accord with our recent findings (7),
lung adenocarcinomas (LUAD), cutaneous melanomas (SKCM),
and breast carcinomas (BRCA) were among the tumors with
higher median expression levels. We next assessed survival
in these cancer types according to FCRL6 expression. By
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FIGURE 3 | FCRL6 overexpression predicts favorable overall survival (OS) in cutaneous melanoma and lung adenocarcinoma. Kaplan-Meier plots demonstrating the

relationship between FCRL6 gene expression and patient clinical outcomes by OS. TCGA (reads per kilobase million—RPKM) transcript data for SKCM (n = 458) and

LUAD (n = 497) were downloaded from the publicly available cBioPortal (https://www.cbioportal.org/) database (74) for analysis with the R2: Genomics Analysis and

Visualization Platform (http://r2.amc.nl). Optimal threshold cut-off values for determining high or low FCRL6 expression as a continuous variable were compared using

Cox Regression analysis and the R2 Genomics platform. Comparisons of OS curves and P-values were made using the Log-rank test. Hazard ratio (HR) and 95%

confidence interval (CI) for comparisons between the groups are indicated. Kaplan-Meier plots were generated using Prism software.

FIGURE 4 | FCRL6 overexpression predicts favorable progression free (PFS) and overall survival (OS) in breast carcinoma. Kaplan-Meier plots demonstrating the

relationship between FCRL6 gene expression and patient clinical outcomes by PFS and OS for (A,B) all breast carcinomas (BRCA, n = 1,067) and (C,D) Her2

negative samples (n = 550). TCGA (reads per kilobase million—RPKM) transcript data for BRCA were downloaded from the publically available cBioPortal (https://

www.cbioportal.org/) database (74) for analysis with the R2: Genomics Analysis and Visualization Platform (http://r2.amc.nl). Optimal threshold cut-off values for

determining high or low FCRL6 expression as a continuous variable were compared using Cox Regression analysis and the R2 Genomics platform. Comparisons of

PFS and OS curves and P-values were made using the Log-rank test. HR and 95% CI for comparisons between the groups are indicated. Kaplan-Meier plots were

generated using Prism software.

employing Cox Regression analysis along with the R2: Genomics
Analysis and Visualization Platform (http://r2.amc.nl), we
defined optimized cut-off values to segregate samples according

to FCRL6 expression. Kaplan-Meier plots demonstrated that
higher FCRL6 expression predicted increased overall survival
(OS) in SKMM (n = 458) and LUAD (n = 497) TCGA samples

Frontiers in Immunology | www.frontiersin.org 7 October 2020 | Volume 11 | Article 575175

https://www.cbioportal.org/
http://r2.amc.nl
https://www.cbioportal.org/
https://www.cbioportal.org/
http://r2.amc.nl
http://r2.amc.nl
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Davis FCRL6 Immunoregulation and Cancer

FIGURE 5 | Among breast cancer subtypes FCRL6 transcript expression is

highest in TNBC. A violin plot demonstrating the mean expression (log2) of

FCRL6 (ENSG00000181036) among TCGA BRCA tumor subtypes

downloaded from the publicly available cBioPortal (https://www.cbioportal.

org/) database (74). Intraductal carcinoma (IDC, n = 976), Luminal A (Lum A,

n = 499), Luminal B (Lum B, n = 197), Basal (n = 171), estrogen receptor

positive (ER+, n = 795), ER negative (ER−, n = 237), progesterone receptor

positive (PR+, n = 687), PR negative (PR−, n = 342), Her2 receptor positive

(Her2+, n = 160) Her2 receptor negative (Her2−, n = 557), and triple negative

breast cancer (TNBC, n = 115). The median and quartiles are demarcated

(black lines) for samples in the plot of each subtype. Mean (x) FCRL6

expression ± SEM: TNBC (3.905 ± 0.1455), ER− (3.76 ± 0.1104), Basal

(3.733 ± 0.1296), Her2− (3.543 ± 0.07162), IDC (3.466 ± 0.05328), PR−

(3.449 ± 0.09192), PR+ 3.396 ± 0.06334), Lum A (3.384 ± 0.07137), ER+

(3.316 ± 0.05859), Her2+ (3.263 ± 0.1262), and Lum B (3.022 ± 0.1196).

Note the dotted black line indicates the mean value (FCRL6 log2 = 3.47) of

the 11 breast cancer subtypes.

(Figure 3). In SKMM,median OS was 2.7-fold higher for patients
with elevated FCRL6 expression. Patients with FCRL6-positive
tumors had a median OS of 148.2 months vs. 54.4 months for
samples with low FCRL6 transcripts (HR= 0.47, CI= 0.36–0.61,
P < 0.0001). In LUAD, elevated FCRL6 predicted a 2.1-fold
higher median OS. FCRL6+ tumors exhibited a median OS of
86.0 months vs. 41.7 months for FCRL6− samples (HR = 0.55,
CI = 0.41–0.75, P = 0.0004). Consistent with the known
responsiveness of these tumors to ICI therapy and the TIL
concentrations in the tumor microenvironment (75–82), these
findings indicate that elevated FCRL6 expression confers a
generally favorable prognosis for the OS of patients with
these tumors.

We next investigated FCRL6 expression among BRCA
(n= 1,067) TCGA samples (Figure 4). FCRL6 was able to predict
progression free survival (PFS) among all BRCA samples with
elevated transcript expression again correlating with a favorable
outcome (Figure 4A). For FCRL6-high cases the median PFS
was not reached for this TCGA BRCA cohort, while the median
PFS for FCRL6-low cases was 113.8 months (HR = 0.44,
CI = 0.22–0.86, P = 0.0025). Interestingly, analysis of OS

indicated an advantage for patients with tumors possessing high
FCRL6 transcripts (Figure 4B). Median OS was 129.7 months
for FCRL6-high cases and 107.2 months for patient samples with
FCRL6-low expression (HR= 0.61, CI= 0.43–0.97, P = 0.0025).
This benefit across this entire series of TCGA BRCA tumors
appeared evident for up to 12 years after diagnosis, but for
patients with FCRL6-high samples that lived beyond this time
period (n = 10/19), this factor became detrimental. Notably,
this is a minority of patients from a heterogeneous cohort of
samples and mortality at later time points beyond diagnosis
and treatment could be multifactorial for this group. With
regard to the disease status of these 10 individuals, six were
tumor-free at death, two died with positive tumor status, and
data was not available for two cases. We additionally assessed
TCGA BRCA samples from patients with Her2 negative status
(n= 550) (Figures 4C,D). Elevated FCRL6 expression in patients
with Her2 negative tumors was prognostically advantageous
for both PFS and OS. Median PFS for patients with FCRL6
high Her2 negative tumors was not reached while for low
expressors it was 113.8 months (HR = 0.44, CI = 0.22–0.86,
P = 0.0025). Median OS for FCRL6-high Her2 negative BRCA
tumors was also not reached and for FCRL6-low expression
was 93.8 months (HR = 0.48, CI = 0.25–0.94, P = 0.0081).
Elevated FCRL6 expression also portended significantly higher
PFS and OS in patients with intraductal breast carcinoma
(n = 765) and estrogen positive (n = 782) tumor status (data
not shown). To better understand the distribution of FCRL6+

TILs within the context of BRCA heterogeneity, we analyzed
the mean expression levels of FCRL6 among 11 different BRCA
subtypes. The highest FCRL6 transcripts were found in TNBC,
followed by ER−

> Basal > Her2− tumor samples (Figure 5).
These findings parallel the known elevated frequency of cytotoxic
lymphocytes and NK cell TILs in TNBC that are associated
with an improved prognosis as well as the sensitivity of these
tumors to ICI and neoadjuvant chemotherapy (69, 72, 83–85).
While analysis of FCRL6 protein expression by primary samples
would be helpful for validation, given its restricted expression
by cytotoxic lymphocytes, these findings at the transcript level
support the potential utility of FCRL6 as a prognostic marker and
ICI target.

CONCLUDING REMARKS

In summary, members of the FCRL family are preferentially
expressed by B cells and generally exert inhibitory
tyrosine-based regulation on BCR signaling. Given their
expression by B cells there is a growing appreciation of
their roles in lymphoproliferative disorders and potential as
immunotherapeutic targets. In contrast to FCRL1–5, FCRL6
has a distinct expression pattern outside the B lineage among
cytotoxic T and NK lymphocytes. Furthermore, its elevated
expression in the tumor microenvironment, including NSCLC,
melanoma, and breast cancer, significantly correlates with
improved PFS and OS. However, its ITIM-based repressive
function in these cells becomes operative upon engagement with
its partner MHCII/HLA-DR. This newfound axis has growing
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significance in tumor immunology as endogenous HLA class
II expression by cancer cells has been found to correlate with
increased TIL numbers, responsiveness to anti PD-1 directed
ICI, and a more favorable prognosis. However, some tumors that
develop resistance to ICI appear to upregulate HLA class II to
blunt recognition by cytotoxic cells expressing FCRL6 as well
as other MHCII-binding molecules (e.g., LAG3 and NKp44).
Thus, FCRL6 may serve as a novel ICI target. Future studies
that model its in vivo regulation are required to investigate this
possibility, but are hampered by the interspecies diversity of
this FCRL representative in mice and humans. Additionally, the
distinct MHCII allotypes that FCRL6 interacts with, and how
these relationships impact cytotoxic cells during homeostasis in
tolerance with APCs vs. disease states, are important topics for
future study.
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