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Abstract: The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the
active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone
metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria,
acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological
function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences
in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene
induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1
expression effectively in the duodenum and jejunum, the LCA increased target gene expression
in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression
of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium
levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA
administration was not effective in the VDR target gene induction in the kidney. No effect of LCA
on the ileal Cyp24a1 expression was observed in the VDR-null mice. Thus, the results indicate that
LCA is a selective VDR ligand acting in the lower intestine, particularly the ileum. LCA may be a
signaling molecule, which links intestinal bacteria and host VDR function.

Keywords: vitamin D receptor; vitamin D; lithocholic acid; bile acid; CYP24A1; TRPV6; calcium
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1. Introduction

The vitamin D receptor (VDR) mediates the physiological functions of the active form of vitamin D,
1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], including calcium and bone metabolism, immunity,
and cardiovascular function [1,2]. 1,25(OH)2D3 and its synthetic derivatives also exhibit many
pharmacological effects, including the regulation of cellular proliferation and differentiation and
lipid metabolism, through VDR activation [3]. VDR undergoes a ligand-dependent conformational
change that results in a dynamic interaction with the heterodimer partner retinoid X receptor (RXR)
and an exchange of cofactor complexes [4]. The RXR−VDR heterodimer binds preferentially to a
specific DNA element that consists of a two-hexanucleotide (AGGTCA or a related sequence) direct
repeat motif separated by three nucleotides, known as a direct repeat 3 element, in target genes, such as
cytochrome P450 (CYP) 24A1 (gene symbol, CYP24A1), and the transient receptor potential vanilloid
(TRPV) type 6 (gene symbol, TRPV6). CYP24A1 catabolizes 25-hydroxyvitamin D3 and 1,25(OH)2D3

into biological inactive metabolites through 24-hydroxylatoin, a negative feedback mechanism in
vitamin D signaling [2,4]. VDR is also activated by bile acids, such as lithocholic acid (LCA) and its
metabolite, 3-ketocholanic acid. The VDR activation by these bile acids and 1,25(OH)2D3 induces the
expression of CYP3A enzymes, which metabolize drugs and secondary bile acids in the xenobiotic
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metabolism pathway [5,6]. Human CYP3A4 can inactivate 1,25(OH)2D3 [7,8]. LCA treatment also
induces the expression of CYP24A1 in intestinal cells and osteoblasts [9,10]. The VDR activation by
LCA may induce vitamin D insufficiency or deficiency by enhancing vitamin D catabolism.

Bile acids are the major metabolic products of cholesterol and are essential for the intestinal
digestion and absorption of hydrophobic nutrients, such as triglycerides, fatty acids, cholesterol,
and lipid-soluble vitamins, including vitamin D [11]. The primary bile acids, cholic acid and
chenodeoxycholic acid, are generated from cholesterol by the sequential action of the liver enzymes
and are secreted in the bile as glycine or taurine conjugates [12]. After assisting in the digestion
and absorption of lipid compounds, most of the bile acids are reabsorbed in the ileum and enter
the enterohepatic circulation. Bile acids that escape reabsorption are converted to the secondary bile
acids, deoxycholic acid and LCA, by the intestinal microflora [13]. While deoxycholic acid is avidly
accumulated in the enterohepatic circulation pool, a small amount of LCA is absorbed in the ileum,
sulfated in the liver, excreted into bile, and then lost in feces [14].

VDR can be activated by 1,25(OH)2D3, synthetic vitamin D derivatives, LCA, and its
derivatives [15,16]. The principal physiological effect of vitamin D is to enhance calcium absorption
in the upper intestine [2]. Many synthetic vitamin D derivatives induce hypercalcemia, a potential
adverse effect which must be addressed to allow for a broader clinical application [3,17]. Apart from
the direct effect of vitamin D absorption, a physical link between bile acids and calcium metabolism
has not been demonstrated. The secondary bile acids are produced by the intestinal microflora in the
lower intestine, particularly the ileum and colon, sites that are not a location of vitamin D-induced
calcium absorption. In this study, we investigated whether 1,25(OH)2D3 and LCA induce selective
VDR activation in the intestine of mice.

2. Results

2.1. LCA Induces CYP24A1 mRNA Expression in the Ileum but Not in the Duodemum or Jejunum

CYP24A1 encodes vitamin D 24-hydroxylase and is the VDR target that is induced by VDR activation
in many of the VDR-expressing cells [16]. We treated mice with 1,25(OH)2D3 (15 or 50 nmol/kg) or LCA
(0.3 or 0.8 mmol/kg) by oral gavage twice (14 and 2 h before euthanization), according to our previous
reports, with minor modification [9,16,18], and compared the effect of these compounds on CYP24A1
mRNA expression in the duodenum, jejunum, and ileum. The 1,25(OH)2D3 treatment increased the
Cyp24a1 mRNA levels in the duodenum, jejunum, and ileum (Figure 1A). LCA was not effective in the
duodenum or jejunum, but increased the Cyp24a1 mRNA levels as effectively as 1,25(OH)2D3 in the
ileum. The 1,25(OH)2D3 treatment did not change the Vdr mRNA levels in the duodenum, jejunum,
or ileum (Figure 1B). These findings suggest that LCA is selectively active in the ileum.

2.2. LCA Does Not Induce Intestinal Trpv6 Expression or Increase Plasma Calcium Levels

1,25(OH)2D3 exhibits its principal physiological action of calcium absorption by inducing the
calcium channel Trpv6 in the duodenum [19]. We examined the effect of the oral LCA administration
on the Trpv6 expression, in comparison to 1,25(OH)2D3. While the 1,25(OH)2D3 increased the Trpv6
expression in the duodenum and jejunum, but not the ileum, the LCA did not affect the Trpv6 expression
in the duodenum, jejunum, or ileum (Figure 2). The LCA at 0.8 nmol/kg, which induced ileal Cyp24a1
expression to similar levels as 1,25(OH)2D3 at 50 nmol/kg, did not increase plasma calcium levels.
The 1,25(OH)2D3 at 50 nmol/kg increased the calcium levels, consistent with the Trpv6 expression.
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Figure 1. mRNA expression of cytochrome P450 24A1 (Cyp24a1) (A) and the vitamin D receptor (Vdr) 
(B) in the intestine. Wild-type mice were administered the vehicle control (Cont), 15 or 50 nmol/kg 
1,25(OH)2D3, or 0.3 or 0.8 mmol/kg LCA via gavage. * p < 0.05; *** p < 0.001 versus Cont. †† p < 0.01. 
††† p < 0.001. 

 
Figure 2. mRNA expression of transient receptor potential vanilloid type 6 (Trpv6) in the intestine (A) 
and the plasma calcium levels (B). Wild-type mice were administered the vehicle control (Cont), 15 
or 50 nmol/kg 1,25(OH)2D3, or 0.3 or 0.8 mmol/kg LCA via gavage. * p < 0.05; ** p < 0.01; *** p < 0.001 
versus Cont. †† p < 0.01. 

2.3. Effects of 1,25(OH)2D3 And LCA on Expression of VDR Target Genes in the Kidney 

The kidney is also an important VDR target organ [20], and vitamin D signaling plays a role in 
calcium reabsorption by the renal tubule through the induced expression of Trpv5 and Trpv6 [21]. 

Figure 1. mRNA expression of cytochrome P450 24A1 (Cyp24a1) (A) and the vitamin D receptor (Vdr) (B)
in the intestine. Wild-type mice were administered the vehicle control (Cont), 15 or 50 nmol/kg
1,25(OH)2D3, or 0.3 or 0.8 mmol/kg LCA via gavage. * p < 0.05; *** p < 0.001 versus Cont. †† p < 0.01.
††† p < 0.001.
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2.3. Effects of 1,25(OH)2D3 And LCA on Expression of VDR Target Genes in the Kidney

The kidney is also an important VDR target organ [20], and vitamin D signaling plays a role
in calcium reabsorption by the renal tubule through the induced expression of Trpv5 and Trpv6 [21].
While oral 1,25(OH)2D3 treatment induced expressions of Cyp24a1, Trpv5, Trpv6, and in the kidney as
reported previously [16,22], LCA was not effective in induction of these genes (Figure 3).
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pregnane X receptor [6,23,24]. We examined whether the effect of LCA on the ileal Cyp24a1 induction 
is mediated by VDR activation utilizing VDR knockout mice [25]. The effect of LCA on the ileal 
Cyp24a1 induction was abolished in the Vdr(−/−) mice, similar to the effect of 1,25(OH)2D3, although 
the effect of 1,25(OH)2D3 and LCA on the ileal Cyp24a1 expression did not reach statistical significance 
because of a large variation (Figure 4A). The Vdr mRNA expression was not detected in the Vdr(−/−) 
mice (Figure 4B). The Vdr(−/−) mice were generated by targeting exon 2 of the Vdr gene and showed 
no VDR protein expression [25]. The Cyp24a1 and Vdr mRNA levels in the wild-type mice (Figure 4) 
were different from those shown in Figure 1. This may be due to a difference in the diet conditions. 
The mitogen activated protein kinase p38α is involved in the intestinal VDR signaling [26]. There was 
no difference in the expression of Mapk14, which encodes p38α, among the experimental groups 
(Figure A1). We performed a microarray analysis to compare the RNAs purified from the ileum of 
the LCA-treated Vdr(+/+) and Vdr(−/−) mice, but found no difference in the expression of the Rxra, 
Rxrb, Rxrg, or lipid metabolism genes, including Srebf1 and Srebf2. 

Figure 3. mRNA expression of Cyp24a1, Trpv5, Trpv6, and Vdr mRNA in the kidney. Wild-type mice
were administered the vehicle control (Cont), 15 or 50 nmol/kg 1,25(OH)2D3, or 0.3 or 0.8 mmol/kg
LCA via gavage. *** p < 0.001 versus Cont. † p < 0.05; ††† p < 0.001.

2.4. Ileal Cyp24a1 Induction by LCA Is Mediated by VDR Activation

LCA is also a ligand for other nuclear receptors, particularly the farnesoid X receptor and pregnane
X receptor [6,23,24]. We examined whether the effect of LCA on the ileal Cyp24a1 induction is mediated
by VDR activation utilizing VDR knockout mice [25]. The effect of LCA on the ileal Cyp24a1 induction
was abolished in the Vdr(−/−) mice, similar to the effect of 1,25(OH)2D3, although the effect of
1,25(OH)2D3 and LCA on the ileal Cyp24a1 expression did not reach statistical significance because
of a large variation (Figure 4A). The Vdr mRNA expression was not detected in the Vdr(−/−) mice
(Figure 4B). The Vdr(−/−) mice were generated by targeting exon 2 of the Vdr gene and showed no
VDR protein expression [25]. The Cyp24a1 and Vdr mRNA levels in the wild-type mice (Figure 4)
were different from those shown in Figure 1. This may be due to a difference in the diet conditions.
The mitogen activated protein kinase p38α is involved in the intestinal VDR signaling [26]. There
was no difference in the expression of Mapk14, which encodes p38α, among the experimental groups
(Figure A1). We performed a microarray analysis to compare the RNAs purified from the ileum of the
LCA-treated Vdr(+/+) and Vdr(−/−) mice, but found no difference in the expression of the Rxra, Rxrb,
Rxrg, or lipid metabolism genes, including Srebf1 and Srebf2.
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3. Discussion

The secondary bile acid LCA acts as a VDR ligand, is produced by intestinal microflora,
and is present mainly in the lower intestine [5,13]. These properties of LCA are different from
those of 1,25(OH)2D3, the essential signaling molecule in the maintenance of calcium homeostasis.
The principal site for the 1,25(OH)2D3 action in calcium absorption is the upper intestine, particularly
the duodenum [27]. Consistent with their biological characteristics, our results show that 1,25(OH)2D3

and LCA induce the VDR target gene Cyp24a1 preferentially in the upper intestine and lower intestine,
respectively (Figure 1).

Dietary vitamin D is absorbed via passive diffusion and through cholesterol transporters, such as
Niemann-Pick C1-like 1, scavenger receptor class B type 1, and cluster determinant 36, in the upper
intestine [28,29]. Vitamin D is hydroxylated at the 25-position in the liver and then at the 1α-position,
to yield the 1,25-dihydroxylated active form in the kidney [2]. 1,25(OH)2D3, whether it is generated
endogenously or taken by oral administration, induces the expression of genes involved in calcium
import, such as Trpv6, to enhance calcium absorption in the duodenum. 1,25(OH)2D3 also induces the
Cyp24a1 expression in the upper intestine, and is then inactivated by CYP24A1, leading to decreased
activity in the lower intestine. The vitamin D prodrug 1,25(OH)2D3-25β-glucuronide, which cannot
activate VDR or be absorbed in the upper intestine, is converted to free 1,25(OH)2D3 by intestinal
bacteria in the lower intestine [30]. This compound, similar to LCA, exhibits a Cyp24a1 expression
selectively in the lower intestine. LCA is generated by intestinal bacteria and has little reabsorption
in the enterohepatic circulation [13]. The orally administered LCA did not induce the expression of
the VDR target genes in the kidney (Figure 3), likely because only a small amount of LCA reaches
the circulation. The dietary supplementation of LCA induces little change in the blood bile acid
composition [31]. Unlike vitamin D, LCA is suggested to be biologically inactive in the upper intestine
and to play a role selectively in the lower intestine.

TRPV6 is necessary to mediate the vitamin D-stimulated calcium absorption [19]. In contrast to
1,25(OH)2D3, LCA did not increase the intestinal Trpv6 expression or plasma calcium levels (Figure 2).
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These findings are consistent with an absence of a physiological link connecting the LCA and calcium
metabolism. The LCA administration elevates the serum calcium levels and induces renal Cyp24a1
expression, only in vitamin D-deficient rats [32]. Thus, LCA has only a limited function as a VDR
ligand in the body. LCA effectively induces Cyp24a1 in the ileum (Figure 1). LCA activates other
nuclear receptors, farnesoid X receptor and pregnane X receptor, as well as the G protein-coupled
receptor, TGR5 [6,23,24,33,34]. The induction of Cyp24a1 by LCA was not observed in the VDR-null
mice (Figure 4), indicating that VDR, but not the other receptors, mediates the effect of LCA on
Cyp24a1 induction.

1,25(OH)2D3 is also inactivated by CYP3A4, another VDR target gene product, in human
cells [8]. LCA induces the CYP3A4 promoter activity in a VDR-dependent manner in human intestinal
LS174T cells [35]. The LCA accumulation may induce vitamin D deficiency or insufficiency by
enhancing vitamin D inactivation. The VDR deletion induces a change in the intestinal microbial
flora [36], suggesting an interaction between the intestinal microflora and the intestine through the
VDR activation by LCA. VDR plays a role in innate immunity and protection against antimicrobial
infection [37]. LCA-producing bacteria may induce a favorable environment by regulating host
immunity though VDR activation. The VDR regulates the intestinal proliferation, barrier function,
and immunity, and plays a protective role in inflammatory bowel diseases [38]. We suggest two
possible roles of the LCA−VDR axis. First, LCA induces vitamin D-mimic effects to maintain intestinal
homeostasis, a beneficial effect. Second, the LCA decreases the vitamin D signaling by inducing
vitamin D catabolism, a pathological effect. Vitamin D deficiency and insufficiency cause rickets
and osteomalacia and are also associated with an increased risk of osteoporosis, cancer, autoimmune
disease, infection, cardiovascular disease, obesity, and diabetes [1]. Decreased vitamin D signaling
induces the differentiation of mesenchymal stem cells into adipocytes not osteoblasts [39,40]. The gene
silencing experiments of the VDR and RXR in the intestinal cells and culture experiments using primary
cells from Vdr(−/−) mice will clarify the LCA−VDR axis.

VDR regulates the target gene expression by forming a heterodimer with RXR [4]. Although
the VDR–RXR heterodimer is not permissive to RXR ligand activation, heterodimer allosteric
communication is required for activation of VDR by LCA and not by 1,25(OH)2D3 [41]. LCA induces
the interaction of VDR with RXR and cofactors, such as the steroid receptor coactivator 1, silencing
mediator of retinoic acid and thyroid hormone receptor, and Hairless, in a manner distinct from
1,25(OH)2D3 [42–44]. The vitamin A derivative, 9-cis retinoic acid (9-cis RA), has been identified as
a natural RXR ligand [45], but it can be detected only in the pancreas [46]. Although fatty acids,
such as docosahexaenoic acid and the long chain fatty acid C24:5, have been shown as natural RXR
ligands [47,48], their role in intestinal VDR signaling remains unknown. The permissiveness of RXR
in the VDR–RXR heterodimer has been investigated using 9-cis RA or synthetic ligands, and there
may be a natural ligand that can exhibit a permissive or conditionally permissive RXR activation in
VDR–RXR. The lower intestine-selective cofactor(s) and/or natural RXR ligand(s) may be involved in
LCA-mediated VDR signaling.

We used male mice in this study. Sex-related differences have been reported in the phenotypes of
the VDR knockout mice in lipid metabolism and resistance to obesity, and in skeletal structures [49,50],
in VDR single nucleotide polymorphisms with human immune, as well as intestinal pathology [38],
and also in bile acid metabolism and gut microbiota [51]. Further studies are needed to elucidate the
physiological and pathological roles of LCA as a VDR ligand in the intestine.

4. Materials and Methods

4.1. Animal Experiments

The VDR-null (Vdr(−/−)) mice and wild-type mice (Vdr(+/+)) mice were obtained by breeding
Vdr(+/−) mice on a pure C57BL/6J background [52]. Original Vdr(−/−) mice were kindly provided by
Shigeaki Kato and Chugai Pharmaceutical Co. [25]. These mice were raised on a high-calcium and
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high-lactose diet to normalize the blood calcium levels in the Vdr(−/−) mice, and were maintained
under a controlled temperature (23 ± 1 ◦C) and humidity (45–65%), with free access to water and
chow as reported previously [22]. The experiments were conducted with male mice at 8–12 weeks of
age. The mice were treated with corn oil containing the vehicle control (ethanol; Kanto Chemical Co.,
Tokyo, Japan), 1,25(OH)2D3 (15 or 50 nmol/kg; Wako Pure Chemicals, Osaka, Japan), or LCA (0.3 or
0.8 mmol/kg; Nacalai Tesque, Kyoto, Japan) via oral gavage, twice (14 and 2 h before euthanization),
as reported previously, with minor modifications [9,16,18]. The plasma, kidney, and intestine samples
were collected after euthanization with carbon dioxide. All of the tissue samples were snap-frozen
in liquid nitrogen or on dry ice, and sorted until analysis. The plasma calcium concentrations were
quantified with Calcium C Testwako (Wako Pure Chemicals, Osaka, Japan) [16]. The experimental
protocol adhered to the Guidelines for Animal Experiments of the Nihon University School of Medicine,
and was approved by the Ethics Review Committee for Animal Experimentation of the Nihon
University School of Medicine (AP10M096, 3 September 2010; AP12M029, 5 October 2012).

4.2. Reverse Transcrption and Real-Time Quantitative Polymerase Chain Reaction

The tissues were crushed using a Bessman Tissue Pulverizer (Spectrum Laboratories, Racho
Dominguez, CA, USA), and the total RNA extraction was performed using the acid guanidium
thiocyanate/phenol/chloroform method [52]. The cDNAs were synthesized using the ImProm-II
Reverse Transcription system (Promega, Madison WI, USA), and the real time polymerase chain
reaction was performed on the ABI PIRSM 7000 Sequence Detection System (Life Technologies
Corporation, Carlsbad, CA, USA) using Power SYBR Green PCR Master Mix (Life Technologies
Corporation) and primers reported previously [16,22]. The mRNA copy numbers were calculated with
standard curves that were linear over a range of 0.02–200 ng/mL for the corresponding cloned cDNAs
inserted into pcDNA3.1 plasmids (Life Technologies Corporation), as reported previously [26].

4.3. Statistical Analysis

Data are presented as means ± standard deviation (SD). We performed one-way ANOVA followed
by Tukey’s multiple comparisons to assess significant differences.
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