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Abstract 
 
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses 
(sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting 
randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies 
against conserved/relatively-occluded, rather than variable/immunodominant/exposed, epitopes. 
We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal 
sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, 
observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains 
including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent 
neutralization of SARS-CoV-2 variants including Omicron and protected from SARS-CoV-2 and 
SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from 
SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved 
epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-
nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.  
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Two animal coronaviruses from the sarbecovirus lineage, severe acute respiratory syndrome 
coronavirus (SARS-CoV) and SARS-CoV-2 (hereafter SARS-1 and SARS-2), have caused 
epidemics or pandemics in humans in the past 20 years. SARS-2 triggered the COVID-19 
pandemic that has been ongoing for over two years despite rapid development of effective 
vaccines (1). Unfortunately, new SARS-2 variants of concern (VOCs), including the heavily 
mutated Omicron VOCs (2-7), may prolong the COVID-19 pandemic. In addition, the discovery 
of diverse sarbecoviruses in bats, some of which bind the SARS-1 and SARS-2 entry receptor, 
angiotensin-converting enzyme 2 (ACE2) (8-14), raises the possibility of another coronavirus 
pandemic. Hence there is an urgent need to develop vaccines and therapeutics to protect against 
both SARS-2 VOCs and zoonotic sarbecoviruses.  
 
Currently approved SARS-2 vaccines include the viral spike (S) trimer (1), consistent with S being 
the primary target of neutralizing antibodies (15-24). A coronavirus S trimer mediates entry into a 
host cell after one or more of its receptor-binding domains (RBDs) adopt an “up” position that 
allows interactions with a host cell receptor (Fig. 1A). Many of the most potent neutralizing 
antibodies against SARS-2 block binding ACE2 to the RBD (16-20, 23-29), and RBD targeting 
has been suggested for COVID-19 vaccine development (30). We classified neutralizing anti-RBD 
antibodies into four main classes (class 1, 2, 3, and 4) based on their epitopes and whether they 
recognized “up” and/or “down” RBDs on S trimers (26). Of note, the potent class 1 and class 2 
anti-RBD antibodies, whose epitopes overlap with the ACE2 binding footprint, recognize a portion 
of the RBD that exhibits high sequence variability between sarbecoviruses (26). By contrast, the 
epitopes of class 4 antibodies, and to a somewhat lesser extent, class 3 antibodies, map to more 
conserved, but less accessible, regions of sarbecovirus RBDs (Fig. 1A). Substitutions in the RBDs 
of VOCs and variants of interest (VOIs) are also less common in the class 4 and class 3 regions 
(Fig. 1A), thus suggesting that a vaccine strategy designed to elicit class 3, class 4, and class 1/4 
(class 4-targeting antibodies that block ACE2 binding (31-33)) could protect against potentially 
emerging zoonotic sarbecoviruses as well as current and future SARS-2 variants.  
 
Here, we describe animal immunogenicity and virus challenge studies to evaluate mosaic-8 RBD-
nanoparticles, a potential pan-sarbecovirus vaccine in which RBDs from SARS-2 and seven 
animal sarbecoviruses (14) were covalently attached to a 60-mer protein nanoparticle (34). The 
probability of two adjacent RBDs being the same is low for mosaic-8 RBD nanoparticles, an 
arrangement chosen to favor interactions with B cells whose receptors can crosslink between 
adjacent RBDs to preferentially recognize conserved, but sterically occluded, class 3, class 4, 
and class 1/4 RBD epitopes (Fig. 1B). By contrast, homotypic SARS-2 RBD-mi3, a nanoparticle 
including 60 copies of a SARS-2 RBD (34, 35), is more likely to engage B cells with receptors 
recognizing sterically accessible, but less conserved, class 1 and class 2 RBD epitopes (Fig. 1B). 
Antisera from animals primed and boosted with mosaic-8 or homotypic SARS-2 both showed 
neutralizing activity against SARS-2, but cross-reactivity against sarbecoviruses was more 
extensive in mosaic-8 antisera. In addition, while both mosaic-8 and homotypic SARS-2-
immunized animals were protected from SARS-2 challenge, only the mosaic-8-immunized 
animals were protected from SARS-1 challenge. Finally, epitope mapping by deep mutational 
scanning of polyclonal antibodies showed preferential binding to conserved RBD epitopes for 
mosaic-8 antisera, but binding to the more variable class 2 RBD epitope for homotypic antisera, 
consistent with the hypothesized mechanism for elicitation of different classes of anti-RBD 
antibodies by mosaic versus homotypic RBD nanoparticles (Fig. 1B). These results highlight the 
potential for a mosaic nanoparticle approach to elicit more broadly protective antibody responses 
than homotypic nanoparticle approaches. We conclude that mosaic-8 RBD-nanoparticles show 
promise as a candidate vaccine to protect from SARS-2, present and future variants, and from 
zoonotic sarbecoviruses that could spill over into humans.  
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Results 
We used the SpyCatcher-SpyTag system (36, 37) to covalently attach RBDs with C-terminal 
SpyTag003 sequences to a 60-mer nanoparticle (SpyCatcher003-mi3) (38), to make either 
mosaic-8b (each nanoparticle presenting the SARS-2 Beta RBD plus seven other sarbecovirus 
RBDs attached to the 60 sites) or homotypic (each nanoparticle presenting 60 copies of the 
SARS-2 Beta RBD) RBD-mi3 nanoparticles (fig. S1A). In addition to the SARS-2 Beta RBD, the 
other RBDs in mosaic-8b nanoparticles were chosen from clade 1a, 1b, and 2 sarbecoviruses 
(clades as defined in (13)) (Fig. 1C,D, fig. S1A). Immune responses against these strains in 
immunized animals were considered “matched” since each was represented by an RBD on 
mosaic-8b. Sarbecoviruses from clades 1, 2, and 3 and SARS-2 RBDs other than SARS-2 Beta 
that did not have RBDs represented on mosaic-8b nanoparticles were considered “mismatched” 
in immunological assays and challenge experiments. SARS-1 was chosen as a mismatched strain 
to allow challenge experiments and because it uses human ACE2 as its host receptor (39) and 
can therefore be evaluated in ACE2-dependent pseudotyped neutralization assays, although we 
note that SARS-1 is closely related to WIV1, a clade 1a bat sarbecoviruses represented on the 
nanoparticles. Two versions of mosaic-8 were used for experiments: mosaic-8b RBD-mi3 (SARS-
2 Beta RBD and seven animal sarbecovirus RBDs) (Fig. 1C,D) and mosaic-8gm (mosaic-8 with 
a Wuhan-Hu-1 SARS-2 RBD plus the seven zoonotic RBDs (34) in which N-linked glycosylation 
site sequons at RBD position 484 were introduced in the clade 1a and 1b RBDs to occlude class 
1 and 2 RBD epitopes (fig. S1A). Mosaic-8 and homotypic SARS-2 Beta nanoparticles were 
purified via SEC (fig. S1B) and validated by SDS-PAGE to show near 100% conjugation efficiency 
(fig. S1C). Dynamic light scattering (DLS) and negative stain EM demonstrated that conjugated 
nanoparticles were monodisperse and exhibited a defined diameter (fig. S1D,E), and interactions 
of human ACE2 and monoclonal antibodies with known epitopes exhibited expected binding 
profiles (fig. S2). 
 
To compare the efficacies of mosaic and homotypic RBD-mi3 nanoparticle immunizations, we 
evaluated immune responses and protection from viral challenge in K18-human ACE2 (K18-
hACE2) transgenic mice (40) (Fig. 2,3). K18-hACE2 mice express human ACE2 driven by a 
cytokeratin promotor in epithelia, including airway epithelia cells where SARS-2 infections often 
start and recapitulate severe COVID-19 upon infection with SARS-2 (40-42). Viral challenges of 
K18-hACE2 mice result in extensive weight loss, and death usually results from SARS-2 or SARS-
1 infection (41). We chose this lethal challenge model to evaluate the highest levels of potential 
protection, which might then be used to extrapolate to the expected efficacy of a vaccine in 
humans.  
 
K18-hACE2 mice were primed with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, or 
unconjugated SpyCatcher-mi3 nanoparticles adjuvanted with AddaVax and boosted 4 weeks later 
(Fig. 2A). In these experiments, SARS-2 Beta represented a matched sarbecovirus for the 
mosaic-8b RBD-mi3 and homotypic SARS-2 RBD-mi3 immunogens but was mismatched for 
mosaic-8gm. SARS-1 was mismatched for all three nanoparticle immunogens.   
 
We first evaluated serum antibody responses in binding and pseudovirus neutralization assays 
14 days after boosting (Fig. 2B-I). Serum ELISAs were conducted to assess binding to the 
indicated RBDs, and for Wuhan-Hu-1, also to the 6P stabilized version of soluble S trimer (43). 
ELISA titers against the Wuhan-Hu-1 RBD and S-6P were modestly higher for homotypic SARS-
2 Beta immunized mice with respect to mosaic-8b and mosaic-8gm immunized mice, with all three 
immunogens eliciting high binding antibody titers (Fig. 2B). However, although the mosaic-8 
immunogen antisera ELISA titers were not significantly different from homotypic RBD-mi3 
antisera titers against the other SARS-2 variants (Fig. 2C,D), ELISA titers were increased against 
sarbecovirus RBDs derived from viruses other than SARS-2 (Fig. 2E-I); e.g., significantly higher 
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binding titers when comparing the two mosaic-8 antisera versus the homotypic antisera against 
SARS-1 (mismatched; Fig. 2E), SHC014 (matched for the two mosaic-8 immunogens; Fig. 2G), 
BM48-31 (mismatched; Fig. 2H), and Yun11 (mismatched; Fig. 2I). As previously reported for 
RBD-mi3 immunogens (34), the trends for serum RBD binding were generally predictive of 
pseudovirus neutralization; however, the homotypic SARS-2 Beta antisera showed significantly 
higher neutralization titers against all three SARS-2 variants than the mosaic-8b and -8gm 
antisera (Fig. 2B-D). This contrasts with our previous reports of equivalent neutralization for 
antisera from mosaic-8 RBD-mi3 and homotypic SARS-2 RBD immunized mice (34). In those 
experiments, the SARS-2 RBD in both nanoparticles was derived from the Wuhan-Hu-1 strain 
rather than the Beta VOC, which could elicit increased levels of potent class 2 anti-RBD antibodies 
that bind RBDs with residue E484, which is substituted in most SARS-2 variants (44). Equivalent 
levels of anti-SARS-2 RBD binding antibodies, but lower neutralization potencies, in mosaic-8 
versus homotypic RBD antisera are consistent with a larger portion of non-neutralizing antibodies 
against SARS-2 induced by mosaic-8 immunization. Non-neutralizing antibodies could be 
involved in protection since non-neutralizing antibodies have been shown to play a role in 
preventing severe COVID-19 from natural infection or challenges after vaccination (45, 46). 
Despite their reduced neutralization potencies against SARS-2, the mosaic-8b and -8gm antisera 
showed significantly higher neutralization titers than the homotypic antisera against clade 1a 
viruses such as SARS-1 (mismatched; Fig. 2E) and WIV1 and SHC014 (matched for mosaics; 
Fig. 2F,G).  
 
The four groups of immunized K18-hACE2 mice (n=10) were challenged with SARS-2 Beta or 
SARS-1 (Fig. 2A). Four mice per group were euthanized at 4 days post challenge for viral load 
analysis, and the remaining six mice were monitored for survival up to 28 days post challenge. 
Mice in each cohort were evaluated for weight loss, survival, and levels of viral RNA (genomic 
and subgenomic) and infectious virus in lung tissue and oropharyngeal swabs (Fig. 3). Control 
animals immunized with unconjugated mi3 showed rapid weight loss and death four to six days 
after SARS-2 or SARS-1 challenge. As evaluated by relative weight loss, the mosaic-8b and 
homotypic SARS-2 Beta RBD-mi3 nanoparticles were equally protective against SARS-2 
challenge, showing minimal to no weight loss, while some of the mosaic-8gm animals 
experienced transient weight loss but all but one recovered by 10 days post-challenge (Fig. 3A). 
By contrast, only the mosaic-8b and mosaic-8gm immunizations prevented weight loss after the 
SARS-1 challenge, while the homotypic SARS-CoV-2 Beta RBD-mi3 mice experienced similar 
weight loss as the mi3 control mice (Fig. 3A). The post challenge survival results were consistent 
with weight loss: after SARS-2 Beta challenge, both the mosaic-8b and homotypic immunized 
animals showed complete survival (100%), while five of six animals (~83%) in the mosaic-8gm 
immunization group survived (Fig. 3B).  After SARS-1 challenge, all but one of the mice in the 
homotypic SARS-2 Beta group reached endpoint criteria within six days (a delay compared to the 
control mi3 group, in which all animals reached endpoint criteria within four days), whereas all 
mice in the mosaic-8b and mosaic-8gm group survived the challenge during the 28 days of post-
challenge monitoring (Fig. 3B). Altogether, despite elicitation of lower neutralization titers against 
SARS-2 compared to homotypic Beta RBD-mi3 antisera (Fig. 2B-D), immunization with mosaic-
8b RBD-mi3 was fully protective against both matched (SARS-2 Beta) and mismatched (SARS-
1) challenges in the K18-hACE2 mouse model. By contrast, immunization with homotypic SARS-
2 RBD-mi3 was protective against the matched SARS-2 Beta challenge, but not against the 
mismatched SARS-1 challenge. Mosaic-8gm immunization protected against SARS-1 challenge 
but showed somewhat reduced efficacy against the SARS-2 Beta challenge, perhaps related to 
occluding the class 2 RBD epitope targeted by potent, but usually strain-specific, neutralizing 
antibodies.  
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We measured levels of infectious virus and viral RNA in lung and oropharyngeal swab samples 
from challenged K18-hACE2 mice (n=4), obtained at four days post challenge (Fig. 3C,D). 
Infectious virus titers were measured by determining the median tissue culture infectious dose 
(TCID50) of either oropharyngeal swab or lung tissue homogenate samples as described (47). In 
SARS-2 Beta-challenged mice, vaccination with either mosaic-8b or homotypic SARS-2 Beta 
completely suppressed viral replication in the lungs and oropharyngeal swabs, whereas levels of 
infectious virus in mosaic-8gm immunized animals were equivalent to control immunized mice in 
lungs. The SARS-2 Beta infectious viral load was lower for mosaic-8gm immunized mice with 
respect to control animals in the oropharyngeal swabs, suggesting partial protection in these 
animals (Fig. 3C; left). Almost all vaccinated animal groups displayed completely suppressed 
infectious SARS-1 in lungs compared to control immunized mice (Fig. 3D; left). However, only 
mosaic-8b and mosaic-8gm immunized animals showed complete suppression of infectious 
SARS-1 in oropharyngeal swabs, whereas homotypic SARS-2 Beta immunized animals showed 
infectious viral loads that were similar to control animals (Fig. 3D; left), possibly explaining the 
severity of SARS-1 in these animals (Fig. 3A,B). 
 
Viral RNA copies in the lung tissue and oropharyngeal swabs were measured by RT-PCR using 
both genomic and subgenomic primer sets. Genomic RT-PCR titers reflect the overall RNA copies 
in the sample, including both replicating virus in infected cells and viral particles/debris, whereas 
subgenomic RNA is a better surrogate for infectious viral titers since it is produced in infected 
cells and poorly packaged into virions (48). In lung tissue samples, genomic and subgenomic 
SARS-2 Beta viral RNA titers were lower in mosaic-8b and homotypic SARS-2 Beta immunized 
animals compared to control immunized animals (Fig. 3C; right), consistent with infectious virus 
titer measurements (Fig. 3C; left panel) and protection against SARS-2 Beta challenge in mosaic-
8b and homotypic SARS-2 Beta immunized animals (Fig. 3A,B). SARS-2 Beta RNA copies in 
oropharyngeal swabs were low for all immunized cohorts compared to the control (Fig.3C; right). 
Subgenomic SARS-1 viral RNA titers were completely suppressed in mosaic-8b and mosaic-8gm 
immunized animals in both lung tissue and oropharyngeal swabs with respect to the control (Fig. 
3D; right), also consistent with infectious viral titers (Fig. 3C; left panel) and complete protection 
in these cohorts against SARS-1 challenge (Fig. 3A,B). The lack of suppression of viral RNA and 
infectious viral loads in oropharyngeal swabs from homotypic SARS-2 Beta immunized animals 
challenged with SARS-1 correlates with lethality from SARS-1 infection, possibly due to virus 
entry into the brain via nasal infection (49). Interestingly, homotypic SARS-2 immunized animals 
showed lower levels of subgenomic viral RNA (Fig. 3D; right, one animal in lung and 2 animals in 
oropharyngeal samples) with respect to control animals, suggesting partial control of SARS-1.  
 
The K18-hACE2 mouse experiments were designed to evaluate survival, weight loss, and 
reduction or absence of viral replication as the primary metrics for vaccine efficacy (49). However, 
we also obtained lung tissue 4 days post challenge for analysis by hematoxylin and eosin (H&E) 
staining and immunohistochemistry (IHC) (Data S1). Upon challenge with SARS-2 Beta, two of 
four mi3 control animals exhibited lesions characterized by minimal interstitial pneumonia 
centered on terminal bronchioles and extending into the adjacent alveoli with minimal to moderate 
perivascular leucocyte cuffing and alveolar exudate (fig. S3B,D, Table S1, top). IHC for SARS-2 
N protein showed staining in cells from three of four animals (<1-90% of type I and II cells) (fig. 
S3D,H, Table S1, top). In contrast, minimal to no lesions were observed in mosaic-8b and 
homotypic SARS-2 Beta immunized animals (fig. S3A,C, Table S1, top). Two of four animals 
immunized with mosaic-8gm exhibited lesions characterized by mild interstitial pneumonia. IHC 
staining for SARS-2 N protein showed minimal viral antigen present in mosaic-8b (1-5% of cells) 
and homotypic SARS-2 Beta immunized animals (two of four with <1% of stained cells) (fig. 
S3E,G, Table S1, top), whereas some staining was found in animals in the mosaic-8gm (three of 
four had <1-40% of stained type I and II pneumocytes). For the SARS-1 challenge, one animal in 
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the control group exhibited lesions affecting 5% of the lung characterized by a minimal interstitial 
pneumonia centered on terminal bronchioles with minimal alveolar exudate (fig. S3L, Table S1, 
bottom), whereas all four animals exhibited antigen staining (10-90% staining of type I and II cells) 
(fig. S3P, Table S1, bottom). In contrast, animals immunized with mosaic-8b did not have any 
observable pulmonary pathology (fig. S3I, Table S1, bottom). One animal vaccinated with mosaic-
8gm had minimal interstitial pneumonia with peribronchial inflammation affecting less than 1% of 
the lung (fig. S3J, Table S1, bottom). Animals vaccinated with homotypic SARS-2 Beta did not 
have pulmonary lesions, except for one animal with minimal perivascular cuffing (fig. S3K, Table 
S1, bottom).  In addition, animals vaccinated with mosaic-8b, mosaic-8gm, and homotypic SARS-
2 Beta showed minimal to no antigen staining (all <1% in type I and II pneumocytes) (fig. S3M-O, 
Table S1, bottom). Overall, mosaic-8b immunization was efficacious against both SARS-1 and 
SARS-2 challenge. Mosaic-8gm immunized animals showed low levels of viral antigen staining in 
lung tissue obtained from SARS-1 challenged animals, but not SARS-2 challenged animals, 
whereas homotypic SARS-2 Beta immunized animals showed control of SARS-2 Beta and SARS-
1 in the lungs matching the suppression of viral load in lung tissue (Fig. 3C,D). Of note, viral 
control in lung tissue did not match severity of disease for vaccinated animals (Fig 3A,B), most 
likely due to the neurological basis of disease severity in this animal model (49). 
 
To extend these results to another animal model of SARS-2 and SARS-1 infection, we also 
conducted immunization and challenge studies in non-human primates (NHPs). We evaluated 
only the most promising vaccine candidate, mosaic-8b RBD-mi3, comparing to a non-immunized 
cohort for challenges with either SARS-2 Delta or with SARS-1. Both challenge viruses were 
mismatched since the mosaic-8b nanoparticles did not include RBDs from SARS-2 Delta or 
SARS-1.  
 
Eight NHPs were immunized and boosted at day 28 with mosaic-8b RBD-mi3 adjuvanted with 
VAC20 (2% aluminum hydroxide wet gel, Al2O3) (alum) and then boosted again at day 92 with 
mosaic-8b RBD-mi3 adjuvanted with MF59, a squalene-based oil in water emulsion adjuvant (50). 
Four weeks after the second boost, half of the NHPs in the vaccinated and control groups were 
challenged with SARS-2 Delta and the other half were challenged with SARS-1 (Fig. 4A).  
 
Polyclonal antisera were evaluated for binding to SARS-2 VOCs by ELISA and for neutralization 
activity using pseudovirus and authentic virus neutralization assays (Fig. 4B). The RBD ELISA 
and neutralization results showed similar trends, with relatively weak binding/neutralization before 
the first boost, rising levels after the first boost that contracted by Day 92, and then rising again 
and remaining above the 1:100 neutralization titers that correlate with ~90% vaccine efficiency 
(51) after the second boost. Notably, the binding and neutralizing antibody levels were similar for 
SARS-2 Beta (matched) and the mismatched Wuhan-Hu-1, Delta, and Omicron BA.1 SARS-2 
variants. We also evaluated binding and neutralization against RBDs and pseudoviruses from 
other sarbecovirus lineages (clade 1a, 2 and 3), including matched (WIV1, SHC014) and 
mismatched (SARS-1, LYRa3, RshSTT200, BM48-31, BtKY72, Khosta-2 and Yun11) viruses 
(Fig. 4C,D). Similar trends were observed for binding and neutralization of non-SARS-2 
sarbecoviruses as seen for the SARS-2 variants: all RBDs were recognized by polyclonal antisera 
in ELISAs and neutralized in pseudovirus assays for human ACE2 entry-dependent viral strains 
for which neutralization assays could be conducted including mismatched strains: SARS-1 and a 
mutant form of BtKY72 (K493Y/T498W) that utilizes ACE-2 for entry (13). In all cases, the 
contracting antibody responses at Day 92 were restored by the second boost (Fig. 4C,D).  
 
Mosaic-8b RBD-mi3 immunized and control NHPs were challenged with either SARS-2 Delta or 
SARS-1 (both mismatched) 28 days after the second boost (Fig. 4A). Protection was assessed 
by measuring infectious virus titers (Fig. 5A,B) and by viral RNA using RT-PCR (SARS-2 only; 
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Fig. 5C) in bronchial alveolar lavage (BAL) and nasal swabs two or four days after challenge. We 
observed no detectable SARS-2 Delta infectious virus in BAL at either time point, whereas BAL 
from three of four control animals showed infectious SARS-2 virus (Fig. 5A). Nasal swabs showed 
low levels of virus in vaccinated animals, but at about two log significantly reduced levels 
compared to control NHPs (Fig. 5A), consistent with reports of detectable virus replication in upper 
airways in animals that were protected from clinical disease (52). For SARS-1 challenged animals, 
mosaic-8b immunized NHPs had no detectable viral titers in either BAL or nasal swabs, whereas 
all control animals had detectable viral titers (Fig. 5B; three of four in BAL and one of four in nasal 
swabs; individual animals identified by different colors). Although the low sample numbers 
precluded statistical significance of BAL or nasal swab differences in immunized versus control 
challenged animals, the lack of detectable SARS-1 virus in mosaic-8b immunized animals was 
suggestive of protection.  
 
We next assessed whether mosaic and homotypic nanoparticles elicited different types of anti-
RBD antibodies, as suggested by protection against matched challenge for both mosaic-8b and 
homotypic SARS-2 RBD-mi3 cohorts, but protection against mismatched challenge only for the 
mosaic-8b RBD-mi3 cohort. Immunizations with either mosaic-8b or homotypic SARS-2 Beta 
nanoparticles adjuvanted with AddaVax were conducted in BALB/c mice (prime and boost three 
weeks later) (fig. S4A). Anti-RBD antibodies in serum four weeks post boost evaluated by ELISA 
and neutralization (fig. S4B-G) exhibited similar characteristics as seen in the immunized K18-
hACE2 mice (Fig. 2). To compare the characteristics of antibodies elicited by each type of RBD-
nanoparticle, we mapped SARS-2 Beta epitopes recognized by immunization-elicited antibodies 
to investigate if mosaic-8b, but not homotypic SARS-2 Beta, preferentially elicited anti-RBD 
antibodies against conserved RBD epitopes as hypothesized (Fig. 1B). For these experiments, 
we used yeast-display deep mutational scanning to map mutations in the SARS-2 Beta RBD (53, 
54) that escaped binding by antisera raised in BALB/c mice immunized with either mosaic-8b or 
homotypic SARS-2 Beta RBD-mi3 nanoparticles (Fig, 6; fig. S4,5).  
 
The results showed that mosaic-8b antisera from six immunized mice primarily targeted more 
conserved RBD epitopes, including class 4 (RBD residues 383–386) and class 3 (residue 357) 
epitopes (Fig. 6A, fig. S6), whereas homotypic SARS-2 antisera primarily targeted variable RBD 
epitopes, particularly class 2 (residue K484) (Fig. 6B, fig. S6). These results confirmed that 
mosaic-8b RBD-mi3 elicited antibodies against the conserved class 3 and class 4 epitopes, as 
designed in the mosaic RBD nanoparticle approach (Figure 1A,B). By contrast, homotypic SARS-
CoV-2 RBD-mi3 primarily elicited antibodies against the more variable class 2 epitope 
(characterized by RBD residue 484) that varies between sarbecoviruses and in SARS-2 VOCs 
(Fig. 1A).  
 
We also mapped mutations that reduce binding of four serum samples from NHPs vaccinated 
with three doses of mosaic-8b RBD-mi3 (Day 106; Fig. 4). The NHP antibody-escape profiles 
were relatively broad, suggesting that no single mutation had a disproportionately large effect on 
binding (fig. S7). The NHP sera showed some skewing towards class 4 RBD epitopes and slight 
targeting of K484 (class 2) and T500 (class 3) (fig. S7). Differences in antibody-escape profiles 
for mosaic-8b immunized mice and NHPs could be related to species differences (55) and/or 
different immunization regimens (Fig. 2A, 4A). The broad escape profiles from NHP antisera may 
suggest either antibody binding to a broad set of RBD epitopes and/or a population of affinity-
matured antibodies that are less affected by single point mutations. Nevertheless, the antibody-
escape mapping results for mice and NHPs immunized with mosaic-8b RBD-mi3 are consistent 
with the hypothesis that the mosaic-8b nanoparticles elicit antibodies that target conserved RBD 
epitopes (Fig. 1B).  
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Mapping of sera from mosaic-8b-immunized mice and NHPs demonstrated relatively low, but 
non-zero, targeting of variable epitopes, e.g., typified by RBD residue 484. Of note, immunization 
with mosaic-8gm RBD-mi3 nanoparticles, in which class 1 and 2 epitopes in clade 1a and 1b 
RBDs were likely at least partially occluded by N-glycosylation at residue 484, was less protective 
against SARS-2 challenge than immunization with mosaic-8b, in which these epitopes were intact 
(Fig. 3). This result implies that retaining at least a subset of antibodies targeting the 
immunodominant class 1 and 2 epitopes may be important for protection against SARS-2 
challenge. Strategies to occlude these epitopes by introducing N-glycans (56, 57) may thus 
impede optimal protection against SARS-2.  
 
Discussion 
 
Anti-RBD antibodies raised by infection and vaccination can potently neutralize SARS-2 through 
blocking S trimer binding to the ACE2 receptor required for viral entry (16-20, 23-29). Although 
neutralizing antibodies recognize multiple RBD epitopes (26, 58), IgGs in human polyclonal 
plasmas tend to target the class 1 and class 2 epitopes that are undergoing rapid evolution in 
SARS-2 and that vary between zoonotic and human sarbecoviruses (28, 44, 59). Some 
monoclonal antibodies against these epitopes maintain breadth (60), but more commonly show 
partial or complete loss of potency against SARS-2 VOCs and only rarely cross-react with animal 
sarbecoviruses (44, 61, 62). By contrast, although less common and usually less potent than 
antibodies against class 1 and class 2 anti-RBD epitopes, antibodies against the more conserved 
class 3, 4, and 1/4 epitopes exhibit increased cross-reactivity across sarbecoviruses and SARS-
2 VOCs (27, 31-33, 63, 64). Therefore, a vaccine that elicits such antibodies could serve to protect 
against SARS-2, its variants, and emerging zoonotic sarbecoviruses without the need for updating 
in the event of new VOCs and/or another sarbecovirus epidemic or pandemic.  
 
Homotypic SARS-2 RBD or S trimer nanoparticles elicit potent neutralizing antibody responses 
that exhibit some degree of cross-reactivity across SARS-2 variants and sarbecoviruses (34, 35, 
65-74). Here, we reproduce and extend those results in challenge studies demonstrating 
protection against SARS-2, including a mismatched variant, using a mosaic-8 RBD nanoparticle 
vaccine candidate. We demonstrated protection from SARS-2 challenge in animals immunized 
with homotypic SARS-2 RBD-mi3 and with mosaic-8b RBD-mi3 (challenges for the mosaic-8b 
including both a matched SARS-2 variant and a mismatched variant), despite mosaic-8b 
containing 1/8 as many SARS-2 RBDs as its homotypic SARS-2 counterpart. These results 
suggest that a mosaic RBD nanoparticle could be used now as a COVID-19 vaccine option to 
protect from current and future SARS-2 variants. Importantly, we also showed that mosaic-8b, but 
not homotypic SARS-2 RBD-mi3 nanoparticles, protected K18-hACE2 mice against lethality with 
a mismatched SARS-1 challenge, suggesting that a mosaic nanoparticle vaccine could also 
protect from disease caused by future mismatched, and heretofore unknown, zoonotic 
sarbecoviruses that could infect humans. It should be noted that, although homotypic SARS-2 
RBD-mi3 nanoparticles did not confer complete protection against SARS-1, viral loads in lung 
tissue obtained from immunized animals were greatly reduced compared to control animals: only 
one of four animals had detectable viral loads in the lungs compared to four of four in the control 
group, demonstrating that some level of protection was achieved. Interestingly, a similar outcome 
was reported upon vaccination of aged mice with RBD-scNP, a homotypic SARS-2 RBD-
conjugated ferritin nanoparticle that induced neutralizing antibodies against SARS-2 and pre-
emergent sarbecoviruses: upon subsequent challenge with mouse-adapted SARS-1, viral loads 
were significantly reduced, but not absent, in lung tissue (four of five vaccinated animals exhibited 
reduced, but detectable SARS-1 virus, as compared with five of five with higher viral loads in the 
control group) (74).  
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The presence of immunodominant epitopes on viral antigens have contributed to preventing 
development of a universal influenza vaccine and vaccines against other antigenically-variable 
viruses such as HIV-1 and hepatitis C (75). Presentation of related, but antigenically different, 
viral antigens on a mosaic nanoparticle, a method to subvert immunodominance (76), is 
appropriate for making a pan-sarbecovirus vaccine because the SARS-2 S trimer contains 
immunodominant epitopes within its RBD that limit the breadth of antibodies elicited by SARS-2 
infection or vaccination. Our demonstrations that a mosaic RBD nanoparticle presenting 8 
different sarbecovirus RBDs protected against challenges from both matched and mismatched 
sarbecoviruses, as compared with homotypic SARS-2 RBD nanoparticles that protected fully only 
against a matched challenge, are consistent with RBD mapping experiments demonstrating that 
mosaic-8b, but not homotypic SARS-2 RBD-mi3 nanoparticles, primarily elicited antibodies 
against conserved RBD regions rather than the immunodominant class 1 and class 2 RBD 
epitopes. By including 8 different RBD antigens arranged randomly on a 60-mer nanoparticle, as 
compared to a smaller number of different RBDs that are not arranged randomly (77), the chances 
of stimulating production of cross-reactive antibodies against conserved regions is maximized 
because adjacent antigens are unlikely to be the same (76). The plug-and-display approach 
facilitated by SpyCatcher-SpyTag methodology (36, 78) allows straightforward production of 
mosaic nanoparticles with different RBDs attached randomly. Such nanoparticles could be used 
to protect against COVID-19 and future sarbecovirus spillovers and easily adapted to make other 
pan-coronavirus vaccines; for example, against MERS-like betacoronaviruses and/or against 
alpha or delta coronaviruses. Given the recent plethora of SARS-2 VOCs and VOIs that may be 
arising at least in part due to antibody pressure, a relevant concern is whether more conserved 
RBD epitopes might be subject to substitutions that would render vaccines and/or monoclonal 
antibodies targeting these regions ineffective. Although direct proof remains to be established, 
this scenario seems unlikely, as RBD regions conserved between sarbecoviruses and SARS-2 
variants are generally involved in contacts with other regions of spike trimer (Fig. 6C) and 
therefore less likely to tolerate selection-induced substitutions.  
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Figure 1. Mosaic nanoparticles may preferentially induce cross-reactive antibodies through avidity 
effects. (A) Left: Structure of SARS-2 S trimer (PDB 6VYB) showing one “up” RBD (dashed circle). 
Right: Sequence conservation of the 16 sarbecovirus RBDs in panel D calculated by the ConSurf 
Database (79) shown on two views of an RBD surface (PDB 7BZ5). The ACE2 binding footprint 
(PDB 6M0J) is outlined by a yellow dotted line. Locations of residues that are substituted in SARS-
2 variants of concern (VOCs) and variants of interest (VOIs) as of March 2022 
(https://viralzone.expasy.org/9556) are indicated as black dots. Class 1, 2, 3, 4, and 1/4 epitopes 
are outlined in different colored dotted lines using information from structures of representative 
monoclonal antibodies bound to RBD or S trimer (C102: PDB 7K8M; C002: PDB 7K8T, S309: 
PDB 7JX3; CR3022: PDB 7LOP; C022: PDB 7RKU). The N-linked glycan attached to RBD 
residue 343 is indicated by teal spheres, and the potential N-linked glycosylation site at position 
370 in RBDs derived from sarbecoviruses other than SARS-2 is indicated by a teal circle. (B) 
Schematic showing hypothesis for how mosaic RBD-nanoparticles could induce production of 
cross-reactive antibodies. Left: Clustered membrane-bound B cell receptors bind with avidity to a 
strain-specific epitope (dark pink triangle) on dark pink antigens attached to a homotypic particle. 
Middle: B-cell receptors cannot bind with avidity to strain-specific epitope (triangle) on dark pink 
antigen attached to a mosaic particle. Right: B-cell receptors can bind with avidity to common 
epitope (green circle) presented on different antigens attached to a mosaic particle, but not to 
strain-specific epitopes (triangles). (C) Sarbecoviruses from which the RBDs in mosaic-8b RBD-
mi3 were derived (matched) and sarbecoviruses from which RBDs were not included in mosaic-
8b (mismatched). Clades are defined as in (13). The Wuhan-Hu-1 SARS-2 RBD was used in 
mosaic-8gm instead of the SARS-2 Beta RBD. (D) Phylogenetic tree of selected sarbecoviruses 
calculated using PhyML 3.0 (80) based on amino acid sequences of RBDs aligned using Clustal 
Omega (81). Viruses with RBDs included in mosaic-8b are highlighted in gray rectangles. 
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Figure 2. Mosaic-8b and homotypic SARS-2 Beta RBD-mi3 immunizations induced binding and 
neutralizing antibodies in K18 mice. (A) Left: Immunization schedule. K18-hACE2 mice were 
immunized with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, or unconjugated 
SpyCatcher003-mi3 nanoparticles. Right: Structural models of mosaic-8 and homotypic RBD-mi3 
nanoparticles constructed using PDB 7SC1 (RBD), PDB 4MLI (SpyCatcher), and PDB 7B3Y 
(mi3). (B-I) ELISA and neutralization data from Day 42 (14 days post-Boost) for antisera from 
individual mice (open circles) presented as the mean (bars) and standard deviation (horizontal 
lines). ELISA results are shown as midpoint titers (EC50 values); neutralization results are shown 
as half-maximal inhibitory dilutions (ID50 values). Dashed horizontal lines correspond to the 
background values representing the limit of detection. Significant differences between cohorts 
linked by horizontal lines are indicated by asterisks: p<0.05 = *, p<0.01 = **, p<0.001 = ***, 
p<0.0001 = ****. Rectangles below ELISA and neutralization data indicate mismatched strains 
(pink; the RBD from that strain was not present on the nanoparticle) or matched strains (gray; the 
RBD was present on the nanoparticle). 
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Figure 3. Mosaic-8b immunization protected against SARS-2 and SARS-1 challenges in K18-
hACE2 mice, whereas homotypic SARS-2 immunization protected only against SARS-2. Mice 
were immunized and boosted with the indicated mi3 nanoparticles represented by different colors. 
(A) Weight changes after SARS-2 Beta or SARS-1 challenge. Mean weight in each vaccinated 
cohort indicated with a thick colored line. Weights of individual mice are indicated by colored 
dashed lines. (B) Survival after SARS-2 Beta or SARS-1 challenge. (C) Left: SARS-2 Beta 
infectious titers after challenge in lung tissue and oropharyngeal swabs. Right: Genomic and 
subgenomic SARS-2 Beta RNA copes determined by RT-PCR. (D) Left: SARS-1 infectious titers 
after challenge in lung tissue and oropharyngeal swabs. Right: Genomic and subgenomic SARS-
1 RNA copies determined by RT-PCR. Significant differences between cohorts linked by 
horizontal lines are indicated by asterisks: p<0.05 = *, p<0.01 = **, p<0.001 = ***, p<0.0001 = ****. 
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Figure 4. Mosaic-8b RBD-mi3 immunization induced binding and neutralizing antibodies in NHPs. 
Mismatched viruses are indicated by pink rectangular boxes. (A) Left: Immunization schedule. 
NHPs were primed and boosted with mosaic-8b RBD-mi3 in alum and boosted again with mosaic-
8b RBD-mi3 in MF59. 8 immunized NHPs and 8 unimmunized NHPs were then challenged with 
either SARS-2 Delta (4 immunized and 4 unimmunized) or with SARS-1 (4 immunized and 4 
unimmunized). Right: Structural model of mosaic-8b RBD-mi3 nanoparticles as shown in Fig. 2A. 
(B-D) Viruses for assays indicated as different colors; all were mismatched with respect to mosaic-
8b RBD-mi3 except for SARS-2 Beta. ELISA and neutralization data for antisera from individual 
NHPs (open circles) presented as the mean (bars) and standard deviation (horizontal lines). 
ELISA results are shown as midpoint titers (EC50 values); neutralization results are shown as half-
maximal inhibitory dilutions (ID50 values). Dashed horizontal lines correspond to the background 
values representing the limit of detection.  
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Figure 5. Mosaic-8b immunization protected NHPs against SARS-2 Delta and SARS-1 
challenges. NHPs were immunized with mosaic-8b RBD-mi3 or not immunized (control) before 
challenge. (A) SARS-2 Delta infectious titers after challenge in BAL (left) and nasal swabs (right). 
Individual animals are denoted with different colors. (B) SARS-1 infectious titers after challenge 
in BAL (left) and nasal swabs (right). Individual NHPs in the unvaccinated control group are 
denoted with different colors to show that all four animals exhibited signs of detectable SARS-1 
infectious virus in BAL and/or nasal swabs. Significant differences between cohorts linked by 
horizontal lines are indicated by asterisks: p<0.05 = *, p<0.01 = **, p<0.001 = ***, p<0.0001 = ****. 
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Figure 6. Antibodies elicited by mosaic-8b immunization map to conserved RBD epitopes, as 
compared to antibodies elicited by homotypic SARS-2 Beta immunization. (A) Deep mutational 
scanning was used to identify mutations that reduced binding of sera from BALB/c mice 
immunized with mosaic-8b RBD-mi3 (top) or homotypic SARS-2 Beta RBD-mi3 (bottom) to the 
SARS-2 Beta RBD. The y-axis shows the site-total antibody escape (sum of the antibody escape 
of all mutations at a site), with larger numbers indicating more antibody escape. Each light gray 
line represents one antiserum, and the heavy black lines indicate the average across the n=6 
sera per group. RBD sites 340–408 and 462–468, which include the more conserved class 3/4 
epitopes, are indicated with solid gray lines, and sites 472–503, which include sites from the more 
variable class 1/2 epitopes, are indicated with dashed lines. Note that the “conserved” and 
“variable” epitopes presented here were generalized for simple visualization and are not identical 
to more specific epitope-class definitions (26, 59). The highly variable RBD class 2 site 484 that 
is immunodominant among humans infected with SARS-2 (44, 59) and the subdominant class 4 
sites 383–386 are labeled. (B) The average site-total antibody escape for mice immunized with 
mosaic-8b RBD-mi3 (top) or homotypic SARS-2 RBD-mi3 (bottom) mapped to the surface of the 
SARS-2 Beta RBD (PDB 7LYQ), with white indicating no escape, and red indicating sites with the 
most escape. Key sites are labeled, all of which are class 3/4 sites, except for the class 2 484 
site. Interactive logo plots and structure-based visualizations of the antibody-escape maps are at 
https://jbloomlab.github.io/SARS-CoV-2-RBD_Beta_mosaic_np_vaccine/. Individual antibody-
escape maps are in fig. S6; raw data are in Data S2 and at https://github.com/jbloomlab/SARS-
CoV-2-RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv. (C) Top: 
Residues in a “down” RBD that contact other regions of spike shown in blue on an RBD surface 
(PDB 7BZ5). Interacting residues were identified using the PDBePISA software server 
(https://www.ebi.ac.uk/pdbe/prot_int/ pistart.html) and the RBD from chain A of the spike trimer 
structure in PDB 7M6E. Middle: variable to conserved sarbecovirus sequence gradient (dark pink 
= variable; green = conserved) shown on RBD surface as in Fig. 1A. Bottom: Structure of SARS-
2 S trimer (PDB 6VYB) showing “down” RBD (boxed) colored with the variable to conserved 
sarbecovirus sequence gradient.   
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MATERIALS AND METHODS 
 
Protein Expression. Mammalian expression vectors encoding the RBDs of SARS-2 Beta 
(GenBank QUT64557.1), SARS-CoV-2 Wuhan-Hu-1 (GenBank MN985325.1), RaTG13-CoV 
(GenBank QHR63300), SHC014-CoV (GenBank KC881005), Rs4081-CoV (GenBank 
KY417143), pangolin17-CoV (GenBank QIA48632), RmYN02-CoV (GSAID EPI_ISL_412977), 
Rf1-CoV (GenBank DQ412042), W1V1-CoV (GenBank KF367457), Yun11-CoV (GenBank 
JX993988), BM-4831-CoV (GenBank NC014470), BtkY72-CoV (GenBank KY352407), Khosta-2 
CoV(QVN46569.1), RsSTT200-CoV (EPI_ISL_852605), LYRa3 (AHX37569.1) and SARS-CoV 
S (GenBank AAP13441.1) with an N-terminal human IL-2 or Mu phosphatase signal peptide were 
constructed as previously described (34, 82). 5 of the 8 RBD genes (SARS-2, RaTG13, pang17, 
WIV1, and SHC014) used to make mosaic-8gm were altered by site-directed mutagenesis to 
include a potential N-linked glycosylation site (PNGS) (N at position 484 and T at position 486). 
Each RBD was expressed to include a C-terminal hexahistidine tag (G-HHHHHH) and 
SpyTag003 (RGVPHIVMVDAYKRYK) (38) (for coupling to SpyCatcher003-mi3) or only a 15-
residue Avi-tag (GLNDIFEAQKIEWHE) followed by a 6xHis tag (for ELISAs). RBDs were purified 
from transiently-transfected Expi293F cell (Gibco) supernatants by Ni-NTA and size-exclusion 
chromatography (SEC) as described (82), and RBDs with an introduced PNGS used for making 
mosaic-8gm RBD-mi3 were compared to their counterpart RBDs by SDS-PAGE to verify addition 
of extra N-glycans. SEC RBD fractions identified by SDS-PAGE were pooled and stored at 4˚C 
or frozen in liquid nitrogen and stored at -80˚C for longer term storage. A soluble SARS-2 trimer 
with 6P stabilizing mutations (83) was expressed and purified as described (26).  Monoclonal 
human IgGs and human ACE-2 fused to human IgG Fc (hACE2-Fc) was expressed and purified 
as described (26, 32). 
 
Preparation of RBD-mi3 nanoparticles. SpyCatcher003-mi3 nanoparticles (78) were expressed 
in BL21 (DE3)-RIPL E coli (Agilent) transformed with the pET28a His6-SpyCatcher003-mi3 gene 
(Addgene) as described (34, 84). Briefly, transformed bacterial cell pellets were lysed in the 
presence of 2.0 mM PMSF (Sigma). Lysates were spun at 21,000xg for 30 min, filtered with a 0.2 
µm filter, and mi3 particles were isolated by Ni-NTA chromatography using a HisTrapTM HP 
column (GE Healthcare). Eluted particles were concentrated using an Amicon Ultra 15 mL 30K 
concentrator (MilliporeSigma) and SEC purified using a HiLoad® 16/600 Superdex® 200 (GE 
Healthcare) column equilibrated with 25 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.02% NaN3 (TBS). 
SpyCatcher003-mi3 particles were stored at 4˚C for up to 1 month and used for conjugations after 
0.2 µm filtering or spinning at 21,000xg for 10 min. 
 
Purified SpyCatcher003-mi3 nanoparticles were incubated with a 2-fold molar excess (RBD to 
mi3 subunit) of SpyTagged RBD (either a single RBD for homotypic SARS-2 RBD particles or an 
equimolar mixture of eight RBDs for mosaic particles) overnight at room temperature in TBS. The 
nanoparticles included the following RBDs: SARS-2 Beta (homotypic RBD-mi3); SARS-2 Beta, 
RaTG13, SHC014, Rs4081, RmYN02, pang17, Rf1, and WIV1 (mosaic-8b RBD-mi3); and N-
glycan modified versions of the clade 1a and 1b RBDs (Wuhan-Hu-1 SARS-2, RaTG13, SHC014, 
pang17, and WIV1) together with unmodified Rs4081, RmYN02, and Rf1 RBDs (mosaic-8gm 
RBD-mi3). For mosaic-8 mi3 nanoparticles, equivalent conjugation of each of the eight 
SpyTagged RBDs was verified as described by SEC and SDS-PAGE analysis of conjugations to 
make homotypic nanoparticles (34). 
 
Conjugated RBD-mi3 particles were separated from free RBDs by SEC on a Superose 6 10/300 
column (GE Healthcare) equilibrated with PBS (20 mM sodium phosphate pH 7.5, 150 mM NaCl) 
and fractions corresponding to conjugated RBD-mi3 and free RBD were identified by SDS-PAGE. 
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Concentrations of conjugated mi3 particles were determined using a Bio-Rad Protein Assay and 
are reported based on RBD content.  
 
RBD-mi3 nanoparticles were evaluated for binding to a human ACE2-Fc construct (32) and to 
human monoclonal antibodies that recognize known RBD epitopes by ELISA. Duplicate samples 
of 20 µL of a 2.5 µg/mL solution of a purified RBD-mi3 nanoparticle in 0.1 M NaHCO3 pH 9.8 was 
coated onto Nunc® MaxiSorp™ 384-well plates (Sigma) and incubated overnight at 4oC. After 
blocking with 3% bovine serum albumin (BSA) in TBS containing 0.1% Tween 20 (TBS-T) for 1 
hr at room temperature, plates were washed with TBS-T, and purified hACE2-Fc or human IgG 
(50 µg/mL with 8 4-fold serial dilutions in TBS-T/3% BSA) was added to plates for 3 hr at room 
temperature. Plates were then washed again for 1 hr at room temperature, and a 1:100,000 
dilution of secondary HRP-conjugated goat anti-human IgG (Abcam) was added. SuperSignal™ 
ELISA Femto Maximum Sensitivity Substrate (ThermoFisher) was added to plates following 
manufacturer instructions, and plates were read at 425 nm. For the homotypic SARS-2 Beta 
ELISA shown in fig. S2F, 50 µL of a 2.5 µg/mL solution of a purified RBD-mi3 nanoparticle in 0.1 
M NaHCO3 pH 9.8 was coated onto Corning® 96 well plates (Sigma) and incubated overnight at 
4oC. After blocking with 3% bovine serum albumin (BSA) in TBS containing 0.1% Tween 20 (TBS-
T) for 1 hr at room temperature, plates were washed with TBS-T, and purified hACE2-Fc or human 
IgG (50 µg/mL with 8 serial dilutions 4-fold in TBS-T/3% BSA) was added to plates for 3 hr at 
room temperature. Plates were then washed again for 1 hr at room temperature, and a 1:10,000 
dilution of secondary HRP-conjugated goat anti-human IgG (Abcam) was added. 1-step Ultra 
TMB-ELISA (ThermoFisher) was added to plates following manufacturer instructions, and plates 
were read at 450 nm. 
 
Prior to shipping for immunization and challenge studies, aliquots of conjugated RBD-mi3 
nanoparticles were frozen in liquid nitrogen and then lyophilized (35) in PBS pH 7.4 using a 
Labconco CentriVap Benchtop Concentrator at -4˚C. For immunizations, distilled water was 
added to rehydrate to a concentration of 1 mg/mL for a working stock, and the solution was gently 
pipetted and then spun at 20,000 x g for 10 minutes to remove aggregates. 
 
DLS and EM characterizations of RBD-mi3 nanoparticles. DLS was used to evaluate the 
hydrodynamic radii of conjugated nanoparticles. Lyophilized nanoparticles were rehydrated as 
described above. Sample sizes of 100 µL were loaded into a disposable cuvette, and DLS 
measurements were performed on a DynaPro® NanoStarTM (Wyatt Technology) using settings 
suggested by the manufacturer. A fit of the second order autocorrelation function to a globular 
protein model was used to derive the hydrodynamic radius and plotted on Graphpad Prism 9.3.1.   
 
Mosaic-8b RBD-mi3 and homotypic SARS-2 RBD-mi3 were compared by negative-stain EM. 
Ultrathin, holey carbon-coated, 400 mesh Cu grids (Ted Pella, Inc.) were glow discharged (60 s 
at 15 mA), and a 3 µL aliquot of SEC-purified RBD-mi3 nanoparticles were diluted to ~40-100 
ug/mL and applied to the grids for 60 s, Grids were then negatively stained with 2% (w/v) uranyl 
acetate for 30 s. Images were collected with a 120 keV FEI Tecnai T12 transmission electron 
microscope at 42,000x magnification. 
 
K18-hACE2 mice. The Institutional Animal Care and Use Committee at Rocky Mountain 
Laboratories provided animal study approvals, which were conducted in an Association for 
Assessment and Accreditation of Laboratory Animal Care-accredited facility, following the basic 
principles and guidelines in the Guide for the Care and Use of Laboratory Animals eighth edition, 
the Animal Welfare Act, U.S. Department of Agriculture, and the U.S. Public Health Service Policy 
on Humane Care and Use of Laboratory Animals. 
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Animals were kept in climate-controlled rooms with a fixed light/dark cycle (12 hours/12 hours). 
Mice were cohoused in rodent cages, fed a commercial rodent chow with ad libitum water, and 
monitored at least once daily. The Institutional Biosafety Committee (IBC)–approved work with 
infectious SARS-1 and SARS-2 viruses was conducted under biosafety level 3 (BSL3) conditions. 
All sample inactivation was performed according to IBC-approved standard operating procedures 
for removal of specimens from high containment. 
 
Cells and virus for K18-hACE2 mouse studies. Virus propagation was performed in VeroE6 
cells in DMEM containing 2% FBS, 1 mM L-glutamine, penicillin (50 U/mL), and streptomycin (50 
μg/mL (DMEM2). The consensus sequence of the virus stock (SARS-CoV-2 Beta, isolate hCoV-
19/USA/MD-HP01542/2021) used for these experiments was identical to the initial sequence 
deposited on GISAID (EPI_ISL_890360), and no contaminants or additional mutations were 
detected. VeroE6 cells were maintained in DMEM supplemented with 10% fetal bovine serum, 1 
mM L-glutamine, penicillin (50 U/mL), and streptomycin (50 μg/mL). VeroE6 cells were provided 
by R. Baric (University of North Carolina at Chapel Hill). Mycoplasma testing is performed at 
monthly intervals, and no mycoplasma was detected. 
 
Vaccination and infection of K18-hACE2 mice. K18-hACE2 mice (4 to 6 weeks old) were 
vaccinated with 2 x 50 μL of 5 µg (RBD equivalents)/(11.4 µg of total RBD-mi3) of RBD-mi3 or 5 
µg unconjugated mi3 adjuvanted with Addavax 1:1 (1:1 v/v) intramuscularly at day 0 and day 28 
(and challenged 28 days post the second immunization). Fourteen days before virus challenge, 
animals were bled via the submandibular vein. 10 animals per group were challenged with 30 μL 
of 105 TCID50 SARS-2/human/USA/MD-HP01542/2021 ) or SARS-1 (Tor2) diluted in sterile 
Dulbecco’s modified Eagle’s medium (DMEM). Weight was recorded daily. Six mice per group 
were observed for survival up to 28 days post challenge or until they reached end-point criteria. 
End-point criteria were as follows: labored breathing or ambulatory difficulties or weight loss 
exceeding 20%. Four animals per group were euthanized on day 4 post challenge to collect 
oropharyngeal swabs and lung tissue for virology and histology analysis. 
 
Virus titration after K18-hACE2 mouse challenge. Lung tissue sections were weighed and 
homogenized in 750 μL of DMEM. Virus titrations were performed by end point titration in VeroE6 
cells expressing transmembrane protease serine 2 (TMPRSS-2) and human ACE2 (BEI 
resources, NR-54970), which were inoculated with 10-fold serial dilutions of virus swab medium 
or tissue homogenates in 96-well plates. When titrating tissue homogenate, cells were washed 
with PBS and 100 μL of DMEM2. Cells were incubated at 37°C and 5% CO2, and cytopathic effect 
(CPE) was assessed 6 days later. 
 
RNA extraction and quantitative RT-PCR. RNA was extracted from oropharyngeal swabs 
swabs using a QIAamp Viral RNA kit (Qiagen) according to the manufacturer’s instructions. 
Tissue was homogenized and extracted using the RNeasy kit (Qiagen) according to the 
manufacturer’s instructions. Viral gRNA- and sgRNA-specific assays (47) were used for the 
detection of viral RNA. The RT-PCR reaction (with 5 μL template viral RNA) was performed using 
the QuantStudio (Thermo Fisher Scientific) according to instructions of the manufacturer. 
Dilutions of SARS-2 with known genome copies were run in parallel to be used to generate the 
standard curves. 
 
Histopathology of K18-hACE2 mouse samples. Lungs were collected upon necropsy on day 
4 post challenge and perfused with 10% neutral-buffered formalin. Fixation was done for at least 
7 days. Tissues were placed in cassettes and processed with a Sakura VIP-6 Tissue Tek on a 
12-hour automated schedule using a graded series of ethanol, xylene, and PureAffin. Embedded 
tissues were sectioned at 5µm and dried overnight at 42 degrees C prior to staining. Sections 
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were stained with Harris hematoxylin (Cancer Diagnostics, no. SH3777), decolorized with 0.125% 
HCl/70% ethanol, blued in Pureview PH Blue (Cancer Diagnostics, no. 167020), counterstained 
with eosin 615 (Cancer Diagnostics, no. 16601), dehydrated, and mounted in Micromount (Leica, 
no. 3801731). An anti-SARS-2 nucleocapsid protein rabbit antiserum (generated by GenScript) 
was used at a 1:1000 dilution to detect specific anti–SARS-2 immunoreactivity using the 
Discovery ULTRA automated staining instrument (Roche Tissue Diagnostics) with a Discovery 
ChromoMap DAB (Ventana Medical Systems) kit. All slides were examined by a board-certified 
veterinary anatomic pathologist who was blinded to study group allocations. Scoring was done as 
follows. H&E; no lesions = 0; less than 1% = 0.5; minimal (1-10%) = 1; mild (11-25%) = 2; 
moderate (26-50%) = 3; marked (51-75%) = 4; severe (76-100%) = 5. IHC attachment; none = 0; 
less than 1% = 0.5; rare/few (1-10%) = 1; scattered (11-25%) = 2; moderate (26-50%) = 3; 
numerous (51-75%) = 4; diffuse (76-100%) = 5. Histopathology report is summarized in Data S1. 
 
BIOQUAL Ethics Statement and Animal Exposure. Rhesus macaques were housed and cared 
for at BIOQUAL, Inc., Rockville, MD. The study was performed under a BIOQUAL-approved 
IACUC protocol (no. 21-092P), in strict accordance with the recommendations in the Guide for 
the Care and Use of Laboratory Animals of the NIH, and in accordance with BIOQUAL standard 
operating procedures. BIOQUAL is fully accredited by the Association for Assessment and 
Accreditation of Laboratory Animal Care (AAALAC) and through OLAW, assurance number A-
3086. All animal procedures were done under anesthesia to minimize pain and distress, in 
accordance with the recommendations of the Weatherall report ‘The use of non-human primates 
in research.’ Teklad 5038 primate diet was provided once daily according to macaque size and 
weight. The diet was supplemented daily with fresh fruit and vegetables. Fresh water was given 
ad libitum.  
 
Vaccination of NHPs. The study included 16 rhesus macaques (Macaca mulatta), 8 of which 
were immunized with mosaic-8b RBD-mi3 (n = 8), and 8 of which served as unimmunized controls 
for SARS-2 and SARS-1 challenges. Four immunized and four unimmunized control NHPs were 
challenged with SARS-2, and four immunized and four unimmunized control NHPs were 
challenged with SARS-1. Due to a shortage of available NHPs, we could not compare mosaic-8b 
RBD-mi3 and homotypic SARS-2 Beta RBD-mi3 immunizations in this study. Macaques were 3-
5 years old and ranged from 3.2 to 5.1 kg in body weight. Male and female macaques per group 
were balanced. Studies were performed unblinded. Macaques were evaluated by BIOQUAL 
veterinary staff before, during, and after immunizations.   
 
NHPs were immunized intramuscularly with 25 μg (calculated based on RBDs; 56.8 µg of total 
RBD-mi3) of mosaic-8b RBD-mi3 adjuvanted with VAC20 (2% aluminum hydroxide wet gel, 
Al2O3) (alum) (Prime and Boost 1) (kind gift of Francis Laurent and Ruben Caputo, SPI Pharma) 
and subsequently with MF59 adjuvant (EmulsiPan, a squalene-based oil in water emulsion 
adjuvant (50) (kind gift of Harshet Jain, Panacea Biotec) for Boost 2. Each macaque received 0.5 
mL into the right forelimb. 
 
SARS-2 and SARS-1 intranasal and intratracheal NHP challenges. All macaques were 
challenged at week 11 (3 weeks after last vaccination) through combined intratracheal (1.0 mL) 
and intranasal (0.5 mL per nostril) inoculation with an infectious dose of 10^5 TCID50 of SARS-2 
B.1.617.2 (Delta, BEI NR-55612) or SARS-1 (Urbani). Virus was stored at −80 °C before use, 
thawed by hand and placed immediately on wet ice. Stock was diluted to 5 × 10^4 TCID50 mL−1 
in PBS and vortexed gently for 5 s before inoculation. Nasal swabs, BAL, plasma, and serum 
samples were collected seven days before and two and four days after challenge. Protection from 
SARS-2 and SARS-1 infection was determined by quantitative infectious viral load assay 
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(TCID50), and for SARS-2, also by RT-PCR of subgenomic N RNA (N sgRNA) as described above 
except that amplification was done use the Applied Biosystems 7500 Sequence detector.  
 
TCID50 and SARS-2 and SARS-1 virus PRNT50 assays in NHP samples 
PRNT50 (50% plaque reduction neutralization test) assays for NHP samples were performed in a 
biosafety level 3 facility at BIOQUAL, Inc. (Rockville, MD). The TCID50 assay was conducted by 
addition of 10-fold graded dilutions of samples to Vero/TMPRSS2 cell monolayers. Serial dilutions 
were performed in cell culture wells in quadruplicates. Positive (virus stock of known infectious 
titer in the assay) and negative (medium only) control wells were included in each assay set-up. 
The plates were incubated at 37oC, 5.0% CO2 for 4 days. The cell monolayers were visually 
inspected for CPE, i.e., complete destruction of the monolayer. TCID50 values was calculated 
using the Reed-Muench formula (85). For samples that had less than 3 CPE positive wells, the 
TCID50 could not be calculated using the Reed-Muench formula, and these samples were 
assigned a titer of below the limit of detection (i.e., <2.7 log10 TCID50/mL). For acceptable assay 
performance, the TCID50 value of the positive control tested within 2-fold of the expected value. 
 
To measure neutralization activity, sera from each NHP were diluted to 1:10 followed by a 3-fold 
serial dilution. Diluted samples were then incubated with ~30 plaque-forming units of wild-type 
SARS-2 USA-WA1/2020 (BEI NR-52281), B.1.351 (Beta, 501Y.V2.HV, NR-54974), or B.1.617.2 
(Delta, BEI NR-55612) variants, in an equal volume of culture medium for 1 hour at 37°C. The 
serum-virus mixtures were added to a monolayer of confluent Vero E6 cells and incubated for 
one hour at 37°C in 5% CO2. Each well was then overlaid with culture medium containing 0.5% 
methylcellulose and incubated for 3 days at 37°C in 5% CO2. The plates were then fixed with 
methanol at -20°C for 30 minutes and stained with 0.2% crystal violet for 30 min at room 
temperature. PRNT50 were estimated by determining the dilution at which plaques were reduced 
by 50% with respect to viral control.  
 
Mouse and NHP serum ELISAs. 20 µL of a 2.5 µg/mL solution of an affinity purified His-tagged 
RBD in 0.1 M NaHCO3 pH 9.8 was coated onto Nunc® MaxiSorp™ 384-well plates (Sigma) and 
incubated overnight at 4oC. After blocking with 3% bovine serum albumin (BSA) in TBS containing 
0.1% Tween 20 (TBS-T) for 1 hr at room temperature, plates were washed with TBS-T, and 
mouse or NHP serum diluted 1:100 and then serially diluted by 4-fold with TBS-T/3% BSA was 
added to the plates for 3 hr at room temperature. Plates were then washed again for 1 hr at room 
temperature, and a 1:50,000 dilution of secondary HRP-conjugated goat anti-mouse IgG (Abcam) 
was added. SuperSignal™ ELISA Femto Maximum Sensitivity Substrate (ThermoFisher) was 
added to plates following manufacturer’s instructions, and plates were read at 425 nm. Curves 
were plotted and analyzed to obtain midpoint titers (EC50 values) using Graphpad Prism 9.3.1 
(Graphpad Softwatre, San Diego, CA) assuming a one-site binding model with a Hill coefficient. 
Titer differences were evaluated for statistical significance between groups using ANOVA test 
followed by Tukey’s multiple comparison post hoc test calculated using Graphpad Prism 9.3.1. 
 
Mouse and NHP serum pseudovirus neutralization assays. Lentiviral-based SARS-2 variants 
(Wuhan-Hu-1, Beta, Delta, Omicron BA.1), SARS-1, WIV1, SHC014, and BtKY72 K493Y/T498W 
(13) (kind gift of Alexandra Walls and David Veesler, University of Washington) pseudoviruses 
were prepared as described (20, 86) using genes encoding S protein sequences lacking C-
terminal residues in the cytoplasmic tail: 21 amino acid deletions for SARS-2 variants, WIV1, 
SHC014, and BtKY72 and a 19 amino acid deletion for SARS-CoV. For neutralization assays, 
three-fold serially diluted sera from immunized mice or NHPs were incubated with a pseudovirus 
for 1 hour at 37˚C, then the serum/virus mixture was added to 293TACE2 target cells and incubated 
for 48 hours at 37ºC. Media was removed, cells were lysed with Britelite Plus reagent (Perkin 
Elmer), and luciferase activity was measured as relative luminesce units (RLUs). Relative RLUs 
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were normalized to RLUs from cells infected with pseudotyped virus in the absence of antiserum. 
Half-maximal inhibitory dilutions (ID50 values) were derived using 4-parameter nonlinear 
regression in AntibodyDatabase (87). Statistical significance of titer differences between groups 
were evaluated using ANOVA test followed by Tukey’s multiple comparison post hoc test of ID50s 
converted to log10 scale using Graphpad Prism 9.3.1. 
 
Mouse serum samples for RBD epitope mapping. Animal procedures and experiments were 
performed at Labcorp Drug Development (formerly Covance, Inc.) according to protocols 
approved by the IACUC to obtain serum samples for RBD epitope mapping experiments. 
Immunizations of mosaic-8b or homotypic SARS-2 Beta (5 µg each based on RBD content, 11.4 
µg of total RBD-mi3) in 100 µL of 50% v/v AddaVaxTM adjuvant (InvivoGen) were done using 
intramuscular (IM) injections of 7-8-week-old female BALB/c mice (Envigo) (8 animals per cohort). 
Animals were boosted 3 weeks after the prime with the same quantity of antigen in adjuvant. 
Animals were bled under anesthesia approximately every 2 weeks via orbital sinus and then 
euthanized 7 weeks after the prime (Day 49) after blood collection from the jugular vein. Blood 
samples were stored at room temperature in serum separator tubes (BD Microtainer) to allow 
clotting. Serum was then harvested into microtubes (Mikro-Schraubrohre) and stored at -80˚C 
until use.   
 
RBD sequencing library construction and SARS-2 enrichment. To construct sequencing 
libraries for RBD epitope mapping of mouse sera, 25 μl of ds-cDNA was brought to a final volume 
of 53 μL in elution buffer (Agilent Technologies) and sheared on a Covaris LE220 (Covaris) to 
generate an average size of 180 to 220 base pairs (bp). The following settings were used: peak 
incident power, 450 W; duty factor, 15%; cycles per burst, 1000; and time, 300 s. The Kapa 
HyperPrep kit was used to prepare libraries from 50 μL of each sheared cDNA sample following 
modifications of the Kapa HyperPrep kit (version 8.20) and SeqCap EZ HyperCap Workflow 
(version 2.3) user guides (Roche Sequencing Solutions Inc.). Adapter ligation was performed for 
1 hour at 20°C using the Kapa Unique-Dual Indexed Adapters diluted to 1.5 μM concentration 
(Roche Sequencing Solutions Inc.). After ligation, samples were purified with AmPure XP beads 
(Beckman Coulter) and subjected to double-sided size selection as specified in the SeqCap EZ 
HyperCap Workflow User’s Guide. Precapture polymerase chain reaction (PCR) amplification 
was performed using 12 cycles, followed by purification using AmPure XP beads. Purified libraries 
were assessed for quality on the Bioanalyzer 2100 using the High-Sensitivity DNA chip assay 
(Agilent Technologies). Quantification of pre-capture libraries was performed using the Qubit 
dsDNA HS Assay kit and the Qubit 3.0 fluorometer following the manufacturer’s instructions 
(Thermo Fisher Scientific). 
 
The myBaits Expert Virus bait library was used to enrich samples for SARS-2 according to the 
myBaits Hybridization Capture for Targeted NGS (version 4.01) protocol. Briefly, libraries were 
sorted according to estimated genome copies and pooled to create a combined mass of 2 μg for 
each capture reaction. Depending on estimated genome copies, two to six libraries were pooled 
for each capture reaction. Capture hybridizations were performed for 16 to 19 hours at 65°C and 
subjected to 8 to 14 PCR cycles after enrichment. SARS-2–enriched libraries were purified and 
quantified using the Kapa Library Quant Universal quantitative PCR mix in accordance with the 
manufacturer’s instructions. Libraries were diluted to a final working concentration of 1 to 2 nM, 
titrated to 20 pM, and sequenced as 2 × 150 bp reads on the MiSeq sequencing instrument using 
the MiSeq Micro kit version 2 (Illumina). 
 
Sorting of yeast libraries to identify mutations that reduced binding by polyclonal antisera. 
Plasma mapping experiments were performed in biological duplicate using the independent 
mutant RBD libraries as previously described (44). Prior to the yeast-display deep mutational 
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scanning experiments, 100 µL of each serum sample was heat-inactivated at 56°C for 30 min and 
twice-depleted of nonspecific yeast-binding antibodies by incubating with 50 OD units of AWY101 
yeast containing an empty vector (54). Mutant yeast libraries that were pre-sorted for RBD 
expression and ACE2 binding (54) were induced to express RBD in galactose-containing 
synthetic defined medium with casamino acids (6.7g/L Yeast Nitrogen Base, 5.0g/L Casamino 
acids, 1.065 g/L MES acid, and 2% w/v galactose + 0.1% w/v dextrose). 16–18 hours post-
induction, cells were washed and incubated with plasma at a range of dilutions for 1 hour at room 
temperature with gentle agitation. For each plasma, we chose a sub-saturating dilution such that 
the amount of fluorescent signal due to plasma antibody binding to RBD was approximately equal 
across samples. The exact dilution used for each plasma is given in fig. S5B. The libraries were 
washed and secondarily labeled for 1 hour with 1:100 fluorescein isothiocyanate-conjugated anti-
MYC antibody (Immunology Consultants Lab, CYMC-45F) to label for RBD expression and 1:200 
Alexa Fluor-647-conjugated goat anti-human-IgG Fc-gamma (Jackson ImmunoResearch 109-
135-098) to label for bound NHP antibodies or Alexa Fluor-647-conjugated goat anti-mouse-IgG 
Fc-gamma (Jackson ImmunoResearch 115-605-008) to label for bound mouse antibodies. A flow 
cytometric selection gate was drawn to capture RBD mutants with reduced antibody binding for 
their degree of RBD expression (fig. S5C). For each sample, 7.5 x 106 to 1.1 x 107 cells were 
processed on the BD FACSAria II cell sorter (fig. S5C). Antibody-escaped cells were grown 
overnight in synthetic defined medium with casamino acids (6.7g/L Yeast Nitrogen Base, 5.0g/L 
Casamino acids, 1.065 g/L MES acid, and 2% w/v dextrose + 100 U/mL penicillin + 100 µg/mL 
streptomycin) to expand cells prior to plasmid extraction. 
 
DNA extraction and Illumina sequencing. Plasmid samples were prepared from 30 optical 
density (OD) units (1.6e8 colony forming units (cfus)) of pre-selection yeast populations and 
approximately 5 OD units (~3.2e7 cfus) of overnight cultures of plasma-escaped cells (Zymoprep 
Yeast Plasmid Miniprep II) as previously described (53, 88). The 16-nucleotide barcode 
sequences identifying each RBD variant were amplified by polymerase chain reaction (PCR) and 
prepared for Illumina sequencing as described (53, 88). Barcodes were sequenced on an Illumina 
HiSeq 2500 with 50 bp single-end reads. Raw sequencing data are available on the NCBI SRA 
under BioProject PRJNA770094, BioSample SAMN26315988. 
 
Analysis of deep sequencing data to compute each mutation’s escape fraction. Escape 
fractions were computed essentially as described in (53) and exactly as described in (54). We 
used the dms_variants package (https://jbloomlab.github.io/dms_variants/, version 0.8.10) to 
process Illumina sequences into counts of each barcoded RBD variant in each pre-selection and 
antibody-escape population. We computed the escape fraction for each barcoded variant using 
the deep sequencing counts for each variant in the original and plasma-escape populations and 
the total fraction of the library that escaped antibody binding via the formula in (54). These escape 
fractions represent the estimated fraction of cells expressing that specific variant that falls in the 
escape bin, such that a value of 0 means the variant is always bound by plasma and a value of 1 
means that it always escapes plasma binding.  
 
We then applied a computational filter to remove variants with >1 amino-acid mutation, low 
sequencing counts, or highly deleterious mutations that might escape antibody binding due to 
poor RBD expression or folding as described (54). The reported antibody-escape scores are the 
average across duplicate libraries; these scores are also in Data S2. Correlations in final single-
mutant escape scores are shown in fig. S5D. Full documentation of the computational analysis is 
at https://github.com/jbloomlab/SARS-CoV-2-RBD_Beta_mosaic_np_vaccine.   
 
Data visualization. The static logo plot visualizations of the escape maps in the paper figures 
were created using the dmslogo package (https://jbloomlab.github.io/dmslogo, version 0.6.2) and 
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in all cases the height of each letter indicates the escape fraction for that amino-acid mutation 
calculated as described above. For the mouse sera, the static logo plots feature any site where 
for >=1 serum, the site-total antibody escape was >10x the median across all sites and at least 
10% the maximum of any site. Due to the relative breadth of the NHP sera, a more sensitive 
threshold for displaying sites on logo plots was used: we include any site where the site-total 
antibody escape is >5x the median across all sites and at least 5% maximum of any sites. This 
resulted in sites 383, 386, and 500. Thus, sites 346, 352, 357, 369, 378, 384, 385, 390, 396, 408, 
462, 468, 477, 478, 484, 485, 486, and 501 were also added to the logo plots to facilitate 
comparison to the mouse sera. For each sample, the y-axis is scaled to be the greatest of (a) the 
maximum site-wise escape metric observed for that sample, or (b) 20x the median site-wise 
escape fraction observed across all sites for that plasma. The code that generates these logo plot 
visualizations is available at https://github.com/jbloomlab/SARS-CoV-2-
RBD_Beta_mosaic_np_vaccine/blob/main/results/summary/escape_profiles.md. In many of the 
visualizations, the RBD sites are categorized by epitope region (23) and colored accordingly. 
Specifically, we define the class 1 epitope as residues 403+405+406+417+420+421+453+455–
460+473–478+486+487+489+503+504, the class 2 epitope as residues 472+479+483–
485+490–495, the class 3 epitope to be residues 341+345+346+354–357+396+437-452466–
468+496+498–501, and the class 4 epitope as residues 365–390+408+462.  
 
For the static structural visualizations in figures, the Beta RBD surface (PDB 7LYQ) was colored 
by the site-wise escape metric at each site, with white indicating no escape and red scaled to be 
the same maximum used to scale the y-axis in the logo plot escape maps, determined as 
described above. We created interactive structure-based visualizations of the escape maps using 
dms-view (89) that are available at https://jbloomlab.github.io/SARS-CoV-2-
RBD_Beta_mosaic_np_vaccine/. 
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Figure S1. Preparation of RBD-mi3 nanoparticles. (A) Schematic for construction of mosaic-8b, 
mosaic-8gm, and homotypic SARS-2 Beta RBD-mi3 nanoparticles. (B) Superose 6 10/300 SEC 
profile after RBD conjugations to mi3 (2-fold molar excess of RBD to mi3 subunit) showing peaks 
for RBD-mi3 nanoparticles and free RBD(s). (C) SDS-PAGE (Coomassie staining) of RBD-
coupled nanoparticles, free RBDs, and free SpyCatcher003-mi3 particles (SC3-mi3). (D) Dynamic 
light scattering (DLS) measurements for RBD-coupled nanoparticles. (E) Negative-stain EM 
images of RBD-coupled mi3 nanoparticles. 
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Figure S2. Binding characteristics of mosaic and homotypic RBD-mi3 nanoparticles. (A) 
Sequence conservation of the 16 sarbecovirus RBDs in Fig. 1D calculated by the ConSurf 
Database (79) shown on two views of an RBD surface (PDB 7BZ5). The ACE2 binding footprint 
(PDB 6M0J) is outlined by yellow dots. Epitopes of representative monoclonal antibodies used in 
binding experiments are outlined in dots of the indicated colors using information from structures 
of Fabs bound to RBD or S trimer (C118: PDB 7RKS, S309: PDB 7JX3; C144: PDB 7K90, C102: 
PDB 7K8M). The N-linked glycan attached to RBD residue 343 is indicated by teal spheres, and 
the potential N-linked glycosylation site at position 370 in RBDs derived from sarbecoviruses other 
than SARS-2 is indicated by a teal circle. (B-F) ELISAs to assess binding of the hACE2-Fc and 
the indicated monoclonal antibodies to RBD-mi3 nanoparticles. Nanoparticles were immobilized 
on an ELISA plate, incubated with the indicated monoclonal antibody or hACE2-Fc, and binding 
was detected using a labeled anti-human IgG secondary antibody. Data points are presented as 
the mean and standard deviation of duplicate measurements. Some error bars are too small to 
be distinguished from data points. RLU = relative luminescence units. (B) Binding to mosaic-8 
RBD-mi3 (Wuhan-Hu-1 SARS-2 RBD plus seven animal sarbecovirus RBDs as previously 
described (34) and in fig. S1A). (C) Binding to mosaic-8gm RBD-mi3 (mosaic-8 with a Wuhan-
Hu-1 SARS-2 RBD plus the seven animal sarbecovirus RBDs in which N-linked glycosylation site 
sequons at RBD position 484 were introduced in the clade 1a and 1b RBDs to occlude class 1 
and 2 RBD epitopes). (D) Binding to mosaic-8b RBD-mi3 (SARS-2 Beta RBD plus the seven 
animal sarbecovirus RBDs in fig. S1A). (E) Binding to homotypic SARS-2 Wuhan Hu-1 RBD-mi3 
(as previously described (34)). (F) Binding to homotypic SARS-2 Beta RBD-mi3.  
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Figure S3. Lung pathology is reduced in mosaic-8b immunized mice challenged with either SARS-
2 or SARS-1. Images taken at 100x magnification. Scale bar = 100µm. Red arrows = 
immunoreactivity in panels G and M. (A-D) Hematoxylin and eosin (H&E) stained lung tissue 
sections from animals vaccinated with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, 
or unconjugated mi3 and challenged with SARS-2 Beta (minimal-mild peribronchial inflammation 
in panels B and D). (E-H) Immunohistochemistry (IHC) staining for SARS-CoV-2 N protein antigen 
from animals vaccinated with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, or mi3 and 
challenged with SARS-2 Beta. (I-L) H&E stained lung tissue sections from animals vaccinated 
with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, or mi3 and challenged with SARS-
1. (M-P) Immunohistochemistry staining for SARS-CoV-2 N protein antigen from animals 
vaccinated with either mosaic-8b, mosaic-8gm, homotypic SARS-2 Beta, or mi3 and challenged 
with SARS-1.  
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Figure S4. Mosaic-8b and homotypic SARS-2 Beta RBD-mi3 immunizations elicit binding and 
neutralizing antibodies in BALB/c mice. (A) Left: Immunization schedule. BALB/c mice were 
immunized with either mosaic-8 or homotypic SARS-2 Beta RBD-mi3. Right: Structural models of 
mosaic-8 and homotypic RBD-mi3 nanoparticles constructed using PDB 7SC1 (RBD), PDB 4MLI 
(SpyCatcher), and PDB 7B3Y (mi3). (B-G) ELISA and neutralization data for antisera (taken 4 
weeks post boost) from individual mice (open circles) presented as the mean (bars) and standard 
deviation (horizontal lines). ELISA results are shown as midpoint titers (EC50 values); 
neutralization results are shown as half-maximal inhibitory dilutions (ID50 values). Dashed 
horizontal lines correspond to the background values representing the limit of detection. 
Significant differences between cohorts linked by horizontal lines are indicated by asterisks: 
p<0.05 = *, p<0.01 = **, p<0.001 = ***, p<0.0001 = ****. Rectangles below ELISA and 
neutralization data indicate mismatched strains (pink; the RBD from that strain was not present 
on the nanoparticle) or matched strains (gray; the RBD was present on the nanoparticle). 
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Figure S5. Comprehensive mapping of mutations that reduce binding of sera from immunized 
mice or NHPs to the SARS-2 Beta RBD. (A) Deep mutational scanning (54) was used to map 
mutations that reduced binding of polyclonal antibodies from immunized animals to the SARS-2 
Beta RBD. A library of yeast containing nearly all possible mutations in the SARS-2 Beta RBD 
was incubated with sera from immunized mice or NHPs, and fluorescence-activated cell sorting 
(FACS) was used to enrich for cells expressing RBD (detected with a C-terminal Myc tag, green 
star) with reduced antibody binding, detected using an anti-mouse (for mouse sera) or anti-human 
(for NHP sera) IgG Fc-gamma secondary antibody. Deep sequencing was used to quantify the 
frequency of each mutation in the pre-selection and antibody-escape cell populations. We 
calculated each mutation’s “escape fraction,” the fraction of cells expressing RBD with that 
mutation that fell in the antibody-escape FACS bin (ranging from 0 to 1). The site-level escape 
metric is the sum of the escape fractions of all mutations at a site. (B) Top: Representative plots 
of nested FACS gating strategy used for all experiments to select for RBD+ single cells. Samples 
were gated by SSC-A versus FSC-A, SSC-W versus SSC-H, and FSC-W versus FSC-H) that 
also express RBD (FITC-A vs. FSC-A). Bottom: FACS gating strategy for one of two independent 
libraries to select cells expressing RBD mutants with reduced binding by polyclonal sera (cells in 
blue). Gates were set manually during sorting. Selection gates were set to capture cells that have 
a reduced amount of antibody binding for their degree of RBD expression. FACS scatter plots 
were qualitatively similar between the two libraries. SSC-A, side scatter-area; FSC-A, forward 
scatter-area; SSC-W, side scatter-width; SSC-H, side scatter-height; FSC-W, forward scatter-
width; FSC-H, forward scatter height; FITC-A, fluorescein isothiocyanate-area. (C) The percent 
and number of RBD+ cells sorted into the antibody-escape gate for each library selected against 
each serum.  (D) Mutation (top)- and site (bottom)-level correlations of escape scores between 
two independent biological replicate libraries. The complete antibody-escape scores are available 
in Data S2 and at https://github.com/jbloomlab/SARS-CoV-2-
RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv.  
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Figure S6. Complete antibody-escape maps for sera from mice immunized with the mosaic 8b-
RBD-mi3 (top 6) or homotypic SARS-2 Beta RBD-mi3 (bottom 6) nanoparticles. The line plots at 
left indicate the sum of effects of all mutations at each RBD site on antibody binding, with larger 
values indicating more escape. The logo plots at right show key sites where mutations disrupted 
antibody binding (highlighted in purple on the line plot x-axes). The height of each letter is that 
mutation’s escape fraction. The y-axis is scaled independently for each sample. RBD sites are 
colored by antibody epitope, indicated at right. Sites where some mutations introduce a potential 
N-linked glycosylation site sequon (NxS/T) are highlighted in gray. All escape scores are in Data 
S2 and at https://github.com/jbloomlab/SARS-CoV-2-
RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv. Interactive 
versions of logo plots and structural visualizations are at https://jbloomlab.github.io/SARS-CoV-
2-RBD_Beta_mosaic_np_vaccine/.   
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Figure S7. Complete antibody-escape maps for sera from NHPs immunized with mosaic 8b-RBD-
mi3. (A) As in fig. S6, line plots (left) and logo plots (right) indicate the sum of the escape fractions 
for each mutation at a site, or mutation-level escape fractions for key sites, respectively. The y-
axis is scaled independently for each sample. Sites where mutations introduce a potential N-
linked glycosylation site sequon (NxS/T) are highlighted in gray. RBD sites are colored by 
antibody epitope, indicated in panel B. (B) The site-total antibody escape is averaged across n=4 
sera, with the y-axis scaled as in panel A. (C) The average site-total antibody escape is mapped 
to the surface of the SARS-2 Beta RBD (PDB 7LYQ), with white indicating no escape, and blue 
indicating the site with the most antibody escape. Key sites are labeled, and labels are colored 
by antibody class. All escape scores are in Data S2 and at https://github.com/jbloomlab/SARS-
CoV-2-RBD_Beta_mosaic_np_vaccine/blob/main/results/supp_data/all_raw_data.csv. 
Interactive versions of logo plots and structural visualizations are at 
https://jbloomlab.github.io/SARS-CoV-2-RBD_Beta_mosaic_np_vaccine/.   
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Table S1. Pathology and immunohistochemistry (IHC) for lung tissue isolated from vaccinated 
K18-hACE2 mice challenged with either SARS-2 Beta or SARS-1. Scoring for hematoxylin and 
eosin (H&E) is as follows: 0 = not present; 1 = minimal, 1-10%; 2 = mild, 11-25%; 3 = moderate, 
26-50%; 4 = marked, 51-75%; 5 = severe, 76-100%. Scoring for IHC is as follows: 0 = not present; 
1 = rare/few; 2 = scattered; 3 = moderate; 4 = numerous; 5 = diffuse. Each column represents a 
single animal.  
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