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Abstract
Sugar maple and red maple are closely-related co-occurring tree species significant to the

North American forest biome. Plant abiotic stress effects including nutritional imbalance

and manganese (Mn) toxicity are well documented within this system, and are implicated in

enhanced susceptibility to biotic stresses such as insect attack. Both tree species are

known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified

soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no

knowledge about the cellular sequestration of Mn and other nutrients in these two species.

Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellu-

lar deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For
both species, excess foliar Mn was deposited in symplastic cellular compartments. There

were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium

(Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells

of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg

deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple

is primarily a symplastic process. For each species, leaf-surface damage due to biotic

stress including insect herbivory was compared between sites with acidified and non-acidi-

fied soils. Although it was greatest overall in red maple, there was no difference in biotic

stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple

trees on buffered non-acidified soil were less damaged by biotic stress compared to those

on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This

study concluded that foliar nutrient distribution in symplastic compartments is a determinant

of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.
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Introduction
The essential trace element manganese (Mn) is integral to photosynthesis, free radical mitiga-
tion and redox processes, yet certain conditions of soil chemistry, climate and/or genetic pre-
disposition can render it toxic to plants [1]. The importance of Mn as a plant nutrient and its
phytotoxic effects have featured in the scientific literature for at least two centuries, however
there is a lack of consensus about the physiology of Mn stress [2–6]. Manganese is ubiquitous
in soil, occurring primarily as three easily interchangeable oxides of Mn(II), Mn(III) and Mn
(IV) [1], of which only Mn(II)-oxide is soluble and available for plant uptake via the xylem.
Relatively minor shifts in soil chemistry and/or climatic conditions can enhance soil-Mn bio-
availability to levels potentially deleterious to plants [7–14]. In the field, soil Mn concentrations
coupled with seasonal variation in rainfall and temperature have a strong bearing on plant
over-exposure to Mn(II), while genetics largely determines the uptake of and physiological
response to high shoot-tissue Mn concentrations. Soil acidification and waterlogging are often
key factors in geographic regions to which this problem is common [1]. The enhanced solubili-
sation of soil-Mn also triggers nutritional deficiencies since Mn(II) outcompetes similar ions
such as Ca(II) and Mg(II) for plant uptake. Given that the manifestation and extent of Mn phy-
totoxicity as observed in the field largely hinges on climatic variables, stress symptoms com-
monly are seasonally heterogeneous.

Changing global weather patterns may harm healthy plant ecosystems when inherent bal-
ances between key abiotic and biotic factors become skewed [15–17]. Soil acidification brought
upon by acid deposition has been identified in North American studies as likely contributing
to the ill-health of its native forests [5, 7, 18–24]. These and other reports support the wider
notion of a ‘cascade effect’ linking nutritional imbalance, metal toxicity, free radical damage,
heightened susceptibility to external factors such as pest and pathogen attack, drought, overex-
posure to sunlight, atmospheric ozone etc. The detrimental interaction of sunlight and exces-
sively accumulated foliar Mn manifest in photobleaching damage to chloroplasts and oxygen
free-radical stress has been reported for common bean and sugar maple [9, 13], pointing to the
possible broad-scale negative impacts of extended periods of sunlight exposure [15]. Soil heat-
ing and drying contributes to Mn toxicity, as does high rainfall via strongly-reducing hypoxic
conditions induced by waterlogging [11, 12, 25]. Altered rainfall patterns and other climatic
variables therefore could exacerbate the potency of interactive plant and soil processes that
drive Mn toxicity.

Controlled experiments and field studies documenting foliar Mn overaccumulation in
North American forest trees have also identified the notable susceptibility of sugar maple (Acer
saccharum (Sapindaceae)) to Mn stress [20, 23, 26]. An evaluation of nine tree species common
to the eastern forests of North America [23] found that only sugar maple had a negative growth
response to Mn overexposure. While compositional shifts within this globally significant
biome may be attributed to acid rain, logging, coal mining, land reclamation, etc., the likely
contribution of these factors toward Mn phytotoxicity has drawn little attention. The geo-
graphic distribution of sugar maple overlaps that of its close relative, red maple (A. rubrum),
both characteristic biome species, of which the latter is notably less susceptible to nutrient
imbalance [13]. Foliar-Mn elevation in sugar maple stands on acidified host substrates in
North America had been widely reported [19, 21, 27, 28] prior to description of certain key
physiological processes of Mn toxicity stress in both sugar and red maple [5, 13, 22, 23, 26, 29].
Controlled experiments showed that Mn treatments under conditions of high light exposure
resulted in limited leaf CO2 exchange rates and stomatal conductance. This occurred to a
greater extent in sugar maple than in red maple [13], while field studies linked high foliar Mn
to reduced carboxylation efficiency and photo-oxidative stress [22, 29]. Mycorrhizal studies
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[13] have further illuminated the susceptibility of sugar maple to nutrient imbalance on acid
soils. As reviewed by St Clair et al. [13], it is well documented that in North America sugar
maple is notably vulnerable to a range of associated abiotic and biotic stresses including insect
damage. Poor foliar nutritional status has been implicated in reduced chemical-defence capac-
ity and long-term decline in tree health.

Manganese stress in plants although extensively documented, is explained in the literature
via two major divergent hypotheses based either on symplastic [9], or apoplastic [4, 30, 31]
processes. The symplastic hypothesis proposes that Mn toxicity acts via photo-oxidative stress,
a process exacerbated by light, temperature, and other environmental factors, whereas accord-
ing to the apoplastic hypothesis Mn stress damage will not be sensitive to these climatic vari-
ables. This discord warrants evaluation in the light of predicted changes to climatic variables
[15], which when factored into the symplastic hypothesis has potentially far-reaching implica-
tions for enhanced Mn phytotoxcity. It is plausible then that misinterpreting Mn phytotoxicity
could result in failure to recognise broad patterns of incrementally rising Mn stress directly due
to shifting climate.

The Allegheny Plateau in Pennsylvania is a region within the eastern North American forest
biome recognised as experiencing nutritional stress [21]. While soil properties including his-
tory of glaciation, parent material, and slope position have a strong bearing on plant nutrition,
the overriding effects of soil acidification via acid precipitation are clearly evident [19]. Vari-
ability in foliar-Mn concentrations according to slope position on the study site had previously
been demonstrated, i.e. that trees on buffered substrates of the lower slopes remain relatively
unaffected by soil acidification compared to those on sites upslope. Sugar and red maple occur
across both habitats, as well as on glaciated and unglaciated landscapes; with those on weath-
ered soils exhibiting consistently elevated foliar Mn concentrations, albeit with some seasonal
variation. The disparity in their susceptibilities to nutritional imbalance as widely documented
for upslope trees presents a useful case study for examining interaction between plant Mn over-
exposure and response to soil acidification.

The aims of this investigation were several-fold, i.e. 1) to investigate foliar Mn disposal in
two closely-related plant species differentially affected by Mn overaccumulation, 2) to address
the question as to whether Mn phytotoxicity is predominantly symplastic or apoplastic, and 3)
test the hypothesis that disruption to the primary photosynthetic surfaces, i.e leaf adaxial sur-
faces, correlates with elevated foliar Mn levels and nutritional stress.

Materials and Methods

Field sampling of plant material
Red maple and sugar maple leaves were sampled in late summer when their green-leaf Mn con-
centrations peak. Two different slope locations, i.e. upslope and downslope, were selected at
Hardwood Ridge (41° 42.5660 N, 77° 55.4880 W) on the Allegheny Plateau, Pennsylvania
(USA); on the basis of existing knowledge about this site [22]. It is well established that on this
site, unbuffered acidified soils upslope drive foliar Mn overaccumulation in several tree species
including red and sugar maple, while trees on buffered soils downslope are unaffected by Mn.
It is also well established that unlike red maple, sugar maple on acidified soil is affected by Mn
toxicity. The sampling strategy adopted here was premised upon consistent findings of numer-
ous published field and controlled studies describing Mn stress in sugar maple at this site and
others [5, 13, 22, 23, 26, 29]. Two trees each of sugar maple and red maple were sampled at
both slope positions for a range of analyses, and also for the lodgement of herbarium vouchers
(S1 Table). The trees were numbered 1 to 8 with the following notation: 1, 2 sugar maple
upslope (SM/U); 3, 4 sugar maple downslope (SM/D); 5, 6 red maple upslope (RM/U); 7, 8 red
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maple downslope (RM/D). Uppermost canopy leaves maximally exposed to sunlight were tar-
geted because visible and UV radiation generate reactive oxygen species (ROS) that cause oxi-
dative stress exacerbated by excess foliar Mn [13, 23] As detailed below, leaf material was
sampled for the purposes of bulk-tissue chemical analysis, image analysis, light microscopy
(LM), transmission electron microscopy (TEM), and scanning electron microscopy energy dis-
persive spectroscopy (SEM EDS). Herbarium vouchers were pressed in the field and lodged at
the Pennsylvania Agricultural College Herbarium, The Pennsylvania State University.

Leaf chemical analyses
Ten mature fully expanded leaves from each tree were pooled, dried and finely milled; from
which ~0.5 g was digested in 5 ml heated concentrated (70%) nitric acid (HNO3). The digestate
was diluted to 50 ml with deionised water, filtered and analysed by ICP-OES against a series of
similarly acidified standards to yield leaf-tissue concentrations of boron (B), sodium (Na), Mg,
aluminium (Al), phosphorus (P), S, potassium (K), Ca, Mn, iron (Fe), copper (Cu) and zinc
(Zn).

Image analysis for surface damage
Forty to seventy fresh leaves (per tree) were photographed from a fixed distance directly above,
against a white background and a scale-bar. Leaf adaxial surface damage was quantified using
ImageJ1 (National Institutes of Health, Bethesda, Maryland, USA) software. Absent leaf mar-
gins were digitally estimated so as to enable quantification of missing leaf area against total leaf
area. Localised surface discolouration was also quantified as a fraction of the total leaf area. For
each leaf, missing tissue and localised discolouration percentages were pooled to obtain a quan-
titative estimate of overall surface-disruption. The effect of slope on leaf damage for each spe-
cies was tested using arcsin-transformed data (IBM1 SPSS1 Statistics, Version 22).

Light microscopy (LM)
Areas of healthy fresh leaf laminal tissue lacking surface damage/necrosis etc were sampled for
microscopy. They were processed using a method modified from [32], i.e., by gluteraldehyde
fixation in HEPES buffer, OsO4 post fixation, ethanol dehydration, resin infiltration and
embedding in Spurrs1. Sections (0.5–1 μm) cut with a glass knife on a microtome (Leica UC6,
Leica Microsystems, Deerfield, IL USA) were stained with toluidine blue, examined by light
microscopy (Olympus BX51, Olympus America, Center Valley, PA USA), and photographed
with a CCD camera (Jenoptik ProgRes CFscan, Rochester, NY USA).

Scanning electron microscopy and x-ray microanalysis (SEM EDS)
Leaves sampled in the field were immediately wrapped in damp paper towel, sealed in plastic,
and stored cool for processing in no later than 24 hrs, as determined by verified protocols [32–
34]. Leaf lamina discs (1 cm) were punched out and immediately cryo-fixed by slam-freezing
on a liquid-nitrogen (LN)-cooled metal mirror cryofixation device (Leica EMMM80, Leica
Microsystems, Deerfield, IL USA), and stored in LN. Examination of cellular elemental con-
tents in biological material requires initial cryo-fixation to immobilise metabolic processes,
after which there are several proven methodological options for preparing and examining sam-
ples to obtain data that reliably represents cellular contents in vivo [34]. For this study, logistics
and available options determined that the method used by Bidwell et al [35] modified from an
original protocol by Marshall [36] was the most suitable. Numerous other studies including
plant science research have previously successfully employed freeze-substitution sample
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preparation methodology for in vivomicrobeam analysis [37–42]. Here, sample preparation
was undertaken in a desiccated environment, and entailed slow freeze-substitution with a dry
non-polar solvent mixture (10% acrolein in diethyl ether) over a two-week period commencing
at LN temperature and gradually being elevated to room temperature. Substituted tissues were
retained desiccated, infiltrated with and embedded in desiccated Spurrs1 resin, and stored
desiccated.

For SEM EDS elemental analysis, each resin block was hand-trimmed, mounted on a SEM
sub-stage and planed cross-sectionally using a glass knife on an ultramicrotome (Reichert Jung
FC4E, Leica Microsystems) to reveal the leaf cross-sectional surface. Specimen electrical charg-
ing under the electron beam was mitigated by several steps, primarily by initially pre-coating
the planed sample block with platinum (Pt) (10 Å) to cover the vertical sides, then replaning
off the anaytical surface to remove Pt from the leaf cross-secional area. The sample was then
inserted into the preparation chamber (Gatan 1500CT, Gatan, Pleasanton CA USA) of a SEM
(JEOL JSM 840A, JEOL, Tokyo, Japan) and evaporatively coated with Al (10 Å) for examina-
tion. The initial Pt coat provided an overall superior conduction pathway via the sample sub-
stage while the Al-coat on the leaf cross-sectional area provided sample-surface conductivity
optimal for x-ray microanalysis. The sample was moved into the SEM specimen chamber and
analysed at 15 kV, a take-off angle of 40° and a beam current of 2 x 10−10 A. An Aztec analyser
with an X-MAX 150 mm2 detector (Oxford Instruments, High Wycombe, Buckinghamshire,
UK) was used to capture quantitative data and qualitative elemental x-ray analytical maps
from selected areas on leaf cross-sectional surfaces. Qualitative maps are shown in terms of
counts per second (cps) corrected for background, peak overlaps and pulse pile up events.
Quantitative data were obtained by dileanting regions of interest on qualitative maps. The
summed x-ray spectra from these regions were processed using the Oxford Instruments ver-
sion of the XPP software, according to the methodology of Pouchou and Pichoir [43, 44]. Qual-
itative and/or quantitative x-ray data are represented here for the following elements: oxygen
(O), carbon (C), Na, Mg, silicon (Si), P, S, chloride (Cl), K, Ca, Mn.

Since the sample preparation strategy adopted here prioritised cell-content retention over
anatomical clarity etc., the secondary electron images (SEIs) were anticipated to lack anatomi-
cal clarity. Hence for each X-ray map dataset, an oxygen map was included as a proxy for leaf
anatomical detail. Cell-wall Ca evident in Ca x-ray maps provided additional anatomical defi-
nition in most samples. The embedding resin Spurrs contained high concentrations of Cl;
hence all Cl x-ray data were disregarded. Aluminium data were omitted because the sample
was Al-coated. Cell K-content was used to gauge whether cell lumina had been properly
retained since translocation of light elements is a common artefact of sample preparation [34,
45]. Consistency of elemental distributions within cellular and subcellular compartments in
replicate SEM EDS datasets can be regarded as additional evidence of sample preparation that
has effectively retained tissue cell-contents in vivo, since artefactual dislocation of cell contents
via ion diffusion across cell-wall and cell-compartment boundaries yields anomalous inconsis-
tent x-ray analytical data lacking sharp distributional boundaries. Here, individual x-ray data-
sets, each acquired over 6–12 hrs, from 2–4 regions within a leaf cross-section, for two different
leaf cross-sections (leaves) per tree, from all 8 trees sampled for leaf chemical analysis by ICP, i.
e 4–8 x -ray datasets per tree were obtained. Single representations of qualitative pictorial x-ray
map data will be included in the Results section below even though they were obtained in mul-
tiples. Note, as detailed earlier in this section, leaves sampled and processed for SEM EDS x-ray
analysis were not from the pooled leaf material (10 leaves per tree) analysed by ICP. Logistics
of sample preparation and the need for a substantial sample size for bulk foliar elemental analy-
sis prevented the division of single leaves for both ICP and SEM EDS analyses. The ICP data in
this study were intended as indicators of mean foliar nutrient concentrations per tree, by way
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of demonstrating agreement with existing literature documenting differences in foliar Mn and
other nutrient concentrations between sugar maple and red maple growing on acidified and
non-acidified soils of the Allegheny Plateau.

Results
Leaf chemical analyses by ICP obtained here confirmed existing knowledge about the nutri-
tional status of sugar maple and red maple trees at this and other sites on the Allegheny Pla-
teau, i.e. that both tree species on unbuffered acidified soils upslope accumulate much higher
foliar-Mn concentrations than they do on buffered soils downslope (Table 1). Upslope sugar
maple had the highest observed foliar Mn concentrations, approximately 5–20-fold that of
downslope trees; with around a 2–6-fold difference for red maple (Table 1). Upslope sugar
maple foliar-Mg concentrations were around half that of downslope trees. Sugar maple foliar-
Al concentrations were greater than those of red maple across slope positions, with both spe-
cies exhibiting stronger accumulation on acidic soil.

Comparison of quantitative leaf-damage data between slope locations (Table 2) revealed
that sugar maple trees on unbuffered acidified soils upslope were more damaged by biotic stress
than those on buffered soils downslope (P< 0.02). While leaf surface damage overall was great-
est in the red maple trees, it was similar at both slope locations. Therefore, red maple biotic
stress leaf-damage was independent of slope location (P = 0.26).

Light microscopical examination of leaf anatomy (Fig 1) showed some natural variation,
although this was not attributable to species or tree position. Anatomical features common to
all samples included mostly single or less frequently two layers of elongate palisade cells below
the upper epidermis and preceding the spongy mesophyll layer set above the lower epidermis.
There were intercellular spaces in the spongy tissue and among palisade cells.

Qualitative and quantitative x-ray data extracted from leaf tissues showed that the in vivo
micro-distribution patterns of certain nutrient elements such as Mg, S and Mn varied between

Table 1. Foliar elemental concentrations in dry weight (DWT) sugar maple (SM) and redmaple (RM) leaves sampled at upslope (U) and downslope
(D) positions.

Tree no—Maple species/slope Dry weight foliar elemental concentrations (mg kg-1
DWT)

B Na Mg Al P S K Ca Mn Cu Fe Zn

1-SM/U 64 < 10 700 39 2400 1800 6200 7400 4300 9 57 17

2-SM/U 66 < 10 700 41 1500 1500 8600 8600 3200 6 90 22

3-SM/D 36 < 10 1500 25 1300 1700 7100 9100 760 5 42 17

4-SM/D 25 < 10 1100 18 1400 1500 4600 9800 210 6 38 11

5-RM/U 42 < 10 2400 11 1500 1200 6100 8900 2600 9 38 23

6-RM/U 48 < 10 1800 17 1600 1200 6500 7900 1200 11 66 37

7-RM/D 33 < 10 1300 8 1400 1100 6700 6100 390 5 34 21

8-RM/D 32 < 10 1600 8 1300 1100 6200 6500 730 3 48 32

doi:10.1371/journal.pone.0157702.t001

Table 2. Mean leaf adaxial surface disruption for duplicate sugar maple (SM) and redmaple (RM) trees
sampled at upslope (U) and downslope (D) positions.

Maple species/slope n leaves Mean* ± sd*

SM/U 83 7.74 ± 1.91

SM/D 88 4.57 ± 1.97

RM/U 71 9.54 ± 1.20

RM/D 121 7.95 ± 1.63

* Calculated as reverse arcsin-transformed data

doi:10.1371/journal.pone.0157702.t002
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sugar maple and red maple, and that Ca deposits were least evident in sugar maple upslope
(SM/U) (Figs 2–5). These observations were borne out in replicate, of which single representa-
tions of elemental x-ray map datasets for sugar maple (Figs 2–4A and 4B) and red maple (Figs
2–4C and 4D) are included here. For any given sample, the intensity of x-ray signal/counts
comprising elemental maps (i.e, their clarity) reflected total tissue concentrations of those ele-
ments. There was little detectable intraspecific difference between upslope and downslope in
vivo foliar elemental micro-distribution patterns. Where an element such as Mn occurred in
much lower tissue-concentrations downslope for example, it was observed within anatomically
equivalent locations at which it was abundant in corresponding upslope samples with highly
elevated tissue (Mn) concentrations. This was difficult to resolve when the element was barely
detectable. In sugar maple upslope (SM/U), highly elevated foliar-Mn was concentrated in der-
mal cell vacuoles; however, the sequestration of far lower foliar-Mn concentrations in sugar
maple downslope (SM/D) was not clearly resolved, with indication of possible apoplastic Mn
deposition in the upper epidermal layer. Vacuolar Mg, S and Mn concentrations extracted
from selected areas of Figs 2–4A–4C (Table 3) provide a guide to localised in vivo elemental
concentrations. X-ray intensity line-scan profiles for Mn, Mg and S collected across leaf sec-
tions (Figs 2–4) clearly show interspecies differences in cellular sequestration patterns for these
elements (Fig 5). Assembled x-ray mapping data (Fig 6) highlighted key aspects of contrasting
foliar elemental sequestration patterns in SM/U, SM/D, RM/U and RM/D samples including
the co-accumulation of dermal Mn and S in SM/U only (Fig 6A), dermal Ca-Mg co-deposition
in SM/D (Fig 6B), mesophyll and dermal vacuolar-Mn, and mesophyll cytoplasmic S in RM/U
(Fig 6C) and vacuolar Mn in dermal and mesophyll cells along with strong Ca deposition in
RM/D (Fig 6D).

Fig 1. Light micrographs of upslope (above) and downslope (below) sugar (LHS) and red (RHS) maple leaf cross-sections. Upper epidermal (ue), palisade
(p), spongy mesophyll (sm) and lower epidermal (le) labels and scale bar apply to all images.

doi:10.1371/journal.pone.0157702.g001
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Dermal cell vacuoles were the primary deposition sites for Mg, S and Mn in all leaf samples,
even when their sequestration patterns contrasted markedly between species. Co-localisation
of these elements in SM/U and RM/U, of which SM/U had depleted foliar Mg and both SM/U
and RM/U had highly elevated Mn were clearly different. Most notable was the highly localised
Mg and Mn in RM/U mesophyll cell vacuoles. Upper-epidermal cells were generally well delin-
eated by Si in the cell-walls of most samples examined. The cell walls were Ca abundant, which
aided interpretation of tissue anatomy since it delineated cells. Oxygen maps indicated the
presence of cytoplasmic, vacuolar and cell wall components that contained higher O concen-
trations than the surrounding resin matrix. These O maps also suggested the occurrence of
crystalline Ca-oxalate when they mirrored corresponding high-intensity Ca x-ray maps in
shape and signal-intensity of these angular crystals. Presumed Ca-oxalate crystals and Ca-
intense deposits were prevalent through leaf tissues of all samples except SM/U. Amorphous
non-oxalic Ca deposits occasionally contained embedded spots/patches of O-intensity, suggest-
ing Ca-oxalate crystal formation in situ (Fig 2). There was one observation of dermal Ca-oxa-
late deposition in SM/D directly matching an area of highly localised Mn (Fig 2B). Cellular K
was present throughout, indicating satisfactory tissue fixation and elemental retention. Cell
nuclei were detectable by intensely bright P ‘spots’ (Fig 2) as confirmed by TEM. RM/U meso-
phyll cells containing strongly localised vacuolar Mn had highly detectable S in their cytoplasm,
with little or no S in dermal cell vacuoles. However, in SM/U where mesophyll vacuoles did not

Fig 2. Secondary electron images (SEI) in the top horizontal panel, with corresponding colour-coded X-ray maps directly below, showing in
vivoO and Ca-Kmaps in the two panels below. Leaf cross sections were taken from the following trees: (a) sugar maple uplsope (SM/U), tree no.1 in
Table 1; (b) sugar maple downslope (SM/D), tree no. 3 in Table 1; c) red maple upslope (RM/U), tree no. 5 in Table 1; and d) red maple downslope (RM/
D), tree no. 8 in Table 1. Upper epidermis at RHS in (a), (c) and (d), below in (b).

doi:10.1371/journal.pone.0157702.g002
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contain highly concentrated Mn, S was present in the cytoplasm of these cells, and, most nota-
bly and in contrast to red maple, strongly localised in dermal cell vacuoles.

Discussion
Consistent with previous studies, here sugar and red maple growing upslope on acidified host
substrates (SM/U and RM/U) on the Allegheny Plateau were found to be in a state of nutri-
tional imbalance by late summer. Both SM/U and RM/U had greatly elevated foliar Mn, with
SM/U being additionally Mg-deficient. Findings of similar field studies [13, 22] that RM/U
(over)accumulates higher foliar-Mn concentrations than SM/U, and that SM/U is affected by
Ca-deficiency were not confirmed by data obtained here, most likely due to seasonal variation,
although the lack of Ca-intense deposits such as Ca oxalate in SM/U leaf tissues was notewor-
thy. Dry weight (DW) phytoavailable soil-Mn concentrations at this study site are not known
to be high, e.g. 101 mg kg-1DW [22] in contrast to certain areas of eastern Australia for example
where inherently high phytoavailable soil-Mn concentrations around 5000 μg kg-1DW com-
monly cause crop toxicity [46, 47]. Since Mn uptake by plants is enhanced by temperature and
light, differences here in upslope and downslope foliar Mn concentrations while mostly
explained by soil acidity may also have been affected by slope-associated climatic variation
such as greater exposure to sunshine and warmth upslope compared to sheltered downslope
positions [8, 10, 48–50].

Visible leaf damage measurements (Table 2) incorporating insect herbivory, pathogeny and
malnutritional effects suggested that soil acidification had a significant exacerbating effect on

Fig 3. Secondary electron images (SEI) in the top horizontal panel (same sample as in Fig 2), with corresponding colour-coded X-ray maps
directly below, showing in vivo Ca-P and Ca-Mn composite maps in the two panels below.

doi:10.1371/journal.pone.0157702.g003
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sugar maple only, notwithstanding widespread leaf necrosis apparent on red maple trees on
both slope positions of the study site. These data provide plausible association between nutri-
tional imbalance, elevated Mn, and a diminished defence capacity in sugar maple. They sup-
port the findings of a previous study [51] in which leaf chemistry and biochemistry indicated
an acid-soil-enhanced vulnerability to insect damage in sugar maple. Interestingly, and in con-
trast to observations here on maple (Table 2), intrinsic foliar metal overaccumulation in metal-
lophytes is likely beneficial to chemical defence [52]. It is therefore possible that in this present
study, extremely high foliar Mn concentrations distributed throughout the leaves of RM/U
provided some degree of chemical defence.

The striking difference in in vivo foliar-Mn microdistribution patterns of two species as
closely related as SM/U and RM/U was interesting given such intra-generic variation in metal
disposal for a single metal is unusual, at least among Mn-metallophytes [33, 53, 54]. Micro-
probe studies have rarely been effectively applied to Mn accumulation in crop cultivars, some
of which while taxonomically almost identical are differentially Mn-tolerant. Cell-fractionation
experiments on contrasting Mn tolerance in two bean cultivars have shown foliar Mn to be pre-
dominantly vacuolar, i.e. symplastic [55]. Manganese tolerance strongly corresponded to its
(vacuolar) sequestration in the dermal fraction, a detoxification strategy likely to minimise
damage to vital metabolic processes within the mesophyll. Here, excess foliar-Mn in upslope
trees of both maple species were found to be located in dermal cell vacuoles, however concen-
tration within mesophyll cell vacuoles of the less Mn-sensitive RM/U is a novel strategy previ-
ously only observed among Mn-hyperaccumulating plant species [56], a small group with an

Fig 4. Secondary electron images (SEI) in the top horizontal panel (same sample as in Figs 2 and 3), with corresponding colour-coded X-ray
maps directly below, showin in vivo S, andMgmaps in the two panels below.

doi:10.1371/journal.pone.0157702.g004
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Fig 5. X-ray intensity profiles for Mn, Mg and S along transect lines taken through leaf cross sections as depicted in the SEM images
corresponding to frames a, b, c, and d in Figs 1–4. Data are collected to the lateral boundaries marked on either side of the central line. For the largest
Mn peak in each frame, weight %Mn concentrations have been converted to mmol/kg as a guide. Notation: ue = upper epidermis.

doi:10.1371/journal.pone.0157702.g005

Table 3. Mean vacuolar Mg, S and Mn concentrations in upslope sugar maple (SM/U) and upslope red maple (RM/U) leaves.

Maple species/slope Leaf cell vacuolar elemental concentrations (mmoles/kg of embedded tissue)

cell type (n) Mg se S se Mn se

SM/U ue (6) 20.6 5.0 77.9 12.7 173.0 47.1

SM/U p (4) 8.2 2.1 21.8 3.1 32.8 6.2

RM/U ue (5) 230.5 20.2 9.3 1.4 47.4 4.2

RM/U p (5) 148.1 12.9 18.7 2.8 41.9 8.4

RM/U sm (7) 70.0 6.2 24.9 3.5 85.6 11.8

RM/U le (5) 177.0 23.9 9.3 1.4 54.6 12.5

Cell-type notation: upper epidermis (ue), palisade mesophyll (p), spongy mesophyll (sm), lower epidermis (le).

doi:10.1371/journal.pone.0157702.t003
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intrinsic ability to scavenge and accumulate extremely high foliar Mn concentrations [57, 58].
These observations alone do not explain the known difference in Mn-sensitivity between SM/
U and RM/U [13, 23], a), and should be viewed collectively with other results here of certain
specific differences in foliar elemental distributions. Limitations of the methodology precluded
detection of very low Mn concentrations, for example as would occur in the photosynthetic
apparatus. If Mn present in relatively low foliar concentrations in SM/D was sequestered at
least partly within the dermal apoplastic tissues as suggested by the x-ray data, then at greatly
elevated foliar Mn concentrations, i.e. in SM/U, this sequestration strategy had shifted to a pre-
dominantly symplastic one.

It is reasonable to assume that vacuolar Mn and Mg exist in planta in their soluble forms,
i.e. as very similar divalent ions Mn(II) and Mg(II) [1, 59, 60]. Mesophyll cells are far more
photosynthetically active than dermal cells, which in these maple species appeared to contain
almost no chloroplasts when examined by both light microscopy and TEM. Mesophyll Mg(II)/
Mn(II) ratios in SM/U likely limit photosynthetic efficiency by excess Mn(II) competing with
the Mg(II) Rubisco activase co-factor [61]. It is also known that overaccumulated foliar Mn(II)

Fig 6. X-ray mapping data from Figs 2–4 combined here to highlight differences in multi-elemental co-deposition patterns in: a) SM/U, b) SM/D, c)
RM/U, d) RM/D.

doi:10.1371/journal.pone.0157702.g006
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can cause oxidative stress [9, 13, 22]. Therefore, in Mg-sufficient Mn-accumulative RM/U
where foliar Mg is abundantly co-localised with Mn in the mesophyll cell vacuoles, Mg may
mitigate oxidative stress by overcoming Mn competition, whereas in Mg-deficient and Mn-
sensitive SM/U, excess Mn when overloaded into the mesophyll competes more directly with
antioxidative enzyme co-factors to cause stress. The finding here that excess foliar Mn is
entirely vacuolar in SM/U affected by Mn toxicity adds to a mounting body of evidence that
disagrees with the hypothesis that Mn phytotoxicity occurs in the apoplast, manifesting in dark
leaf speckles [4, 6, 31, 62]. Numerous field and controlled-environment studies of Mn toxicity
in maple and bean [2, 3, 9, 13, 22, 55] thus far overwhelmingly support the hypothesis that its
mediation is symplastic. In these studies, the exacerbating effects of sunlight on Mn toxicity
further re-enforces the symplastic nature of these processes. While it is inarguable that some
plants upon exposure to excess Mn produce dark leaf-speckles, this may not be strictly a phyto-
toxcic response, rather, one of overexposure and foliar overaccumulation. It is noteworthy that
these studies suggesting an apoplastic scenario for Mn toxicity employed light intensities well
below that of solar radiation, thereby precluding the photobleaching and oxidative stress effects
reported in maple and bean [4, 31].

Although leaf chemical analyses gave little indication of overall Ca deficiency in either spe-
cies, it is noteworthy that the microanalytcal data indicated a high frequency of Ca-oxalate
crystals and unidentified Ca deposits in all samples except SM/U, previously reported as Ca
deficient. The formation of crystalline Ca-oxalate as well as its possible role in regulating Ca in
plants as discussed in the literature [63, 64] suggests that while there was no direct evidence
here of antagonistic Ca-deficiency driven by Mn oversupply at the root-soil interface, the for-
mation of Ca-oxalate crystals may have been affected. The single observation of Mn co-deposi-
tion with dermal Ca-oxalate in RM/D is evidence for a possible Mn-oxalate association, and
has previously reported in common bean [55].

In interrogating plant nutritional imbalance at the leaf cellular level, this study has provided
new perspective on the impacts of soil acidification and further confirmed that the mediation
of Mn toxicity and tolerance is predominantly symplastic. In doing so it helps resolve conflict-
ing theories of the mechanisms of Mn toxicity in the literature. Inherent plant genetic differ-
ences in competition, uptake and compartmentation are likely key determinants of
susceptibility to nutritional stress, even among species as closely related as sugar and red
maple. Plant Mn toxicity in both cultivated and natural systems should be of current and future
concern given Mn is common in soil, and easily rendered phytotoxic by climatic changes in
process. Given that sugar maple stress continues to be widely documented on soils with rela-
tively low bioavailable Mn concentrations long after early soil acidification should be indicative
of the far-reaching impacts of anthropogenically altered climate variables. Other factors such
as rising temperatures and warmer summers with extended periods of sunshine are predicted
to further exacerbate and extend Mn phytotoxicity. This study highlights the complexities of
predicting and elucidating nutritional stress in the face of shifting plant-soil relationships
brought upon by climate change.

Conclusions
Major interspecies differences observed here in the cellular deposition of foliar Mn and Mg
suggested that for sugar maple, elevated symplastic Mn in combination with depleted Mg likely
hinders photosynthetic efficiency and free radical damage mitigation via competition with
enzyme co-factors; whereas in red maple, excess symplastic Mg mitigates Mn toxicity mecha-
nisms in the symplast. Manganese abiotic stress due to Mn overaccumulation in sugar maple
foliage exacerbates biotic stress leaf-damage including insect attack.
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