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While recently developed short-read sequencing technologies may dramatically reduce the sequencing cost and eventually
achieve the $1000 goal for re-sequencing, their limitations prevent the de novo sequencing of eukaryotic genomes with the
standard shotgun sequencing protocol. We present SHRAP (SHort Read Assembly Protocol), a sequencing protocol and
assembly methodology that utilizes high-throughput short-read technologies. We describe a variation on hierarchical
sequencing with two crucial differences: (1) we select a clone library from the genome randomly rather than as a tiling path
and (2) we sample clones from the genome at high coverage and reads from the clones at low coverage. We assume that
200 bp read lengths with a 1% error rate and inexpensive random fragment cloning on whole mammalian genomes is feasible.
Our assembly methodology is based on first ordering the clones and subsequently performing read assembly in three stages:
(1) local assemblies of regions significantly smaller than a clone size, (2) clone-sized assemblies of the results of stage 1, and (3)
chromosome-sized assemblies. By aggressively localizing the assembly problem during the first stage, our method succeeds in
assembling short, unpaired reads sampled from repetitive genomes. We tested our assembler using simulated reads from D.
melanogaster and human chromosomes 1, 11, and 21, and produced assemblies with large sets of contiguous sequence and
a misassembly rate comparable to other draft assemblies. Tested on D. melanogaster and the entire human genome, our
clone-ordering method produces accurate maps, thereby localizing fragment assembly and enabling the parallelization of the
subsequent steps of our pipeline. Thus, we have demonstrated that truly inexpensive de novo sequencing of mammalian
genomes will soon be possible with high-throughput, short-read technologies using our methodology.
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INTRODUCTION
Sequencing technology has come a long way since Sanger first

introduced shotgun sequencing and assembly as a methodology for

sequencing entire genomes [1]. Initially only applicable to small

genomic sequences such as the genome of the bacteriophage l [2]

and viruses [3,4] and bacterial artificial chromosomes (BACs),

sequencing was expensive and required a great deal of manual

labor in order to assemble the reads into the underlying sequence.

Today, sequencing and assembly methodologies can be applied to

entire mammalian genomes and most of the labor is automated.

Sanger sequencing based on gel electrophoresis [5], still the

dominant sequencing technology, can produce random sequence

reads that are between 500 and 1000 base pairs long with less than

1% error rate at a cost of less than $0.001 per base (http://www.

appliedbiosystems.com).

Complex genomes contain many repetitive sequences that make

it more challenging to assemble the reads into the underlying

sequence. To help the process of assembly, reads are obtained with

some long-range information. Two common methods are: double-

barreled sequencing, where pairs of reads are obtained from both ends

of inserts of various sizes [6–9], and hierarchical sequencing, where the

genome is covered by cloned inserts such as BACs, and then reads

are obtained separately from each clone. Paired reads can resolve

repeats by jumping across them and disambiguating the ordering

of flanking unique regions. Whole-genome double-barreled

shotgun sequencing has been used successfully to assemble several

complex genomes [10–13], and a number of different assemblers

have been developed for this purpose [14–16]. Hierarchical

sequencing relies on clustering reads into small local sets that

represent the sequence of one clone, where most of the repeats

have a unique copy and therefore assembly is straight-forward.

This technique was used to sequence several genomes including

those of the yeast Saccharomyces cerevisiae [17,18], Caenorhabditis elegans

[19], and human [20]. Most applications of hierarchical

sequencing were performed under the ‘‘map first, sequence

second’’, or physical mapping approach: first, a complete physical

map of a large set of clones is constructed, covering the genome

with redundancy; then, a minimal tiling subset of those clones is

selected and fully sequenced. Physical mapping is by no means the

only possible way to perform hierarchical sequencing. Other

methods are possible but less explored, such as the walking

approach [21–23]. In the rat genome project, the Baylor Genome

Center used a hybrid method that combined elements of whole-

genome shotgun sequencing with hierarchical sequencing [24].

Unfortunately, the cost of sequencing and assembling a mam-

malian genome is still on the order of tens of millions of dollars and

months of factory-style sequencing. In order to fully realize the

promise of comparative genomics, the cost will have to be reduced

by several orders of magnitude. A number of new sequencing
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technologies are being developed that promise to lower the

sequencing cost to $100K (NIH grant RFA-HG-04-002: Near-

term technology development for genome sequencing) or even

$1K for a mammalian genome (NIH grant RFA-HG-04-003:

Revolutionary genome sequencing technologies). One such

technology, PyrosequencingTM [25], is ideal because of the

relative simplicity in massively parallelizing the sequencing via

microchip sensors and nanofluidics (http://www.454.com). One

downside of this technology is that it today produces reads that are

approximately 200 bp long and may not improve beyond 300 bp

in the near future. In addition, paired reads may be difficult to

obtain [26]. Some techniques have been devised for obtaining

paired reads with high-throughput technologies [27,28], but the

resulting read lengths are even shorter. Though the de novo

sequencing of bacterial genomes using Pyrosequencing and

a whole-genome shotgun approach has been demonstrated [28],

producing high-quality assemblies continues to be a challenge for

bacterial genomes [29], and it seems unlikely that such an

approach would extend to complex eukaryotes. Without a pro-

posed strategy for de novo sequencing using these technologies, their

future potential may be restricted to re-sequencing for mammalian

genomes.

In this paper we describe SHRAP (SHort Read Assembly

Protocol), a sequencing protocol and assembly methodology

designed to assemble a complex mammalian genome with high

fidelity using short reads from such technologies. Our protocol

handles data that we can realistically expect to obtain using

Pyrosequencing: no paired read information, reads of length

roughly 200 bp, and the patterns of errors commonly generated by

this technology. Although we follow a hierarchical sequencing

strategy, we refrain from a physical mapping-based approach

because it is laborious and time consuming — sequencing would

have to wait until a physical map is obtained. Instead, reads are

obtained from random clones that cover the genome at high

redundancy, and each clone is sampled at relatively low depth with

reads. The assembly process yields both a clone map and sets of

long, high-fidelity contiguous sequence (contigs). Such a cloning

scheme, while expensive today, is considerably cheaper and faster

than physical mapping and has potential for automation in the

future. To assess the feasibility of our approach, we present results

from simulated assemblies on finished genomes.

RESULTS

Sequencing protocol overview
The SHRAP sequencing protocol is a variation on hierarchical

sequencing which we believe has great potential for automation

and parallelization. The first step in our protocol is to take multiple

copies of the target genome and shear them into BAC insert-sized

fragments of mean length 150 Kb. In traditional hierarchical

sequencing we would then construct a high-coverage clone library

from these fragments and select a subset of the clones to form

a tiling path with minimal overlap using techniques such as

restriction enzyme fingerprinting. Our method is different in that

we randomly select a subset of the fragments to relatively high

coverage (genome-clone coverage level = CovG) and compute

a tiling path through them after sequencing.

Each fragment is then replicated into clones that are uniquely

identified. Finally, as in hierarchical sequencing, we sample reads

from each clone to a particular coverage (clone-read coverage

level = CovR), being careful to label each read with its particular clone

of origin. A second crucial difference with our method is that, since

the clones overlap each other significantly, we sequence each clone

to relatively low coverage to limit the amount of over-sampling. Our

net sequencing coverage level is therefore CovG?CovR. We describe the

implementation of the sequencing protocol in more depth in

Discussion. Figure 1 illustrates the sequencing protocol. This

sequencing protocol shares some elements with the skim BAC

approach used by the Baylor Genome Center in the rat genome

project, where the clone tiling path was not known beforehand and

each clone was enriched with whole-genome shotgun reads [24].

However, our method is significantly different in that it is

appropriate for unpaired, short reads, and in that clones are

augmented with reads from other clones.

Assembly methodology overview
Traditionally, in hierarchical sequencing, each clone is first

assembled independently from its reads, and subsequently the

clone assemblies are stitched together from the known physical

map. In our scheme, we do not know a priori the relative locations

of the clones. Instead, we compute the clone overlaps during the

first step of SHRAP assembly. Since each clone is only lightly

covered with reads, we do not assemble the clones independently

from their reads. By combining reads from multiple, overlapping

clones we effectively achieve a high coverage level of CovG?CovR.

Contig assembly takes place in three stages, grouping the reads

first into regions smaller than a clone length for independent

assembly, then combining the assembled contigs in increasingly

larger regions. Details of each step of the assembly are described in

Methods. Figure 1 illustrates the entire assembly process.

Clone ordering Although there are many approaches to

determining clone overlaps and their relative positions along the

genome, we propose a computational method that uses only the

clone read data. This allows us to produce the clones and sequence

them immediately, without any intervening steps. For each clone

we examine the k-mer content (the set of all sequences of k bases) of

its reads and then construct a clone graph whose edge weights

between two clones are the count of shared, relatively unique k-

mers. Then, we run a greedy contraction algorithm on the graph,

merging the nodes into ordered lists of the clones. Details of this

procedure are described in Methods. Upon completion, we have

determined sets of overlapping clones and their relative ordering

called clone contigs. This step effectively localizes the overlap

detection and assembly problem by restricting the set of possible

overlaps for reads to those reads within nearby clones.

Overlap detection and error correction In the next step of

our assembler, we find all possible read overlaps and correct

sequencing errors. Using the clone contigs, we restrict the search

for overlapping reads to a small set of neighboring clones. Our

error correction scheme uses transitive overlaps to improve

overlap detection sensitivity, and then creates multiple

alignments of the reads in order to detect false overlaps by

looking for excessive or correlated errors (a signature of repeated

sequence). Finally, it corrects errors by consensus, including errors

in the homopolymeric run count typical of Pyrosequencing. In our

simulations, this algorithm is able to reduce the error rate 50- to

100-fold depending on the total coverage level.

Contig assembly Once we have determined the read

overlaps, we perform contig assembly in three stages on

progressively larger regions. In the first stage we create read sets

that consist of reads selected from multiple clones that are

contained within subregions smaller than a clone length. These

read sets are constructed by first finding all reads that overlap each

particular clone, and then performing intersection and subtraction

operations on the sets of reads to isolate smaller regions. Each read

set is then assembled independently using the program Euler

[30,31]. In the second stage we create larger contig sets that

combine the contigs resulting from the previous stage in larger

Short-Read Assembly
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clone-sized regions for assembly with Euler. The third stage uses

a custom assembler to assemble entire clone contigs from the

results of the second stage.

Sequencing simulation
Our sequencing protocol simulation picks clones of size

150610 Kb randomly and uniformly from across the genome,

reaching a given clone depth of coverage CovG = 7.5x or 10.0x. We

do not model cloning bias in this study. Next, we generate reads in

a similar uniform fashion from each clone with a depth given by

the read coverage CovR = 1.5x or 2.0x. For many of our simulations

we used a read length of 200625 bp, but we also ran simulations

that varied the read length between 100 bp and 300 bp with

a proportional standard deviation to assess the effect of read length

on assembly quality.

For most assemblies, read errors are simulated by introducing

random mutations at a rate of 0.6% per base, random indels at

0.2% per base, and errors in the homopolymeric run count

producing an additional 0.2% errors per base for a total 1% error

rate. We also tested our assembler with proportionally higher error

rates of 2% and 3%; results are described in Discussion.

Homopolymeric run count errors, which are common in reads

obtained with Pyrosequencing, are introduced by perturbing the

run count by an amount drawn from a normal distribution with

a mean of 0 and a standard deviation proportional to the count.

The Pyrosequencing technology currently produces reads with

higher error rates, but improvements in both length and accuracy

are on the way [32] (H. Eltoukhy and M. Ronaghi, personal

communication).

Evaluation of Performance
Similar to the approach used to demonstrate the feasibility of

whole-genome shotgun sequencing of human [8], we used

a simulation approach to evaluate our assembly methodology.

Figure 1. Sequencing protocol and assembly methodology. Reads are obtained in a hierarchical sequencing protocol with high genome-clone
coverage and low clone-read coverage. From the k-mer content of each clone we construct a clone graph whose edge weights reflect the likely clone
proximities, and from this our clone ordering algorithm determines the clone contigs. Next, we find all putative read overlaps by only looking in
nearby clones and perform error correction. In three stages of contig assembly we 1) create read sets via set operations that consist of reads from
multiple overlapping clones within small clone subregions and assemble using Euler, 2) combine contigs resulting from the previous stage in clone-
sized contig sets for assembly, and 3) use a scalable assembler to merge entire clone contigs.
doi:10.1371/journal.pone.0000484.g001
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We simulated the production of clones and reads with sequencing

errors from the finished euchromatic sequences of human as well

as D. melanogaster. This allowed us to evaluate the assembly quality

by comparison against the original sequence. It should be noted

that our simulation results likely represent an upper bound in real

assembly performance because we do not model many sources of

error in real sequencing projects. We explore some of these

complications in Discussion.

To assess the feasibility of our methodology for large-scale

sequencing and assembly, we first tested our clone ordering

algorithm, which is crucial to the scalability of our assembler. Our

results demonstrate that clones can be ordered in long clone

contigs with very high accuracy, effectively localizing the fragment

assembly problem.

Next, we tested the remaining steps of our assembly method-

ology on the complete genome of D. melanogaster as well as human

chromosomes 1, 11, and 21, which are fairly representative of the

repeat complexity of the whole genome, using the two levels of

coverage. We also varied the read length from 100 to 300 bp on

human chromosome 21 to assess its effect on assembly quality.

Detailed results are described next.

Our methodology produces a rough ordering of sequence

contigs along the clone contigs, which can be used as a guide

during finishing. Several alternatives are available for joining

contigs into traditional scaffolds inexpensively; we investigated

a simple method based on new ultra high-throughput sequencing

technology that will soon be available (see Discussion).

Performance of the clone-ordering algorithm A key step

in our assembly methodology is the clone ordering step where we

identify clone contigs and their ordering of clones. We tested two

different levels of clone and read coverage: (CovG, CovR) = (7.5x,

1.5x) and (10.0x, 2.0x), corresponding to total coverage levels of

11.25x and 20.0x, and read lengths of 200 bp with a 1% error

rate. In Table 1 we report results that we obtained when testing

our clone ordering algorithm on the female D. melanogaster and

human genomes by measuring the resulting clone contig N50

length statistics, the total number of misassemblies on the genome,

and the proportion of genome free from misassembled clones. We

counted as a misassembly any group of clones that take part in

a single breakpoint between the true clone ordering and the one

produced by our algorithm. Our algorithm was able to accurately

determine the clone contigs of D. melanogaster without error. At

20.0x total coverage, each clone contig completely covered

a chromosome. For human we obtained large clone contigs but

some errors, particularly in regions involving long segmental

duplications. Although clone contig misassemblies may incorrectly

bring together disparate regions of the genome, they have limited

impact on the later stages of assembly. Only clones near the point

of misassembly are affected; the vast majority of clones are still

locally ordered correctly with respect to their neighbors. After

running the clone-ordering algorithm we checked each clone to

see whether its putative overlapping neighbors were all true

overlaps and found that 100% of the clones in D. melanogaster were

error-free and that at least 99.1% of the human sequence was

covered by clones that had correct neighbors and would not be

affected by clone contig misassemblies (Table 1).

We also tested the robustness of our algorithm to less ideal

sequencing conditions by simulating reads from the whole human

genome with clones with triple the standard deviation in clone size

(30 Kb) as well as a standard deviation of 20% in the number of

reads obtained from each clone. Although this approximately

doubled the number of misassemblies and halved the clone contig

N50 size, at least 98.9% of the sequence was still covered by clones

with perfect neighbors. Therefore, although clone contigs should

not be used as chromosomal maps for mammals without some

other form of finishing, they can still be used to effectively localize

and guide the assembly. Our clone ordering algorithm permits us

to separate the assembly into trivially parallelizable components

and limit the scope of clone overlaps, resulting in a computation

time that scales linearly with genome size.

Performance of contig assembly In past sequencing

projects using Sanger sequencing technology the main bottleneck

was the sequencing itself. Therefore, even high-quality assemblies

would typically sequence to no greater than 10x depth of coverage.

As a trade-off for shorter reads, we assume that future sequencing

technologies will be cheap enough to allow us to sequence to

a greater depth of coverage [28]. We performed our sequencing

simulations with total coverage levels of CovG?CovR = 11.25x and

20.0x.

The detailed results of these assemblies are presented in Table 2.

We report on the percentage of the original genome sequence

covered by assembled contigs larger than 1 Kb (Sequence covered);

the percentage of the sequence that is missing (Missing sequence)

because of (i) low (#2) clone coverage or low (#3) read coverage

(Low clone/read coverage), (ii) ordering misassembly side-effects (Clone

ordering misassembly), (iii) a tandem or nearby segmental duplication

(Tandem/nearby duplications), or (iv) high enrichment for specific

repetitive elements including LINEs, LTRs, satellites, and other

Table 1. Ordering of clones into clone contigs on the complete genomes of D. melanogaster and human.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sequence D. melanogaster (118 Mb) Human (2,851 Mb)

Clone coverage (CovG) 7.5x 10.0x 7.5x 10.0x 7.5x 10.0x

Read coverage (CovR) 1.5x 2.0x 1.5x 2.0x 1.5x 2.0x

Clone size (Kb) 150610 150610 150630

Reads per clone standard dev. 0.0% 0.0% 20.0%

Clone contig N50 (Mb) 10.5 22.4 10.0 46.2 5.2 16.1

Autosomal misassemblies 0 0 131 98 214 258

Sex-chromosome misassemblies 0 0 4 4 6 8

Genome covered by error-free clones 100% 100% 99.2% 99.1% 99.3% 98.9%

Read length = 200 bp, Total error rate = 1.0%
Using two coverage levels of 11.25x and 20.0x, our algorithm produced large clone contigs, completely covering each chromosome for D. melanogaster at 20.0x
coverage. Though completely error-free for D. melanogaster, the clone contigs for human had some misassemblies. However, such misassemblies only had a local effect
on later stages of the assembly, and even with high variances in both the clone size and number of reads per clone, at least 98.9% of the human genome was covered
by clones that did not overlap any other clones involved in misassemblies.
doi:10.1371/journal.pone.0000484.t001..
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simple repeats (Highly repetitive elements); the largest size x such that

50% of the underlying sequence is contained in contigs $x in size

(Contig N50); base quality score = 210?log10(# incorrect columns/

total # columns) for all bases aligned between the assembly and

the genome sequence, excluding misassemblies and small inser-

tions and deletions at least 4 bp in size (Base quality); incidents of

misassembly per Mb of assembled sequence, where a misassembly

is any sequence further than 250 bp apart mistakenly brought

together (Misassemblies); and incidents of small insertions or

deletions per Mb of assembled sequence whose size is between 4

and 250 bp (Small indels).

The most surprising result for our assemblies was the large

contig sizes, even with the lowest coverage level. For D. melanogaster

we achieved an N50 contig size of 61 Kb, and increasing the

coverage to 20.0x yielded a very large leap to 160 Kb, albeit at the

expense of somewhat more misassemblies. All of the human

chromosomes showed similar results of around 20 Kb for 11.25x

coverage and 58–79 Kb for 20.0x. The complete profile of contig

sizes for these assemblies is shown in Figure 2. The overall base

quality was good, with less than 1 error in 2000 bases, and the

scores improved for higher coverage as expected. Small insertions

of less than 10 bp and deletions of on average 132 bp were found

in our assemblies. Upon manual examination, essentially all of

these appeared to be caused by short tandem repeats.

Large-scale misassemblies, or sequences further than 250 bp

apart mistakenly brought together, occurred at a rate that is

similar to those reported for contigs in other draft assemblies. For

example, in the draft mouse genome, the quality was estimated to

be between 2 and 4 incidents per Mb [13], while in human 8.6

minor and major misassemblies per Mb were found [20], although

assembler performance has improved significantly since then.

Because our clone ordering allows us to restrict interactions

between clones to close pairs, misassemblies within correct clone

contigs generally did not bring together sequence that was

separated by more than two clone lengths. For human, 97% of

the misassemblies brought together sequence that was at most two

clone lengths (300 Kb) apart, while for D. melanogaster this was true

for 90% of the cases. For human chromosomes 1 and 21 the

misassembly rate improved dramatically with increasing coverage,

while for human chromosome 11 and D. melanogaster the

misassembly rate went up slightly, suggesting that our assembler

was merging contigs too promiscuously.

The proportion of the genome covered by assembled contigs is

somewhat low for 11.25x coverage, ranging between 90.5% and

93%, with around 3% of the sequence missing due to low coverage

(defined as #2 clones or #3 reads). At 20.0x coverage we cover

95.6% of D. melanogaster and 97.2–98.1% of the human chromo-

somes. We analyzed the missing regions and found that they were

caused primarily by low read coverage (0.2% in the largest human

chromosome 1), clone ordering misassemblies (0.2%), tandem or

nearby segmental duplications (0.3%), and highly enriched short,

repetitive elements (1.1%), in total accounting for all but 0.6% of

the original sequence.

Thus, provided we can sequence to somewhat greater depth

than in traditional sequencing projects, the results show that our

assembly methodology will be able to successfully produce draft

assemblies of complex, repetitive genomic sequence. Because the

results for human chromosomes 1, 11, and 21 were so similar and

each of the chromosomes has approximately the same proportion

of short, repetitive elements as the entire human genome, we

expect that the assembly quality for the entire human genome

would be comparable.

Varying the read length We were also interested in assessing

how the read length affects our assembly quality. We assembled

human chromosome 21 at both net coverage levels of 11.25x and

20.0x, varying the average read length from 100 to 300 bp in

50 bp increments. Table 3 lists the assembly quality statistics for

each read length, and Figure 3 shows the full distribution of contig

sizes. Our results demonstrate that lengths of 200 bp or higher

produce assemblies with good contig lengths and misassembly

rates. The sequence coverage, assembled contig sizes, and number

of misassemblies continued to improve substantially in going from

200 bp to 250 bp, while increasing the read length further to

300 bp did not yield as large gains.

Thus, in order to effectively use our sequencing and assembly

scheme, sequencing technologies should be able to achieve an

average read length of 200 bp, but further read length improve-

ments may not be necessary. Interestingly, increasing the coverage

level from 11.25x to 20.0x at read lengths of 200 bp improved the

assembly quality more than raising the read length from 200 to

Table 2. Quality of fragment assembly with two levels of coverage.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sequence D. melanogaster (118 Mb) Human chr21 (34.2 Mb) Human chr11 (131 Mb) Human chr1 (223 Mb)

Clone coverage (CovG) 7.5x 10.0x 7,5x 10.0x 7,5x 10.0x 7,5x 10.0x

Read coverage (CovR) 1.5x 2.0x 1.5x 2.0x 1.5x 2.0x 1.5x 2.0x

Sequence covered 90.5% 95.6% 93.0% 98.1% 91.4% 97.2% 91.9% 97.6%

Missing Sequence Low clone/read coverage 3.8% 0.6% 2.9% 0.5% 3.1% 0.3% 3.0% 0.2%

Clone ordering misassembly 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Tandom/nearby duplication - - 0.2% 0.2% 0.2% 0.2% 0.4% 0.3%

Highly repetitive elements 1.4% 1.3% 1.6% 0.7% 3.0% 1.8% 1.9% 1.1%

Contig N50 (Kb) 61.5 160.3 24.0 79.0 21.2 58.2 18.6 64.9

Base quality (Q) 35.6 38.5 33.8 35.5 33.2 34.4 33.0 34.4

Misassemblies (#/Mb) 1.6 2.2 2.8 2.0 2.5 2.7 4.0 2.9

Small indels (#/Mb) 1.5 1.4 3.5 2.4 1.9 1.9 2.3 1.9

Read length = 200 bp, Total error rate = 1.0%
We assembled the whole genome of D. melanogaster and human chromosomes 1, 11, and 21 at two different levels of coverage of 11.25x and 20.0x. We report the
proportion of sequence covered by our assembly, the reasons for missing sequence coverage, the contig N50 length statistic, the base quality, and the rates of
misassembly incidents and small insertions and deletions. Contig N50 lengths were large even at 11.25x coverage, growing to approximately triple the size for 20.0x
coverage. The misassembly rate was comparable to those found in other draft assemblies, while small indels were due to tandem repeats.
doi:10.1371/journal.pone.0000484.t002..
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300 bp. This may have important consequences for the develop-

ment of high-throughput sequencing technologies by suggesting

that making high sequencing coverage cheaper may be a better

investment of effort than increasing the maximum read length.

Computational resources Although we were not chiefly

concerned with the runtime of the methodology, our prototype

assembler can be used on fairly large datasets. Using a cluster of

2.8 GHz Intel Xeon CPUs with 512 MB RAM we were able to

assemble the equivalent of almost one-fifth of the entire human

genome at a rate of roughly 3 Mb per CPU day. Therefore, at

a typical cost of $1 per CPU day, a complete mammalian genome

can be assembled for about $1,000.

Software availability Our source code will be made

available individually upon request. However, note that we do

Table 3. Assembly quality for varying read lengths.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Clone coverage (CovG) 7.5x 10.0x

Read coverage (CovR) 1.5x 2.0x

Read length (bp) 100 150 200 250 300 100 150 200 250 300

Sequence covered 97.6% 85.6% 93.0% 94.5% 95.8% 85.7% 95.5% 98.1% 98.8% 99.2%

Missing Sequence Low clone/read coverage 4.9% 3.5% 2.9% 2.3% 2.1% 0.2% 0.3% 0.5% 0.4% 0.2%

Clone ordering misassembly 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Tandom/nearby duplication 0.2% 0.2% 0.2% 0.2% 0.1% 0.2% 0.2% 0.2% 0.2% 0.2%

Highly repetitive elements 9.0% 3.7% 1.6% 1.2% 0.9% 4.7% 1.6% 0.7% 0.5% 0.4%

Contig N50 (Kb) 3.2 7.5 24.0 52.8 71.2 4.7 14.4 79.0 132.2 193.4

Base quality (Q) 34.8 34.0 33.8 33.8 33.9 35.8 35.2 35.5 35.6 36.0

Misassemblies (#/Mb) 13.8 5.7 2.8 2.0 2.4 19.6 6.0 2.0 1.5 1.2

Small indels (#/Mb) 10.4 5.8 3.5 1.8 1.3 8.6 5.5 2.4 2.1 1.8

Human chr21 (34.2 Mb), Total error rate = 1.0%
We varied the average read length from 100 to 300 bp and assembled human chromosome 21 at 11.25x and 20.0x coverage to assess the impact of read length on
assembly quality. At read lengths of 100–150 bp we observed lower levels of sequence coverage and smaller contig sizes. With 200 bp we achieved good draft
coverage with large contig sizes and few misassemblies. Increasing the read length further to 250 bp yielded significant gains while 300 bp did not provide much
additional improvement. Interestingly, keeping the read length constant at 200 bp and increasing the coverage from 11.25x to 20.0x produced greater assembly quality
gains than increasing the read length from 200 to 300 bp.
doi:10.1371/journal.pone.0000484.t003..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

Figure 2. Contig size distribution for assemblies of D. melanogaster and human chromosomes 1, 11, and 21. Higher 20.0x coverage levels are
shown in bold. A point (x, y) on the graph indicates that y% of the genome can be covered by contigs that are at least x bp in size. Each of the human
chromosomes show a similar profile, and going from 11.25x to 20.0x shows a roughly 3-fold improvement in N50 contig sizes for all the assemblies.
doi:10.1371/journal.pone.0000484.g002

Short-Read Assembly

PLoS ONE | www.plosone.org 6 May 2007 | Issue 5 | e484



not have a tool that can be used on real 454 sequence data in

a production setting.

DISCUSSION

Feasibility of the sequencing protocol
Though the sequencing protocol we propose is intended for future

high-throughput, low-cost technologies, it could be carried out

today at a cost on par with Sanger sequencing. We now describe

a method to execute the protocol at 20.0x total coverage for a 3 Gb

mammalian genome:

1. Purify DNA from the target organism.

2. Fragment the DNA and isolate 150 Kb-sized fragments.

3. Randomly pick 200,000 fragments and clone them in-

dividually. Note that this 10x cloning is significantly less than

the 40–50x typically generated for clone libraries used in

hierarchical sequencing on clone tiling paths. In addition,

there is no need to label and store the clones beyond the

ability to distinguish between the 266 clones in each ‘‘batch’’

described in the next step.

4. Since each 454 sequencing plate can perform 250,000 reads,

we multiplex 266 clones on each plate in order to read

200 bp fragments at 2.0x coverage from each clone. Before

mixing together the batch, we fragment the clones and ligate

adapters containing the bead attachment primer along with

a unique 5-base tag. The 454 sequencing methodology

eliminates the need to construct a hierarchical set of clones

for each read fragment as in electrophoresis-based sequenc-

ing: it instead amplifies the read fragments on the beads

using PCR emulsion. Therefore, it removes the laborious

and expensive step of preparing a shotgun library for each

clone.

5. Sequence 750 plates. The first 5 bases of each read will

identify the clone within the batch from which it was

sequenced. Using a well-mixed solution, we expect 1500640

reads per clone. With 10 machines operating around the

clock this can be completed in 4 weeks.

This process is depicted in Figure 4. It is worth noting that in

traditional sequencing projects the cost of constructing the clone

library was small compared to the cost of sequencing [20]. Today,

a high-quality 10.0x clone library for a 3 Gb mammalian genome

can be constructed for about $100k, provided that the genome

does not present unusually difficult conditions, such as large

regions that are difficult to clone. For our purposes, since our clone

ordering algorithm is fairly tolerant to errors, we do not need our

library to be controlled for quality to the degree that traditional

sequencing projects require. With some improvements in auto-

mation, in a few years the cost may be as low as $20k (P. De Jong,

personal communication).

Validity of simulations
Although our simulation methodology is straightforward and does

not attempt to model all the nuances of cloning and Pyrosequen-

cing, we believe it provides a reasonable measure of how well the

sequencing and assembly would perform in experiment. Several

other assemblers were first tested using simulation to validate the

algorithms, and then later were used in real sequencing projects

with great success [8,9,12–14]. We describe additional potential

Figure 3. Contig size distribution for assemblies of human chromosome 21 for various average read lengths. Results include both 11.25x and
20.0x net coverage levels, with 20.0x shown in bold. A point (x, y) on the graph indicates that y% of the genome can be covered by contigs that are at
least x bp in size. At 200 bp the contig sizes are reasonably large, while 250 bp shows still a significant increase in quality. Going to 300 bp is only
a slight improvement over 250 bp, however.
doi:10.1371/journal.pone.0000484.g003
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sources of error in a real sequencing project not modeled by our

simulations. Although such errors in real data may reduce

assembly quality, we believe that their impact can be mitigated

with algorithmic improvements.

In our simulation, clones are distributed across the genome in

a uniformly random fashion, resulting in a clone depth that fits

a Poisson distribution. In reality, we would see the effects of cloning

bias which would result in regions of unusually low coverage. If

cloning can be performed cheaply, one way of dealing with this

would be to simply raise the overall level of clone coverage.

Alternatively, for clones involved in regions of low coverage, we

could construct more clones targeted at those regions using known

read sequence as ‘‘hooks’’. Ultimately, though cloning bias will

reduce our methodology’s effectiveness in some regions compared to

simulation, this is a problem common to all sequencing methods that

affects a small portion of the genome and is best handled during the

Figure 4. Implementation of sequencing protocol. The genome is first fragmented into 150 Kb pieces, of which we randomly select 200,000. Each
piece is individually cloned and further fragmented into small pieces suitable for sequencing. We then ligate sequencing adapters that include a 5-
base tag that is unique to each clone within a 266-clone ‘‘batch’’. After amplifying the fragments on beads, a batch of 266 clones are multiplexed
together on a 400,000 read plate, and the first five bases of each read are used to identify the source clone. By running 750 plates in this fashion, we
can fully sequence a mammalian genome to 20.0x coverage.
doi:10.1371/journal.pone.0000484.g004
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finishing step. Other potential sources of error not modeled are

chimeric clones and abnormally sized clones, although these should

be detectable during the clone ordering stage of assembly. We do not

expect clones from unfinished regions in the human genome

sequence to significantly affect assembly quality because they will

either not be included in any clone contigs, or their influence will be

restricted to a small region by the clone ordering.

If a batching scheme is used for multiplexing clones onto the

same plate, each clone will have a varying number of reads

assigned to it. However, with a mean between 1,125 and 1,500

reads per clone depending on the read coverage level, and

assuming the selection of a particular clone can be modeled as

a binomial process, the standard deviation in the number of reads

will be less than 40. In reality, due to difficulties in normalizing

DNA quantities, the variance will likely be larger, although our

assembly methodology is not so sensitive to small variations in the

number of reads per clone, as we showed in Results.

We also assume that reads will be distributed uniformly

randomly across each clone. In Sanger sequencing, the underlying

sequence can give rise to secondary structure which can be difficult

to sequence, for example in GC-rich regions. With Pyrosequen-

cingTM, this problem is greatly reduced [33].

Although we experimented with read lengths between 100 and

300 bp, for most of our assemblies we assumed that 200 bp would

be feasible. Of all the high-throughput sequencing methods,

PyrosequencingTM produces the longest reads at about 200 bp.

Studies have shown that longer read lengths of 300 bp or more are

possible with improved chemistry and Pyrogram decoding

techniques [32].

Most of our simulations inject errors into the reads at a rate of

1%, the standard accepted level of sequencing error. This 1%

error rate is composed of 0.6% random base mutations,

representing errors perhaps produced during cloning due to

incorrect nucleotide incorporation. We also introduce random

single-base insertions and deletions at a rate of 0.2%. The

remaining 0.2% are produced by perturbing the count of a run

of the same letter by a random amount picked from a distribution

whose standard deviation is proportional to the true run count.

With our parameters, for a run length of 10, there is a 41%

chance that the read reports the wrong run count (typically, 9 or

11). Although this homopolymer error rate is lower than that

reported by 454, we expect this error rate to decrease

significantly in the future [28,32]. In addition, it should be

noted that for a typical mammalian genome such as human, fully

98.8% of the euchromatic genome consists of homopolymeric

run counts of at most 6, while the majority of errors seen by 454

occurred for long runs of at least 7 [28]. Pyrosequencing error

rates increase toward the end of the read, but we assume it is

possible to trim the reads to confine the error rate to an

acceptable level.

As high-throughput Pyrosequencing matures, a sequencing

error rate of 1% will be realistic; still, to assess our method’s

robustness to sequencing errors we performed additional simulated

assemblies on human chromosomes 1 and 21 with error rates of

2% and 3%. Increasing the total error rate to 3% resulted in

assemblies with slightly reduced sequence coverage, half the contig

N50 sizes, and twice the per-base error rate, misassembly rate, and

small indel rate. Detailed results are presented in Table 4. Though

there is room for improvement in our algorithms to accommodate

higher error rates, we have shown that our methodology is

reasonably robust to such error rates.

Genome size limitations
Our sequencing protocol is targeted at large genomes with

chromosomes that are significantly longer than a clone length.

Clones are selected for size and chosen at random across the

genome, resulting in an expected total coverage level that rises

from 0 at the chromosome ends to full coverage at one full clone

length from the ends. Since each clone is only sequenced to low

coverage, this results in poorly assembled contigs near the ends.

For small chromosomes, these end effects are significant and result

in poor coverage of the genome. We tested our method on S.

cerevisiae and found that, indeed, it was ill suited for chromosomes

of only 1 Mb.

Scaffolding
The output of our assembler is a list of contigs that appear in

a rough ordering along the clone contigs. In a production setting,

it is sometimes desirable to order and orient the contigs in

scaffolds. Although not the focus of our study, we propose

scaffolding as a post-processing step by very lightly sequencing

paired reads using an ultra high-throughput sequencing technol-

ogy such as Polony sequencing [27] or Solexa’s Sequencing-By-

Synthesis technology (http://www.solexa.com). Although reads

may be as short as 25 bp, the majority of these (roughly 75% in the

Table 4. Assembly quality for increasing sequencing error rates.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sequence Human chr21 (34.2 Mb) Human chr1 (223 Mb)

Error rate 1% 2% 3% 1% 2% 3%

Sequence covered 98.1% 98.3% 97.7% 97.6% 97.1% 96.5%

Missing Sequence Low clone/read coverage 0.5% 0.3% 0.4% 0.2% 0.3% 0.4%

Clone ordering misassembly 0.0% 0.0% 0.0% 0.2% 0.0% 0.0%

Tandom/nearby duplication 0.2% 0.2% 0.2% 0.3% 0.4% 0.5%

Highly repetitive elements 0.7% 0.7% 0.8% 1.1% 1.3% 1.5%

Contig N50 (Kb) 79.0 56.4 42.5 64.9 50.9 33.5

Base quality (Q) 35.5 34.1 32.2 34.4 33.2 31.6

Misassemblies (#/Mb) 2.0 3.5 3.8 2.9 3.4 4.0

Small indels (#/Mb) 2.4 2.9 3.6 1.9 2.4 3.0

Read length = 200 bp, CovG = 10.0x, CovR = 2.0x.
For human chromosomes 1 and 21 we experimented with read error rates between 1% and 3%. Increasing the error rate from 1% to 3% resulted in slightly reduced
sequence coverage, half the contig N50 size, and twice the individual base error, misassembly, and small indel rates.
doi:10.1371/journal.pone.0000484.t004..
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human euchromatin) will be unique in the genome up to two base

differences, allowing them to serve as anchors to link together

contigs.

We performed scaffolding on the assembled contigs using very

light coverage of ultra-short paired reads. We selected a sequence

coverage of 0.1x and 25 bp read lengths with a 1% error rate

because technology will be available soon to produce such reads

from an entire mammalian genome in a single run. Our read

simulator samples reads uniformly from across the genome from

two libraries with 1062 Kb and 4068 Kb insert sizes in a 2:1

ratio respectively, resulting in a 1:2 ratio of physical coverage.

After indexing the assembly contigs, we filter the paired reads for

those that anchor uniquely in the assembly, then use Bambus [15]

with a minimum threshold of 5 paired read links to join two

contigs into a scaffold.

In Table 5 we list the scaffolding results for each assembly. We

report on the scaffold N50, the largest size x such that 50% of the

underlying sequence is contained in scaffolds $x in size, where the

scaffold size is defined as the sum of all its contained contig sizes,

and we report on the total number of scaffold misassemblies,

defined as any consecutive pair of contigs in a scaffold whose

orientations disagree, that overlap by more than 1 Kb, or whose

separation is greater than 60 Kb (2.5 standard deviations above

the average insert length for the 40 Kb library). The results show

that with only 0.1x sequence coverage we can produce very

accurate scaffolds with fairly large sizes. On human chromosome

21 at 20.0x coverage we achieved an N50 scaffold size of 1,411 Kb

with only 2 misassemblies, while on human chromosome 1 we had

only 7 misassemblies with smaller N50s of 627 Kb.

Although we did not invest much effort in scaffolding, we have

nonetheless shown as a proof-of-concept that we can orient and

join our assembly contigs with very light paired read coverage.

Forthcoming ultra high-throughput technologies will be able to

produce such paired reads across the entire human genome with

greater than 0.1x coverage in a single run (K. McKernan, personal

communication). Further joining of the scaffolds into larger groups

can be achieved by performing whole-genome optical mapping

and aligning the scaffolds to the optical maps [34,35]. We believe

future research in this area will reveal how to best build scaffolds

on top of our methodology at little extra cost.

Conclusion
In this paper we have described SHRAP, a novel sequencing

protocol and assembly methodology that targets future, high-

throughput technologies that produce short reads. The sequencing

protocol is a variant on the well-known hierarchical sequencing

technique, but removes the time-consuming and manual selection

of a tiling path in favor of a parallelizable, random selection

strategy. We have shown that it is possible to computationally

determine the overlapping sets of clones and their ordering purely

Table 5. Bambus scaffolding results for 0.1x sequence coverage by paired reads.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Contig Scaffold

Sequence CovG CovR

Read length
(bp) Error rate

Sequence
covered N50 (Kb)

Misasms
(#/Mb) N50 (Kb) Misasms

D. melanogaster (118 Mb) 7.5x 1.5x 200 1% 90.5% 61.5 1.6 751 6

10.0x 2.0x 200 1% 95.6% 160.3 2.2 1,449 1

Human chr21 (34.2 Mb) 7.5x 1.5x 200 1% 93.0% 24.0 2.8 497 0

10.0x 2.0x 200 1% 98.1% 79.0 2.0 1,411 2

Human chr11 (131 Mb) 7.5x 1.5x 200 1% 91.4% 21.2 2.5 235 9

10.0x 2.0x 200 1% 97.2% 58.2 2.7 671 6

Human chr1 (223 Mb) 7.5x 1.5x 200 1% 91.9% 18.6 4.0 168 17

10.0x 2.0x 200 1% 97.6% 64.9 2.9 627 7

Human chr21 (34.2 Mb) 7.5x 1.5x 100 1% 97.6% 3.2 13.8 3.2 3

7.5x 1.5x 150 1% 85.6% 7.5 5.7 14 8

7.5x 1.5x 200 1% 93.0% 24.0 2.8 497 0

7.5x 1.5x 250 1% 94.5% 52.8 2.0 509 2

7.5x 1.5x 300 1% 95.8% 71.2 2.4 811 1

10.0x 2.0x 100 1% 85.7% 4.7 19.6 5 16

10.0x 2.0x 150 1% 95.5% 14.4 6.0 199 10

10.0x 2.0x 200 1% 98.1% 79.0 2.0 1,411 2

10.0x 2.0x 250 1% 98.8% 132.2 1.5 1,319 0

10.0x 2.0x 300 1% 99.2% 193.4 1.2 2,991 0

Human chr21 (34.2 Mb) 10.0x 2.0x 200 1% 98.1% 79.0 2.0 1,411 2

10.0x 2.0x 200 2% 98.3% 56.4 3.5 655 4

10.0x 2.0x 200 3% 97.7% 42.5 3.8 468 0

Human chr1 (223 Mb) 10.0x 2.0x 200 1% 97.6% 64.9 2.9 627 7

10.0x 2.0x 200 2% 97.1% 50.9 3.4 436 6

10.0x 2.0x 200 3% 96.5% 33.5 4.0 385 13

Paired reads are 25 bp long with a 1% error rate sampled from two libraries with 1062 Kb and 4068 Kb insert sizes. We filter paired reads for those that anchor
uniquely to SHRAP assembly contigs and then we use Bambus to build scaffolds. We report on the scaffold N50 size and the number of scaffold misassemblies.
doi:10.1371/journal.pone.0000484.t005..
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from the read data. The high depth of clone coverage provides

a large number of boundaries on which we can segment the

assemblies into overlapping regions of pooled reads. The first stage

of assembly constructs sets of reads that span regions much shorter

than a clone length — this is a crucial feature for overcoming the

challenge of assembling a highly repetitive genome with short

reads. After assembling the reads in successively larger regions, the

result is a draft assembly with large contig sizes and relatively few

misassemblies. We have demonstrated through simulation that our

method is successful on representative pieces of the human

genome, and that it will scale to complete, mammalian genomes

on a reasonable-sized computer cluster. Thus, reducing the cost of

sequencing using high-throughput technologies clustered within

regions of BAC-sized length may soon be the last barrier to truly

inexpensive de novo genome sequencing.

METHODS
The SHRAP assembly methodology consists of two major

preprocessing steps followed by three stages of assembly. The first

preprocessing step is to determine which clones overlap each other

and to order the clones along the genome. By doing this, we

effectively localize the assembly problem and restrict the set of

reads that any particular read can overlap. In the second

preprocessing step, we determine all potential read overlaps and

perform error correction on the base pairs of each read.

In the first assembly stage we create read sets that are formed by

determining all reads that overlap any particular clone and

performing set operations to produce small regions to assemble.

We then use Euler [30,31] as a component to assemble these reads

into larger contigs. In the second assembly stage we create contig

sets by collecting the set of output contigs from the previous stage

that could overlap any particular clone and once again assemble

these with Euler. In the final stage of assembly we merge the

remaining set of contigs using our own, scalable assembler that

makes use of the clone ordering to reduce the size of the problem.

Details of each of these steps are described next.

Clone ordering
In our sequencing protocol, clones are randomly selected from the

genome at a relatively high coverage CovG ranging from 7.5x to

10.0x. Therefore, we expect a high degree of overlap between

clones in long contiguous regions: for CovG = 7.5 with clones of size

150 Kb we would expect clone contigs, or contiguously overlapping

sets of clones of roughly 36 Mb, and for CovG = 10.0 or higher

clone contigs cover entire chromosomes. In traditional hierarchi-

cal sequencing, by the time we sequence the reads, we have

already chosen clones for which the overlap and ordering is

known. In our case, we sequence clones to relatively low coverage

and from their reads determine which sets of clones overlap and in

which ordering they appear along the genome.

First, we construct a clone graph G = ({Oi}, W). In this graph,

nodes are clone contigs which are initialized to be sequences of one

clone each: Oi = <Ci>; weighted edges connect the nodes with

weight Wij equal to the count of unique k-mers shared between the

two clones Ci and Cj. We use k = 24, which is large enough to

isolate unique k-mers, and small enough to still be sensitive despite

sequence errors. We define a unique k-mer as one that appears at

most three times the expected coverage level (3.0?CovG?CovR). The

graph can be constructed efficiently by scanning through all the

read data, collecting each k-mer along with the clone that contains

it in an array. Then, we sort the array by k-mers, and determine

how many and which clones contain each particular k-mer.

Scanning through the array, we can now quickly construct the

graph by accumulating counts to the edges for k-mers that satisfy

the uniqueness constraint. For a graph with NN nodes we expect

NE = NN?2?(CovG21) true edges between the nodes. To remove

most spurious edges between non-overlapping clones, we retain

the NE greatest edge weights and discard the rest. For a 3 Gb

mammalian genome with CovG = 10.0 the size of the resulting

graph is NN = 200,000 and NE = 3,600,000.

For large assemblies, we are not able to record every k-mer in

memory. In this case, we pick a prime number p large enough so

that we can store K/p k-mers in memory, where K is the total

number of k-mers in all the read data. Now, if we represent each k-

mer n as a base-4 number, then (n mod p) can be used to split the k-

mer content into p roughly equally-sized classes. Therefore, we

scan the genome p times (easily parallelizable) and superpose all

the graphs they produce. In order to further reduce the

computation time we pick a subset of the p jobs and extrapolate

the edge weights. We have found that, in practice, clone contigs

are determined correctly even with such an approximation.

Once we have the graph G = ({Oi}, W), we apply a greedy

algorithm that contracts edges and orders the clones within the

nodes that are being merged (Figure 5). For each node Oi we keep

track of an ordered array of the clones <C1 C2 … Cn> that belong

to it, which initially is a single clone as described above. The

algorithm goes through each edge Wij in the graph in order of

decreasing weight. If the edge still connects two different nodes

then we check that the two clones Ci and Cj are both ‘‘near the

end’’ of their containing clone orderings, meaning that they are

located within 3 clones of either end of their clone orderings. If this

condition is satisfied then we merge the two nodes, concatenating

their clone orderings, and reordering a small set of at most 7 clones

around the junction. The reordering is done by finding the

permutation that best optimizes a scoring criterion that promotes

orderings for which edge weights from a particular clone C to

nearby clones increase as we move toward C:

Score SC1 . . . Ci . . . Cj . . . CnT, i, j
� �

~
Xj

k~i

Xk{1

m~2

s Ck ,Cm{1,Cmð Þz
Xn{1

m~kz1

s Ck ,Cmz1,Cmð Þ
" #

s Ck ,Ca ,Cbð Þ~
Wk,b{Wk,að Þ, if Wk,b§Wk,a

{4 Wk,a{Wk,bð Þ, if Wk,bvWk,a

(

This scoring function considers the ordering of clones Ci to Cj,

rewarding clone orders for which the weights increase along the

ordering toward any particular clone, and heavily penalizing clone

orders for which the weights are out of order. This follows our

intuition that neighboring clones should share more k-mers and

therefore their edges should have a higher weight. Optimization is

done by exhaustively searching the 7! permutations. We found

that in practice the algorithm almost always joins neighbors or

near-neighbors first, so it is almost never needed to reorder more

than 7 clones around the junction.

Figure 5. Edge contraction. Edges of the clone graph are contracted in
order of decreasing weight. After each contraction step, a local
optimization procedure is applied to reorder the clones near the
junction according to their pairwise edge weights.
doi:10.1371/journal.pone.0000484.g005
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Once our algorithm has processed all of the edges once in order

of decreasing weight, many of which do not satisfy the conditions

required for contraction, each of the remaining nodes represents

a separate clone contig of ordered clones. Each clone contig can now

be assembled independently and in parallel.

Overlap detection and error correction
In the next preprocessing stage we apply error correction to the

reads. We use the clone orderings to limit the computation of read

overlaps. For each read in a particular clone Ci we only consider

overlaps with other reads in clone Ci or in other clones Cj

belonging to the same clone contig and such that the two clones

overlap and are nearby. From the original clone overlap graph in

the previous section, using the clone orderings we set Wi,j = 0 for

nodes that are in different clone contigs or too far apart. We seed

alignments using exact 16-mers and use a high error-cutoff

threshold for the alignments in order for overlap detection to be

sensitive. High sensitivity helps us identify likely repeats in the

error correction stage, and we later discard reads with too many

errors. As we detect read overlaps, we construct read overlap sets

Rp = {Rq|Rp and Rq align and extend each other}.

We have developed the following error correction algorithm

that is applied in three separate passes over all the reads. In the

first pass we augment the set of overlaps by looking for transitive

read overlaps. For each read overlap set Rr we create a multi-

alignment of all the reads and screen out any reads that do not

pass the error-rate and correlation tests (described below) to

produce a filtered read overlap set R9r#Rr. Finally, we look at

each pair of reads in the new set Rp, RqMR9r and if an overlap is

implied by their alignment through Rr then we insert reads Rp and

Rq into their opposing read overlap sets Rq and Rp.

The error-rate test filters out reads whose number of differences from

the majority exceeds three times the expected error rate. The

correlation test examines each read and at every column for which it

disagrees from the majority of overlapping reads, counts the number

of other reads that agree with it. If this number exceeds a heuristic

threshold then we mark the read as correlated. The correlation test is

thus aimed at filtering out repeat-induced overlaps. However, errors

in the homopolymeric run count should be handled separately: those

are typically correlated even when there are no false overlaps. For

example, in a homopolymeric run count of 20, we often see several

reads with run counts of 19 or 21. Therefore, we first identify and

screen out errors of this type and then apply the correlation test. We

do this by counting the run lengths in all the reads in the multiple

alignment and ignore differences in run counts that fall within a small

threshold of the average run count.

In the second pass through the reads we use the augmented set

of overlaps to better identify false overlaps using the correlation

test. For each read Rr we once again construct multiple alignments

from the new set of reads in Rr. We then apply the error-rate and

correlation tests to the reads and remove from Rr those that fail.

In the third pass we use the resulting, highly specific read

overlap sets to construct multiple alignments that will be used to

correct errors. We use a simple majority vote to determine the

consensus character for each column. At this point, we also correct

errors in the run count by computing the average run count for

each homopolymeric run and modifying those that differ by a small

amount. We allow corrections to cumulatively influence further

error-correction alignments.

Contig assembly
As a result of the two preprocessing steps clones are ordered, read

overlaps have been computed, and reads have been error-

corrected so that most overlaps are entirely error-free. Next, we

apply three stages of assembly, each stage constructing longer

contigs that cover progressively larger windows of the genome. In

the first stage we create read sets that consist of sets of reads that we

localize within small subregions of each clone; we assemble each

read set independently. The second stage combines the resulting

first-stage contigs in larger contig sets that collect all contigs

contained within each clone. In the final stage we merge the

resulting second-stage contigs into one final assembly per clone

contig.

Stage 1: read sets In traditional hierarchical sequencing each

clone is assembled independently, and these assemblies are then

merged together from the known clone tiling path. In our

sequencing protocol the clones are selected at high coverage but

each clone is sequenced only to a low coverage CovR between 1.5x

and 2.0x. Therefore, to obtain full coverage we combine the reads

from multiple overlapping clones. We make use of our clone

ordering to isolate the locations of individual reads to windows

much smaller than a clone length, dramatically reducing the copy

number of each repeat within a short region to the minimum and

bypassing the notoriously difficult ‘‘repeat resolution’’ problem in

fragment assembly at this stage.

We construct three types of read sets that consist of all reads that

putatively overlap a region of the genome delineated by clone

extent endpoints:

1. For each clone we create a clone read set, which contains all the

reads overlapping the clone (including reads from other

clones) (Figure 6a).

Figure 6. Construction of five localized read sets per clone. (a) Clone read sets Ai are constructed by first defining the clone extent of each read,
which is the inferred set of clones spanning the location of the read in the genome, and then for every clone Ci collecting all reads that contain Ci in
their clone extent. (b) Intersection read sets Ii,j and Ii,k are constructed by finding for Ci the clones Cj and Ck that overlap Ci minimally to the left and
right, and intersecting their respective inferred clone read sets. (c) Difference read sets D9i,j and D9i,k are constructed similarly by finding for Ci the
clones Cj and Ck that overlap it maximally to the left and right, and subtracting the respective inferred clone read sets. Each read set is assembled
independently with the Euler assembler during stage 1.
doi:10.1371/journal.pone.0000484.g006
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2. We create intersection read sets by finding pairs of clones that

have small overlaps and intersecting their clone read sets to

obtain a set of reads spanning the overlap region (Figure 6b).

3. We create difference read sets by finding pairs of clones that have

large overlaps and subtracting their clone read sets to obtain

a set of reads spanning the region of the genome covered by

one clone and not the other (Figure 6c).

Prior to constructing the above read sets, we first compute the

clone extent Er of every read Rr, which is defined as the set of clones

that overlap the read Rr. Initially, each clone extent is empty. If

C(Rr) denotes the source clone for read Rr, then for every read-pair

overlap (Rp, Rq) we insert the source clones into the opposing clone

extent, i.e., we insert C(Rp) into Eq and C(Rq) into Ep.

Since each clone is covered by reads to low depth, a given read

may have clones that span it but do not contain any overlapping

reads. To improve the sensitivity of placing clones within the clone-

extent sets, we use transitive overlaps by iteratively applying the

following procedure. We construct the next set of clone extents

{E9r} by first setting them equal to {Er}. For each read pair overlap

(Rp, Rq), set E9qrE9q<Ep and similarly set E9prE9p<Eq. Although

this process creates false clone-read overlaps, in practice lower

specificity of the clone extents is less likely to create misassemblies

than lower sensitivity. By experimenting on human chromosome

22, we found that we could achieve very high sensitivity with little

loss of specificity for the clone read sets and intersection read sets by

iterating this procedure twice for 20.0x coverage and four times for

11.25x coverage. Finally, we use the clone ordering to infer any

missing intervening clones: given clone ordering <C1 C2 … Cn>, for

read Rr we find the minimum 1#i#n s.t. CiMEr and maximum

1#j#n s.t. CjMEr. Then, we set Er = {Ci Ci+1 … Cj}.

Now, we construct the clone read sets {Ai} by setting Ai = {Rr|

CiMEr}. We next create the intersection read sets {Ii,j} and {Ii,k}, two

per clone Ci, by finding the minimally overlapping clone Cj to the

left in the clone ordering, j = argminj,i Wi,j, as well as the minimally

overlapping clone Ck to the right in the clone ordering,

k = argmink.i Wi,k. We then construct two intersection sets

Ij,i = Aj>Ai and Ii,k = Ai>Ak. The difference read sets {Di,j} and

{Di,k} are similarly created from each clone Ci by finding the

maximally overlapping clone Cj to the left, j = argmaxj,i Wij, and Ck

to the right, k = argmaxk.i Wik, and then constructing Di,j = Ai2Aj

and Di,k = Ai2Ak. An example of this process is shown in Figure 6.

Each of the read sets {Ai}, {Ij,k}, and {Dj,k} are then assembled

using Euler, which is perhaps the most accurate assembler because

it will not merge overlaps for which there is ambiguity. Each

assembly is computed independently and in parallel, resulting in

sets of contigs {A9i}, {I9j,k}, and {D9j,k}.

Stage 2: contig sets In the second assembly stage we

combine the contigs from the previous stage in larger regions to

create contig sets. For each clone Ci we create a contig set Bi that

consists of all the contigs from a read set that is completely contained

within the extent of the clone Ci. Given a read set, we determine if

its contigs belong to Bi, as follows:

1. Clone read sets. The contigs in A9i are inserted only in Bi.

2. Intersection read sets. Given intersection read set Ij,k, the

clones Cj and Ck both contain the region intersected by Cj and

Ck, and so does every intervening clone Ci in the clone

ordering <… Cj … Ci … Ck …>. Therefore, the contigs in I9j,k

are inserted to Cj, Cj+1, …, Ck.

3. Difference read sets. Given a difference read set Dj,k where j ,

k (in other words, the clone Ck is being subtracted from the

right end of clone Cj), any clone Ci that is to the left of Cj

(i.e. <… Ci … Cj … Ck …>) and that has an overlap with Ck

(Wi,k.0) is completely contained in Ci. The difference sets Dj,k

for which j.k have similar containers.

These situations are clarified diagrammatically in Figure 7. In

conclusion, we can compute the contig sets as follows:

Bi~A0i|fI 0j,kjjƒiƒkg|fD0j,k jiƒjvk and Wi,kw0g|fD0j,k jkvjƒi and Wi,kw0g:

Once again we assemble each contig set Bi independently and in

parallel using Euler to produce a set of even larger contigs B9i.

Stage 3: merging clone contigs In the third and final stage

of assembly we merge contigs from stage 2 along entire clone contigs

using a specially designed assembler that uses the clone ordering and

clone overlap information to optimize memory usage as well as

reduce the number of potential overlaps examined. The assembler

considers each clone Ci in a left-to-right fashion along a clone

ordering, reading in all contigs that may overlap Ci, which are the

contigs from B9i and any other B9j for which there is an overlap

Wi,j.0. After finding all possible overlaps between the contigs under

consideration, we merge contigs for which there is no overlap

ambiguity – that is, if contig a is minimally extended to the right by

contig b and then contig c, contigs b and c must also align with each

other. This constraint avoids misassemblies and is illustrated in

Figure 8. Our assembler also employs some heuristics to find likely

misassemblies by comparing contigs against themselves and other

contigs and looking for suspiciously long, perfect overlaps that do not

Figure 7. Construction of contig sets from read set assemblies. For
each clone Ci, a contig set Bi is constructed by collecting all contig sets
A9i, I9j,k, and D9j,k that logically should be contained completely within
the span of the clone.
doi:10.1371/journal.pone.0000484.g007

Figure 8. Overlap ambiguity detection. Contig a overlaps with contigs
b and c to the right, but b and c do not fully overlap each other,
indicating a region of ambiguity such as a repeat boundary or
misassembly.
doi:10.1371/journal.pone.0000484.g008
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extend to the end. For each contig we keep a set of clones that is

initially set to the single clone Ci that corresponds to the contig set B9i

of origin. As we merge contigs we also take the union of the sets of

clones. This way, we can detect when a contig will no longer overlap

any clones under consideration. At that point, we form the consensus

sequence and write it to disk.

The resulting assembly lists the contigs in a rough ordering

along the clone contigs, but does not strictly order or orient them

in scaffolds. Scaffolding on the contigs using very light, paired

reads is described in Discussion.
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