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Safety and effi  cacy of MVA85A, a new tuberculosis vaccine, 
in infants previously vaccinated with BCG: a randomised, 
placebo-controlled phase 2b trial
Michele D Tameris*, Mark Hatherill*, Bernard S Landry, Thomas J Scriba, Margaret Ann Snowden, Stephen Lockhart, Jacqueline E Shea, 
J Bruce McClain, Gregory D Hussey, Willem A Hanekom, Hassan Mahomed†, Helen McShane†, and the MVA85A 020 Trial Study Team

Summary
Background BCG vaccination provides incomplete protection against tuberculosis in infants. A new vaccine, modifi ed 
Vaccinia Ankara virus expressing antigen 85A (MVA85A), was designed to enhance the protective effi  cacy of BCG. We 
aimed to assess safety, immunogenicity, and effi  cacy of MVA85A against tuberculosis and Mycobacterium tuberculosis 
infection in infants.

Methods In our double-blind, randomised, placebo-controlled phase 2b trial, we enrolled healthy infants 
(aged 4–6 months) without HIV infection who had previously received BCG vaccination. We randomly allocated 
infants (1:1), according to an independently generated sequence with block sizes of four, to receive one intradermal 
dose of MVA85A or an equal volume of Candida skin test antigen as placebo at a clinical facility in a rural region near 
Cape Town, South Africa. We actively followed up infants every 3 months for up to 37 months. The primary study 
outcome was safety (incidence of adverse and serious adverse events) in all vaccinated participants, but we also 
assessed effi  cacy in a protocol-defi ned group of participants who received at least one dose of allocated vaccine. The 
primary effi  cacy endpoint was incident tuberculosis incorporating microbiological, radiological, and clinical criteria, 
and the secondary effi  cacy endpoint was M tuberculosis infection according to QuantiFERON TB Gold In-tube 
conversion (Cellestis, Australia). This trial was registered with the South African National Clinical Trials Register 
(DOH-27-0109-2654) and with ClinicalTrials.gov on July 31, 2009, number NCT00953927

Findings Between July 15, 2009, and May 4, 2011, we enrolled 2797 infants (1399 allocated MVA85A and 1398 allocated 
placebo). Median follow-up in the per-protocol population was 24·6 months (IQR 19·2–28·1), and did not diff er between 
groups. More infants who received MVA85A than controls had at least one local adverse event (1251 [89%] of 
1399 MVA85A recipients and 628 [45%] of 1396 controls who received the allocated intervention) but the numbers of 
infants with systemic adverse events (1120 [80%] and 1059 [76%]) or serious adverse events (257 [18%] and 258 (18%) did 
not diff er between groups. None of the 648 serious adverse events in these 515 infants was related to MVA85A. 32 (2%) 
of 1399 MVA85A recipients met the primary effi  cacy endpoint (tuberculosis incidence of 1·15 per 100 person-years 
[95% CI 0·79 to 1·62]; with conversion in 178 [13%] of 1398 infants [95% CI 11·0 to 14·6]) as did 39 (3%) of 1395 controls 
(1·39 per 100 person-years [1·00 to 1·91]; with conversion in 171 [12%] of 1394 infants [10·6 to 14·1]). Effi  cacy against 
tuberculosis was 17·3% (95% CI –31·9 to 48·2) and against M tuberculosis infection was –3·8% (–28·1 to 15·9).

Interpretation MVA85A was well tolerated and induced modest cell-mediated immune responses. Reasons for the 
absence of MVA85A effi  cacy against tuberculosis or M tuberculosis infection in infants need exploration.

Funding Aeras, Wellcome Trust, and Oxford-Emergent Tuberculosis Consortium (OETC).

Introduction
Tuberculosis is a major global health problem, with an 
estimated 8·7 million cases and 1·4 million deaths in 2011.1 
The Stop TB Partnership developed the Global Plan to Stop 
TB: 2006–2015, with a goal of tuberculosis elimination by 
2050.2 One of the long-term strategies essential for control 
of the epidemic is eff ective vaccination. The existing BCG 
vaccine protects against disseminated tuberculosis in 
young children,3,4 but pro tection against pulmonary tuber-
culosis is very variable.4–6 Effi  cacy against infection with 
Mycobacterium tuberculosis has only been reported in 
observational studies in low-burden settings.7 In endemic 
countries such as South Africa, the incidence of tuber-
culosis in infants and young children is very high despite 

high BCG coverage.8,9 An improved infant tuberculosis 
vaccination regimen is urgently needed.

12 candidate vaccines are being tested in clinical trials.10 
MVA85A is a recombinant strain of modifi ed Vaccinia 
Ankara virus expressing the immunodominant 
M tuberculosis protein, antigen 85A.11 MVA85A has been 
developed as a heterologous boost for BCG.11 Boosting 
BCG with MVA85A improved BCG-induced protection 
against mycobacterial challenge in animals.12–15 MVA85A 
was well tolerated in clinical trials in infants.11,16,17 Fur-
thermore, a BCG prime-MVA85A boost immunisation 
regimen in infants induced antigen-specifi c Th1 and 
Th17 cells,16 which are regarded as important in protection 
against tuberculosis.18,19
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We aimed to further assess safety of MVA85A in 
HIV-negative infants who were previously vaccinated 
with BCG. As secondary endpoints, we also aimed to 
assess effi  cacy of MVA85A against tuberculosis and 
M tuber culosis infection beyond that of BCG alone, assess 
immunogenicity of MVA85A, and identify correlates of 
protection. To our knowledge, our investigation was the 
fi rst infant effi  cacy trial of a new tuberculosis vaccine 
since BCG was last assessed in infants as part of the 
Chingleput-Madras trial that started in 1968.20

Methods
Study design and participants
We undertook a parallel-group, randomised, placebo-
controlled, double-blind phase 2b trial at the South 
African Tuberculosis Vaccine Initiative (SATVI) site in a 
rural region near Cape Town, South Africa. The region 
has a population of about 290 000 people and an annual 
birth cohort of about 7000 babies. The overall incidence 
of tuberculosis in South Africa in 2011 was estimated to 
be almost 1% (993 per 100 000 individuals).1 The inci-
dence of tuberculosis in children younger than 2 years 
was about 3% at our trial site.21

Parents of recently born infants were approached 
at local immunisation clinics or at home about 
study participation. We enrolled healthy infants, aged 
4–6 months and who had received BCG (Danish 1331, 
Statens Serum Institut, Denmark) within 7 days of 
birth. Infants had to have received all age-appropriate 
routine immunisations, and two doses of pneumococcal 
conjugate vaccine at least 28 days before study vac cination 
(amended to 14 days during enrolment). All infants had to 
be HIV ELISA negative, QuantiFERON-TB Gold In-tube 
test (QFT; Cellestis, Australia) negative, and have had no 
substantial exposure to a patient with known tuberculosis. 
The appendix contains the study protocol.

The trial was approved by the University of Cape Town 
Faculty of Health Sciences Human Research Ethics 
Committee, Oxford University Tropical Research Ethics 
Committee, and the Medicines Control Council of South 
Africa. Parents or legal guardians provided written, 
informed consent.

Randomisation and masking
We randomly allocated infants in a 1:1 ratio, with a 
block size of four, by use of an interactive voice/online 
response system to receive one intradermal dose of 
MVA85A (1×10⁸ plaque-forming units in 0·06 mL) or an 
equal volume of Candida skin test antigen (Candin, 
AllerMed, USA) as placebo. Doses were prepared and 
labelled in masked syringes by an unmasked study 
pharma cist. An independent statistician prepared the 
randomisation schedule. The parents or legal guardians 
of study participants, study staff  administering vac cin-
ations or undertaking follow-up clinic assessments, 
and lab oratory staff  were masked to intervention 
group assignment.

Procedures
The study design included specifi c cohorts for specialised 
analyses, but all participants were followed up for 
assessment of effi  cacy and incidence of serious adverse 
events. Peripheral blood for routine haematological and 
biochemical tests was taken at screening and on day 7 
and day 28 after vaccination in an initial safety cohort of 
at least 330 infants (study group 1). We assessed 
immunogenicity in three subsequent cohorts of up to 
60 participants with an enzyme-linked immunosorbent 
spot analysis (study group 2), an intracellular cytokine 
staining (ICS) assay for peripheral blood mononuclear 
cell (PBMCs) counts (study group 3), and a whole blood 
ICS assay (study group 4). We enrolled remaining infants 
into a fi fth cohort (study group 5). PBMCs obtained from 
all infants before and after vaccination were cryo-
preserved for future correlates analyses. We did QFT 
testing at screening, day 336, at the end of study visit, and 
for infants admitted to a dedicated study ward for 
investigation for tuberculosis.21

We obtained data for incidence of solicited and 
unsolicited local (injection site) and systemic adverse 
events reported by parents or guardians on diary cards 
for 7 days after vaccination and by direct questioning by 
study staff  for 28 days after vaccination. We also obtained 
data for serious adverse events through out follow-up by 
active surveillance. Adverse events were assessed by the 
trial investigators and serious adverse events were 
assessed by the trial investigators and a local medical 
monitor, acting on behalf of the sponsor, to determine 
relation to vaccination. The trial investigators and local 
medical monitor were masked to intervention group 
throughout the trial. The safety monitoring committee 
(SMC) did not determine the association or severity of 
the adverse events. When the last infant in the safety 
cohort completed day 84, the SMC reviewed unmasked 
safety data to determine if a pattern of adverse events 
related to MVA85A or other safety concerns existed so as 
to advise on further enrolments. The SMC also con-
ducted a second unmasked analysis-by-group safety and 
risk review after the 1000th infant completed their visit 
at study day 84.

We actively followed up infants every 3 months to 
identify any signs, symptoms, or exposure that merited 
further investigation. Participants who had a persistent 
cough, failure to thrive, weight loss crossing a major 
centile band, QFT or tuberculin skin test conversion, 
household tuberculosis contact, or any other condition 
causing investigator concern were admitted to the study 
ward. Standardised investigations involved assessments 
with chest radiography, tuberculin skin test, QFT, HIV-
ELISA, two consecutive early morning gastric lavage 
samples, and two induced sputa. Gastric lavage and 
sputum samples underwent auramine smear micros-
copy, GeneXpert MTB/RIF (Cepheid, USA; routinely 
from January, 2011, onwards), and MGIT (Becton 
Dickinson, Sparks, USA) liquid culture and sensitivity 

See Online for appendix
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testing. Positive samples were speciated by PCR. We 
developed a hierarchy of three disease endpoint 
defi nitions. End point 1 (panel 1) and endpoint 2 (appen-
dix p 49) were based on the presence of specifi c clinical, 
radiological, and microbiological fi ndings.22 Endpoint 2 
(which included all infants who met endpoint 1 criteria) 
had marginally less stringent criteria to defi ne tuber-
culosis infection and household exposure. End point 3 
included all participants placed on treatment for 
tuberculosis by a health professional. This approach 
allowed objective case classifi cation without the need for 
an adjudication committee.

The endpoint of infection with M tuberculosis was 
defi ned as conversion to a positive QFT test at any time 
during follow-up. We assessed rates of QFT conversion 
1 year after vaccination and at end of study in those 
participants not previously started on anti-tuberculous 
treatment.

We measured immunological sensitisation to M tuber-
culosis antigens, suggesting M tuberculosis infection, by 
QFT during screening, 1 year after vaccination, and at the 
close-out visit. We obtained blood samples from study 
groups 2–4 for immunogenicity analyses 7 days before 
vaccination and 7 days or 28 days after vaccination. 
We assessed immunogenicity with an ex-vivo inter-
feron γ enzyme-linked immunosorbent spot assay, 
together with PBMC and whole blood ICS assays done as 
previously described.23 Further details of the methods are 
available in the appendix.

Statistical analyses
The primary study outcome was safety in all vaccinated 
participants (safety population), including all solicited, 
unsolicited, and serious adverse events. We compared 
the proportion of participants with at least one such 
adverse event in the placebo and MVA85A groups with 
Fisher’s exact test, and we calculated two-sided exact 
95% CIs for proportions of individual events within 
treatment groups. We did immunogenicity analyses for 
all vaccinated participants enrolled in study groups 2–4. 
Statistical analyses were prespecifi ed in a statistical 
analysis plan, signed off  prior to study database lock and 
unmasking of data (appendix).

The primary effi  cacy outcome was incidence of 
endpoint 1 and the secondary effi  cacy outcome was 
infection with M tuberculosis. Endpoints 2 and 3 were 
exploratory effi  cacy outcomes. All effi  cacy analyses were 
based on the per-protocol population, consisting of all 
randomly allocated participants who received at least one 
dose of study vaccine as randomised, and who had no 
major protocol deviations.

The primary statistical method for analysis of end-
point 1 was vaccine effi  cacy, defi ned as 1 minus the 
estimated hazard ratio based on a Cox regression 
analysis of time to fi rst diagnosis of endpoint 1. The 
Cox model contained one indicator variable for treat-
ment group. To investigate the potential eff ect of 

variable follow-up times, we also did this analysis with 
a predefi ned cutoff  of 2 years after vaccination. Analysis 
of endpoint 1 also included time (months) to initial 
tuberculosis diagnosis from day of vaccination in each 
treatment group with the Kaplan-Meier estimate of the 
survival function by treatment group, and the exact 
binomial method to estimate vaccine effi  cacy and its 
corresponding 95% CI (Clopper-Pearson with mid-p 
adjustment) conditional on the total number of events. 
We included participants with more than one diagnosis 
(eg, a diagnosis of tuberculosis endpoint 2 that was 
subsequently diagnosed as endpoint 1) in analyses 
separately for each diagnostic level. For the analysis of 
secondary and exploratory effi  cacy endpoints, no adjust-
ment for multiplicity was done. We regarded a two-
sided p value of less than 0·05 as signifi cant. 
Sum maries were presented for all cases reported 
during the study, and also, all cases with a diagnosis 
during the fi rst 2 years of individual follow-up. 

For effi  cacy analyses, we based the sample size cal-
culation on the primary effi  cacy endpoint of tuberculosis 
(endpoint 1). We assumed a cumulative tuberculosis 
incidence of 3% after a median of 18 months’ follow-up 

Panel 1: Defi nition of endpoint 1

Any of the following criteria:
• Isolation of Mycobacterium tuberculosis from any site
• Identifi cation of M tuberculosis by an approved molecular diagnostic technique from 

any site
• Histopathology diagnostic for tuberculosis disease (eg, caseating granulomas)
• Choroidal tubercle diagnosed by an ophthalmologist
• Miliary pattern on chest radiograph in an HIV-negative infant
• Clinical diagnosis of tuberculous meningitis (cerebrospinal fl uid protein 

concentrations >0·6 g/L and pleocytosis of >50 cells per μL with >50% mononuclear 
cells) with features of basal meningeal enhancement and hydrocephalus on head CT

• Vertebral spondylosis
• One smear or histology specimen positive for auramine-positive bacilli from a 

normally sterile body site
• One of each of the following:

• Evidence of mycobacterial infection defi ned as two acid-fast positive smears 
(each from a separate collection) that were morphologically consistent with 
mycobacteria from either sputum or gastric aspirate that were not found to be 
non-tuberculous mycobacteria bacteria on culture; QuantiFERON-TB Gold In-tube 
test conversion from negative to positive; or tuberculin skin test ≥15 mm

and
• Radiographic fi ndings compatible with tuberculosis defi ned as ≥1 of the following 

factors identifi ed independently by at least two of three paediatric radiologists 
serving on a masked review panel: calcifi ed Ghon focus, pulmonary cavity, hilar or 
mediastinal adenopathy, pleural eff usion, or airspace opacifi cation

and
• Clinical manifestations compatible with tuberculosis defi ned as cough without 

improvement for >2 weeks; weight loss of >10% of bodyweight for >2 months; or 
failure to thrive, defi ned as crossing >1 complete major centile band (<97th–90th, 
<90th–75th, <75th–50th, <50th–25th, <25th–10th, and <10th–3rd weight-for-age 
centiles) downward for >2 months
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in the placebo group,21 with an estimated 7·5% loss to 
follow-up.24 Thus, 1392 participants per intervention 
group would provide a 90% chance of detection of a 60% 
reduction between the intervention and control groups 
based on a two-sided log-rank test at a signifi  cance level 
of 0·05. We implemented a 6 month exten sion to the 
planned follow-up to achieve the target case accrual.

For safety analyses, the sample size of 1392 participants 
receiving MVA85A would provide a greater than 75% 
chance of observing an adverse event that had an 
approximately one in 1000 actual rate of occurrence.

The trial was registered with the South African National 
Clinical Trials Register on Nov, 4, 2008 (DOH-27-0109-
2654), and with ClinicalTrials.gov on July 31, 2009, 
number NCT00953927.

Role of the funding source
Aeras was the trial sponsor. Aeras and the Oxford-
Emergent Tuberculosis Consortium (OETC) contributed 
to study design, data interpretation, and writing of the 
manuscript. MDT, MH, BSL, TJS, MAS, SL, HM, and 
HMcS had complete access to the data. HMcS had fi nal 
responsibility for the decision to submit for publication.

Results
Between July 15, 2009, and May 4, 2011, we obtained 
consent for 4754 infants. We enrolled 2797 infants who 
had completed screening when the enrolment target of 
2784 was met (fi gure 1). Reasons for screening failure 
have been reported elsewhere.22 363 infants were entered 
into study group 1 (initial safety cohort; 182 in MVA85A 
group and 181 in the placebo group); 54 into group 2 
(27 and 27), 54 into group 3 (27 and 27), and 39 into 
group 4 (19 and 20; immunogenicity groups); and 2287 in 
group 5 (1144 and 1143; correlates of protection). 
Follow-up was completed in October, 2012. The per-
protocol population was 2794, excluding three partici-
pants from the intention-to-treat population (fi gure 1). 
The intention-to-treat analysis is not reported.

Demographic and baseline clinical characteristics of the 
study participants were much the same between groups 
(table 1). In the per-protocol population, median follow-
up for 1399 recipients of MVA85A was 24·6 months 
(range 0·2–37·3; IQR 19·2–27·8) and for 1395 controls 
was 24·6 months (0·3–37·3; 19·2–30·1). The number of 
participants dis con tinuing the study did not diff er 
between the two treatment groups (fi gure 1). 126 infants 
(5%) were lost to follow-up, 11 died (<1%), and 62 (2%) 
had consent withdrawn.

At least one local adverse event was reported in 
628 (45%) of 1396 controls who received the allocated 
intervention and 1251 (89%) of 1399 recipients of 
MVA85A. At least one systemic adverse event was 
reported in 1059 (76%) controls and 1120 (80%) of 
recipients of MVA85A. At least one serious adverse 
event was reported in 258 (18%) controls and 257 (18%) 
recipients of MVA85A (appendix). No serious adverse 
events related to vaccine were reported in the MVA85A 
group, but one serious adverse event regarded as 
related to placebo occurred in the placebo group (short 
admission to hospital for fever 4 days after vaccination). 
417 (64%) of 648 serious adverse events were acute 
lower-respiratory-tract infections or gastro enteritis 
(appendix). Seven (1%) infants died in the vaccine 
group (two from kwashiorkor, two from non-
tuberculous meningitis, one from gastroenteritis, one 
from asphyxia due to drowning, and one from sudden 
death) and four (<1%) infants died in the placebo group 

Placebo (n=1395) MVA85A (n=1399) Overall (n=2794)

Age, days 145·7 (13·5) 146·6 (14·3) 146·2 (13·9)

Sex, male 714 (51%) 708 (51%) 1422 (51%)

Ethnic group

Black 267 (19%) 287 (21%) 554 (20%)

Mixed race 1126 (81%) 1107 (79%) 2233 (80%)

Asian 1 (<1%) 3 (<1%) 4 (<1%)

White 1 (<1%) 2 (<1%) 3 (<1%)

Weight

Infants assessed 1389 (>99%) 1394 (>99%) 2783 (>99%)

Mean, kg 6·47 (0·98) 6·45 (0·99) 6·46 (0·98)

Full-term birth (≥38 weeks) 983 (70%) 1031 (74%) 2014 (72%)

Data are mean (SD) or n (%).

Table 1: Demographics and baseline characteristics of the per-protocol population

Figure 1: Trial profi le
*One infant developed gastroenteritis that precluded inclusion and one infant became ineligible after a 
randomisation error. QFT=QuantiFERON-TB Gold In-tube.

4754 infants with consent

1957 excluded 
25 deaths  

281 QFT positive  
138 household tuberculosis contact 

33 HIV exposed 
947 withdrawal or relocation 
533 other 

2797 randomly allocated

1399 allocated to MVA85A
1399 received allocated intervention

0 did not receive allocated intervention

105 early discontinuation
61 lost to follow-up
37 withdrew consent
7 died

1399 analysed
0 excluded from analysis

1398 allocated to placebo
1396 received allocated intervention

2 did not receive allocated intervention*

94 early discontinuation
65 lost to follow-up
25 withdrew consent

4 died

1395 analysed
1 excluded from analysis (dose deviation)
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(two from gastro enteritis, one from encephalitis, and 
one from a lower-respiratory-tract infection). During 
follow-up, 510 (37%) of 1395 recipients of placebo and 
507 (36%) of 1399 recipients of MVA85A were admitted 
to the study ward for investigation.

MVA85A induced an Ag85-specifi c T-cell response as 
measured by ex-vivo interferon γ enzyme-linked im muno-
sorbent spot (median 136 spot-forming cells per million 
PBMCs, IQR 87–362; fi gure 2). Whole blood ICS showed 
that these cells were CD4-positive T cells predominantly 
expressing interferon γ, TNFα, and interleukin 2 (fi gure 2). 
We also detected CD4-positive interleukin 17-positive 
T cells (fi gure 2), some of which co-expressed Th1 cyto-
kines (data not shown). These responses were not detected 
in recipients of placebo. No CD8-positive T-cell responses 
were detectable and no responses were detected with ICS 
completed on cryo preserved PBMCs (data not shown).

Table 2 shows vaccine effi  cacy and numbers of infants 
who met endpoints 1, 2, or 3 by intervention group. For 
analysis with follow-up data truncated at 2 years after 
vaccination, vaccine effi  cacy was 23·9% (95% CI 
–27·9 to 54·7) for endpoint 1, –0·7% (–52·3 to 33·4) for 
end point 2, and –3·6% (–29·0 to 16·8) for endpoint 3. 
A post-hoc review of case distribution in the fi rst year 
showed 16 recipients of placebo met endpoint 1 as did ten 
MVA85A recipients. Figure 3 shows the Kaplan-Meier 
survival analysis for endpoint 1.

39 (3%) of 1395 infants assessed in the placebo group 
had incident tuberculosis (1·39 per 100 person-years 
[95% CI 1·00 to 1·91]) as did 32 (2%) of 1399 infants 
in the MVA85A group (1·15 per 100 person-years 

[0·79 to 1·62]). 171 (12% [95% CI 10·6 to 14·1]) infants 
assessed in the placebo group and 178 (13% [95% CI 
11·0 to 14·6]) infants in the MVA85A group became 

Figure 2: Vaccine immunogenicity
(A) Frequencies of Ag85A-specifi c T cells measured by interferon-γ enzyme-linked immunosorbent spot assay in infants in study group 2 (27 infants in the 
MVA85A group and 27 infants in the placebo group) before administration of placebo or MVA85A (day 0) and 7 days after vaccination. (B) Frequencies of 
cytokine-expressing Ag85A-specifi c Th1 (CD4-positive T cells expressing IFN-γ, TNFα, or interleukin 2) and (C) frequencies of Ag85A-specifi c Th17 (CD4-positive T cells 
expressing interleukin 17) cells, measured by whole blood intracellular cytokine staining 28 days after administration of placebo or MVA85A to infants in study group 
four (17 infants in the MVA85A group and 19 infants in the placebo group). SFC=spot-forming cells. PBMC=peripheral blood mononuclear cell.
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infected with M tuberculosis as defi ned by QFT 
conversion during the course of the study. Vaccine 
effi  cacy against infection was –3·8% (95% CI 
–28·1 to 15·9). Effi  cacy was much the same when the 
comparison was restricted to QFT conversion at day 336 
and end of study visit (data not shown).

Discussion
We report completion of a phase 2b safety and effi  cacy 
trial for infants with a new tuberculosis vaccine strategy 
(panel 2). In this trial, MVA85A was well tolerated and 
immunogenic in healthy infants who had previously 
been vaccinated with BCG, with a safety and immuno-
genicity profi le consistent with that reported in other 
studies of infants.16,17 However, we noted no signifi cant 
effi  cacy against tuberculosis or M tuberculosis infection.

This absence of effi  cacy was not consistent with fi nd ings 
from studies in animals, which suggested poten tial for 
effi  cacy,12–15 and evidence of immunogenicity in previous 
clinical trials16,17,23 that measured immune responses 
regarded as important for protection.18,19 Our results 
suggest that the CD4-positive T cells induced by 
MVA85A—at least at the modest frequencies noted in this 
trial—do not correlate with protection against tuberculosis 
or M tuberculosis infection. Fre quencies of antigen-specifi c 
Th1 cells observed in infants with MVA85A were up to a 
tenth of the frequencies noted in adults.16,25

Our effi  cacy trial was undertaken in infants. However, 
this group is not responsible for most transmission of 
M tuberculosis. Thus, MVA85A could potentially protect 
adolescents or adults against pulmonary tuberculosis, in 
view of the fact that immunologically immature infants do 
not respond as well to this vaccine as adults do. MVA85A 
could also potentially have high effi  cacy in people of all 
ages against severe forms of tuberculosis, including 
pulmonary tuberculosis, without preventing infection or 
mild forms of disease. A high effi  cacy against severe 
disease could be masked in a trial that pre dominantly 
detects mild forms of tuberculosis. The sample size of a 

trial powered to detect only severe or disseminated disease 
would be prohibitively large. The safety and immuno-
genicity of MVA85A alone in infants exposed to HIV is 
currently being assessed.26 BCG-specifi c Th1 and Th17 
responses were recently shown not to correlate with risk 
of tuberculosis in infants after BCG vac cination.27 Whether 
a substantially greater magnitude of response, a response 
that is qual itatively diff erent, or a completely new 
immunological response would be necessary for pro-
tection is unclear. In our study, frequencies of BCG-
primed Ag85A-specifi c T cells detected before MVA85A 
vaccination were very low or undetectable (fi gure 2). 
Conversely, adults and adoles cents have signifi cantly 
higher Ag85A-specifi c responses before vaccination,16 
which might be an important factor in the stronger 
responses induced by MVA85A in older individuals. 
MVA85A was designed to boost BCG-primed responses, 
and the low frequencies of BCG-induced cells in infants 
might restrict the immunogenicity, and poten tially the 
effi  cacy, of MVA85A in this age group. Ongoing assess-
ment of study samples for potential correlates of risk 
might also yield important insights into why MVA85A did 
not confer protection in this trial and could add to the 
design and assessment of the next generation of tuber-
culosis vaccine candidates. Identifi  cation of immune 
correlates of protection would greatly aid vaccine design 
and assessment. However such correlates can only be 
identifi ed in trials in which effi  cacy was shown. Identifi -
cation and optimisation of animal models that accurately 
predict effi  cacy in human beings is also needed. Other 
effi  cacy trials of new HIV and malaria vaccines have 
reported early but waning effi  cacy.28,29 In this trial, a post-
hoc analysis of distribution of case accrual in the fi rst year 
suggested a possible early eff ect on disease that merits 
further study of route of adminis tration, regimen, and 
dosing strategies with MVA85A and other vaccines.

Despite concerns about potential immunopathology 
induced by new tuberculosis vaccines,30 we noted no 
evidence for this eff ect. The high incidence of respiratory 
and gastrointestinal serious adverse events recorded in 
this trial refl ects the known burden of childhood 
morbidity in this community.24 High numbers of 
unrelated serious adverse events should be expected in 
clinical trials in infant populations in developing 
countries. The high frequency of mild, self-limiting local 
reactions in MVA85A recipients is consistent with 
previous studies.16,17 These local reactions were only 
partially controlled for by Candin, a placebo selected for 
its local reactogenicity profi le. The overall safety profi le 
supports modifi ed Vaccinia Ankara virus as a suitable 
vector for infant vaccination strategies.

The high incidence of disease noted in our study was 
comparable to the high rates noted in previous trials.21,24 We 
noted no confi rmed cases of disseminated tuber culosis 
(two cases of tuberculous meningitis met the defi nition for 
endpoint 2) and no deaths from tuber culosis, supporting 
our previous observation that disseminated and severe 

Panel 2: Research in context

Systematic review
To our knowledge, our trial is the fi rst effi  cacy study of a novel BCG booster tuberculosis 
vaccine in infants. A systematic review is not applicable.

Interpretation
The safety of MVA85A reported in our large cohort is an important fi nding for 
tuberculosis vaccine development. However the absence of effi  cacy noted, despite studies 
in animals suggesting potential for effi  cacy and evidence of immunogenicity in previous 
clinical trials, was unexpected and suggests that the present parameters for selection of 
tuberculosis vaccine candidates might be inadequate. The relatively weak 
immunogenicity we noted in this study makes it diffi  cult to conclude whether a higher 
magnitude response (ie, one that is qualitatively diff erent or a completely new 
immunological mechanism) will be required for a protective vaccine. Lessons learnt from 
this trial, including trial design, execution, and vaccine selection, will be of enormous 
importance to the broader specialty of vaccine development.
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tuberculosis are uncommon in a setting of modern trials 
with active surveillance, eff ective isoniazid prophylaxis, 
and eff ective anti-tuber culous treatment.21 The high overall 
rate of M tuberculosis infection noted in this trial (349 [13%] 
of 2792) suggests a high level of exposure and trans mission 
in this com munity. This infection burden sug gests that 
M tuberculosis infection might be a suitable endpoint for 
future trials of new tuberculosis vaccines that aim to 
prevent infection and subsequent disease. Because BCG is 
regarded as less eff ective for prevention of infection than 
prevention of disease, our fi nding that MVA85A did not 
prevent infection is unsurprising and should be interpreted 
separately from the fi ndings about effi  cacy against disease. 
We recognise that QFT has not been validated as a 
diagnostic test for M tuberculosis infection in infants and 
young children; however, a previous study31 done by our 
group showed good corre lation between QFT and the 
tuberculin skin test.

Our study showed that a large effi  cacy trial of a new 
tuberculosis vaccine in a high-burden setting is feasible 
with a stringent and objective case defi nition that incor-
porated the primary elements proposed in a recent 
consensus statement.32 We have also shown that standard-
ised investigation for tuberculosis with multiple respiratory 
sampling, microbiological confi rmation of disease, and 
masked expert panel review of digital radiograph images is 
feasible in a developing country setting where tuberculosis 
vaccine effi  cacy trials are likely to be done. We recognise 
that there is no gold standard defi nition of childhood 
tuberculosis,33 but we believe that the hierarchal endpoint 
defi nition used in this trial is robust and might be suitable 
for future tuberculosis vaccine trials.

Cohort retention was very high in this trial, and no 
evidence was noted that the rate of loss to follow-up had a 
diff erential eff ect on case accrual. Similarly, exclusion of 
three enrolled infants in the per-protocol analysis did not 
aff ect the results.

In conclusion, MVA85A was well tolerated, modestly 
immunogenic but unable to confer signifi cant protection 
against tuberculosis or M tuberculosis infection. The 
infor mation gained from the successful execution of this 
study will aid the planning of future trials and vaccination 
strategies. Substantial global eff orts to develop an 
improved vaccine against tuberculosis must continue.
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