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Abstract The intracellular domain of the Alzheimer’s
amyloid precursor protein (AICD) has been described as
an important player in the transactivation of specific genes.
It results from proteolytic processing of the Alzheimer’s
amyloid precursor protein (APP), as does the neurotoxic
AP peptide. Although normally produced in cells, Ap is
typically considered to be a neurotoxic peptide, causing
devastating effects. By exposing primary neuronal cultures
to relatively low Af3 concentrations, this peptide was
shown to affect APP processing. Our findings indicate that
APP C-terminal fragments are increased with concomitant
reduction in the expression levels of APP itself. AICD
nuclear immunoreactivity detected under control conditions
was dramatically reduced in response to A3 exposure.
Additionally, intracellular protein levels of Fe65 and GSK3
were also decreased in response to Af3. APP nuclear
signaling is altered by Af, affecting not only AICD
production but also its nuclear translocation and complex
formation with Fe65. In effect, AR can trigger a physio-
logical negative feedback mechanism that modulates its
own production.
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Introduction

AP was originally defined as a pathogenic peptide
associated with Alzheimer’s disease (AD), but it is now
known to be produced during normal intracellular process-
ing of the Alzheimer’s amyloid precursor protein (APP;
Haass et al. 1992, 1993; Selkoe 1993; da Cruz e Silva et al.
2004). Consecutive APP cleavage by o-secretase (Sisodia
1992; Buxbaum et al. 1998; Allinson et al. 2003) and the y-
secretase complex (Li et al. 2000; Sastre et al. 2001; Esler
et al. 2002; Lee et al. 2002; Capell et al. 2005) precludes
A3 production and produces a smaller fragment termed P3,
whereas cleavage by [(3-secretase and y-secretase results in
the production of A peptides, mainly in Golgi and
endosomes (Vassar et al. 1999; Yan et al. 2001; Rebelo et
al. 2007). The former non-amyloidogenic cleavage pathway
also leads to the production of sAPP«x, while the latter
results in SAPPf3 production. Proteolytic SAPP products are
typically secreted, although intracellular SAPP (isAPP)
production has been detected (Carlson et al. 2000;
Henriques et al. 2009). Resulting APP C-terminal frag-
ments (CTFs), the products of «- and [3-secretase activities,
may be cleaved by y-secretase at y- and €-sites, giving rise
to the APP intracellular domain (AICD; Sastre et al. 2001).
Cao and Sudhof (2001) have shown that AICD exhibits
transcriptional activity, enhanced by the formation of a
transcriptional active complex comprising AICD, Fe65, and
the histone acetylase Tip60. This trimeric complex was
reported to localize to multiple spherical nuclear compart-
ments (von Rotz et al. 2004). AICD and Fe65 localize
together at the nucleus (Kimberly et al. 2001; Minopoli et
al. 2001; Walsh et al. 2003), and nuclear AICD-containing
complexes were reported to activate the transcription of
several genes, including APP itself, BACE, Tip60 (von Rotz
et al. 2004), GSK33 (Kim et al. 2003; Ryan and Pimplikar
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2005), KAII (Baek et al. 2002), and Neprilysin (Pardossi-
Piquard et al. 2005). However, it is still unclear how the
translocation of Fe65 and AICD from the cytoplasm and/or
membrane into the nucleus is accomplished.

APP/Fe65 interaction is also known to modulate APP
metabolism, including sAPP secretion and A3 production
(Sabo et al. 1999; Ando et al. 2001). Sabo et al. (1999)
reported that in MDCK cells stably expressing APPgos,
Fe65 increased APP translocation to the plasma membrane,
which was accompanied by an increase in A3 and sAPP«x
secretion. Recently, Xie et al. (2007) showed that Fe65
RNAI silencing leads to an increase in CTF levels and a
decrease in A3 levels, thus suggesting a role for Fe65 as a
positive regulator of y-secretase activity.

The present work focuses on the effect of exogenously
added A3 on APP metabolism in primary neuronal cultures
and its effects on AICD/Fe65 nuclear signaling. The data
obtained support the hypothesis that A3 plays a role in APP
processing and RIP signaling by altering APP intracellular
proteolytic cleavage and by decreasing both APP and Fe65
intracellular and nuclear levels. The intracellular A3 effects
appear to include decreased AICD production, given the
increase in CTFs production and decreased targeting and
nuclear co-localization of AICD/Fe65.

Materials and Methods
Preparation and Maintenance of Primary Neuronal Cultures

Rat cortical and hippocampal cultures were established from
embryonic day 18 embryos as previously described (Henriques
et al. 2007). After dissociation with trypsin (0.45 or 0.75 mg/
ml for cortical or hippocampal cultures, respectively, for 5—
10 min at 37°C) and deoxyribonuclease I (0.15 mg/ml) in
Hank’s balanced salt solution, cells were plated on poly-D-
lysine-coated dishes at a density of 1.0% 10° cells/cm* in B27-
supplemented Neurobasal medium (GIBCO), a serum-free
medium combination (Brewer et al. 1993). The medium
was supplemented with glutamine (0.5 mM), gentamicin
(60 pg/ml), and with or without glutamate (25 uM) for
hippocampal or cortical cultures, respectively. Cultures were
maintained in an atmosphere of 5% CO, at 37°C for 9 days
before being used for experimental procedures.

Incubation with A3 Peptide

Af2s.35 peptide (Sigma Aldrich) was dissolved in distilled
water to prepare a 1| mM stock. Rat primary neuronal cultures
were incubated for 24 h in Neurobasal medium free of B27
containing 20 uM Af,5_3s, with the medium being replaced
during the last 3 h of incubation by fresh medium with or
without A[.))25,35.

Sample Collection and Immunoblotting

Following exposure to Af3, conditioned media and cells were
collected in boiling 1% sodium dodecyl sulfate (SDS) and
the lysates were homogenized as previously described
(Amador et al. 2004). Protein determination was carried out
using the BCA kit (Pierce). Samples normalized for protein
content were separated on 7.5% or 5-20% gradient SDS
polyacrylamide gels and then electrophoretically transferred
onto nitrocellulose membranes for immunoblotting. Intra-
cellular APP/isAPP and extracellular sSAPP detection was
carried out using the 22C11 mouse monoclonal antibody
directed against the APP N terminus (Boehringer), while
for holoAPP and endogenous C-terminal fragments, an
APP C-terminal antibody was used (rabbit polyclonal anti-
[3-APP C terminus, Zymed). Detection of total GSK3 was
achieved using a rabbit polyclonal anti-glycogen synthase
kinase 3 antibody (Chemicon). For Fe65 detection, the
antibody clone 3H6 (Uspstate) was used, and tubulin
detection was carried out using the monoclonal anti-f3-
tubulin antibody (Zymed). Following incubation with the
primary antibodies, immunodetection made use of horse-
radish peroxidase-conjugated anti-mouse or anti-rabbit IgGs
secondary antibodies (Amersham Pharmacia), and for
visualization, enhanced chemiluminescence detection
(ECL) was employed (Amersham Pharmacia). The ECL
Plus reagent was used for extracellular sAPP, CTFs, and
Fe65 detection.

Quantification

Quantity One densitometry software (Bio-Rad) was used to
quantify band intensity and correlate it to protein levels.
Data are expressed as mean+SEM of at least three
independent experiments. Statistical analysis was carried
out using one-way analysis of variance. When significantly
different, the Dunnett test was applied to compare all
groups to the control. The level of statistical significance
accepted was P<0.05.

Northern Blot Analysis

Total RNA was isolated from control primary cortical
cultures (3.0x10° cells) following AP treatment (TRI
REAGENT, Sigma). Normalized total RNA aliquots
(10 pg) were separated by formaldehyde gel electrophoresis
and transferred to nitrocellulose membranes using standard
laboratory protocols (da Cruz e Silva et al. 2009). The blot
was then hybridized with a [**P]-labeled APP cDNA probe
(25 ng, 1x10° cpm/ng) to evaluate APP expression levels.
The APP probe used (756 bp) was obtained by Agel/BamHI
restriction enzyme digestion of the APP;5; ¢cDNA and
labeled with [x-**P]JdCTP (GE Healthcare) using the High
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Prime DNA labeling kit (Roche, Alfagene). Purification of
the probe through NucTrap Probe purification columns
(Stratagene, Alfagene) was performed prior to hybridization.
APP hybridizing RNA was detected using Kodak Biomax
XAR film (Sigma).

Monitoring Nuclear Targeting of APP C-Terminal Proteo-
lytic Products

For evaluating nuclear targeting of APP C-terminal proteolytic
products and Fe65, cells were fixed with 4% paraformalde-
hyde, permeabilized with methanol for 2 min, and blocked with
3% bovine serum albumin in phosphate-buffered saline (PBS)
for 1 h and further incubated with primary antibody (C-terminal
APP antibody and Fe65 antibody) for 3 h. The antibody 4G8
(anti-Abeta 17-24 aa antibody, Chemicon) was used in co-
localization studies with the APP C-terminal antibody to rule
out nuclear CTFs and confirm the identity of AICD at the
nucleus. After washing with PBS, Texas Red-conjugated goat
anti-rabbit (Molecular Probes) or fluorescein-conjugated goat
anti-mouse (Calbiochem) secondary antibodies were added for
2 h at room temperature. Coverslips were mounted on
microscope glass slides using FluoroGuard (BioRad) as an
antifading reagent or Vectashield (Vector Laboratories), an
antifading reagent containing 4',6-diamidino-2-phenylindole
(DAPI) for nucleic acid labeling. Nuclear targeting and co-
localization studies of APP C-terminal fragments and Fe65 was
carried out by immunofluorescence analysis. Acquisition of
epifluorescence images made use of a LSM 510-Meta confocal
microscope (Zeiss) and a 63%/1.4 oil immersion objective. The
argon laser lines of 405 nm (DAPI), 488 nm (fluorescein), and a
561-nm DPSS laser (Texas Red) were used. Microphotographs
were acquired in a sole section in the z-axis (xy mode) and
represent a mean of 16 scans.

Results and Discussion
A3 Affects APP Expression Levels

AP effects on APP metabolism are unclear, with some
reports suggesting that A3 may be affecting 4PP transcrip-
tion, while others suggest it to have an effect at the APP
processing/catabolic levels (Davis-Salinas et al. 1995;
Schmitt et al. 1997; Carlson et al. 2000). In our work,
primary neuronal cultures were incubated with and without
Af5.35 during 24 h and total RNA extracted for Northern
blot analysis (Fig. la). Although A3 induction of APP
transcription was previously reported in a neuronal hybrid
cell line and in cultured astrocytes (Le et al. 1995; Moreno-
Flores et al. 1998), under our experimental conditions, Af3
treatment lead to a clear decrease in APP expression in
primary cortical cultures. Accordingly, APP intracellular
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Figure 1 Af decreases APP expression in primary neuronal cultures.
Primary cortical neuronal cultures were treated with 20 uM A5 35
for 24 h as described in “Materials and Methods”. a Total mRNA was
isolated and APP mRNA expression in primary cultures was
monitored in response to A exposure. b Intracellular holoAPP
(hAPP) protein detection was carried out using an antibody to the APP
C terminus. ¢ Tubulin was used as a control. C control, A5 Af
treatment for 24 h. **P<0.01, significantly different from control
using Dunnett post hoc test

protein levels also dropped a concordant 0.4-fold below
control levels upon A3 exposure (Fig. 1b). Similar results
were obtained for hippocampal cultures, with A3 leading to
a decrease in APP intracellular levels (as detected using an
APP C-terminal antibody, Fig. 2a), again supporting a role
for AP in modulating 4PP transcriptional levels in primary
hippocampal cultures.

A3 Induces Accumulation of APP C-Terminal Fragments

Our data show that AP,s_35 provokes a decrease in
intracellular holoAPP (hAPP, Fig. 2a), detected using the
APP C-terminal antibody in primary neuronal cultures.
Concomitantly, using the APP N-terminal antibody 22C11,
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Figure 2 Effect of Af on CTF production. Following incubation of
hippocampal neurons with AP peptide, cell lysates and conditioned
medium were collected and analyzed. a Endogenous intracellular
holoAPP (hAPP), extracellular secreted sAPP (es4APP), and intracellular
SAPP (isAPP). APP and sAPP were distinguished using the APP C-
terminal antibody and the APP N-terminal antibody. b APP C-terminal

we could observe a decrease in extracellular sSAPP secretion
(esAPP, Fig. 2a) and an increase in APP intracellular levels.
The latter represents intracellularly accumulated sAPP
(isAPP, Fig. 2a) since hAPP levels decreased. This isAPP
retention was previously reported by us (Henriques et al.
2009) in various cell types, and AP, 4, elicits a similar
response. Retention of iSAPP was also observed with the
physiological AR 4o peptide (Carlson et al. 2000). In this
case, increases in medium secreted proteins, such as IL-8,

fragments (APP CTFs) were detected with an APP C-terminal antibody.
¢ Total GSK3 expression levels. *P<0.05 and **P<0.01, significantly
different from control using Dunnett post hoc test. Values are expressed
as mean=SEM from three independent experiments. C control, 45 A
treatment for 24 h

concomitant with decreases in sAPP secretion, by 10-30%,
were reported. Given that A} was clearly altering APP
processing (Fig. 2), we monitored the levels of other APP
proteolytic fragments and observed that these too were
affected. The levels of endogenous CTFs produced by APP
proteolytic processing increased with A3 treatment (Fig. 2b).
This suggests that y-secretase activity was inhibited by A
and/or that CTFs were not accessible for y-secretase
cleavage. However, direct measurement of y-secretase
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Figure 3 Af induces altera- A.
tions in AICD and Fe65 nucle-
ar targeting. Hippocampal
neuronal cultures were incubat-
ed with Af3,5 35 for 24 h and
subsequently fixed with para-
formaldehyde. Immunofluores-
cence analyses were carried out
using anti-3-APP C-terminal
and anti-Fe65 antibodies, la-
beled with a Texas Red-
conjugated (red staining) or
with a fluorescein-conjugated
(green staining) antibody, re-
spectively. Cells were mounted
with an antifading reagent con-
taining DAPI for nuclei acids
staining. a AICD and Fe65
immunoreactivity was analyzed
by confocal microscopy. b Rep-
resentative profiles. Fluores-
cence intensity profiles represent
the voxels through the white
lines indicated in the merged
image shown in a. ¢ The identity
of AICD fragments at the nu-
cleus was shown by the positive
immunoreactivity for the APP
C-terminal antibody (Texas Red-
conjugated, red staining) and
the negative immunoreactivity B.
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activity did not yield any significant alteration (data not
shown), suggesting that CTF cleavage by y-secretase activity
per se was not hindered. An accumulation of amyloidogenic
APP CTFs in response to AP 4, exposure was previously
observed by Yang et al. (1995) in APP transfected HEK293
cells. In neuronally derived cells, y-secretase cleavage was
described to occur at the plasma membrane and/or early
endosomes (Kaether et al. 2006). Thus, the neuronal CTF
increase observed (Fig. 2b) probably reflects a block in the
transport to plasma membrane and a subsequent decrease in
proteolytic cleavage of CTFs. This correlates well with our
findings of isAPP retention within cytoskeleton-associated
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vesicular-like structures (Henriques et al. 2009). Hence,
increased accumulation of CTFs also correlates with de-
creased AICD production.

AICD has been described as an APP nuclear signal
peptide that can form a transcriptional active complex with
Fe65 (Cao and Sudhof 2001). AICD-containing complexes
were reported to induce transcriptional activation of several
genes, including APP itself and GSK33 (Kim et al. 2003;
von Rotz et al. 2004; Ryan and Pimplikar 2005). Thus,
increased CTFs and concomitant decreased AICD levels
would predict decreases in the AICD nuclear pool and
signaling. This is consistent with the observed decrease in
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Table 1 AICD and Fe65 nuclear targeting and co-localization in response to A3

Nuclear targeting as a % of total population

% of each protein co-localizing to the complex in the nucleus

C AB % Dec + AP C AB % Dec + AR
AICD 46£3.0 27+1.7 4 3342.0 21£1.9 36
Fe65 36+2.0 16+1.4 56 20411 20+1.6 10

Analysis was carried out using a Zeiss confocal microscope co-localization software. The percentage of nuclear AICD and Fe65 immunopositive
pixels were determined relative to the total neuronal cell populations, excluding dendrites and axons (nuclear targeting as a percentage of the total
population). The “% of each protein co-localizing to the complex in the nucleus” represents the percentage of each protein (AICD or Fe65) co-
localizing to the other and relative to its total nuclear population. “% Dec + A3” is the percentage decrease upon A3 addition. Data are presented

as mean+SEM of 40 analyzed cells

APP expression levels (Fig. 1a) and a significant decrease
in total GSK3 levels (Fig. 2c). Direct measurements of
AICD were not possible given that the endogenous levels in
primary cultures are difficult to detect.

A Decreases Nuclear Targeting of APP C-Terminal
Proteolytic Products and Fe65

Our observation that Af3 increased APP CTF levels and
decreased APP transcriptional activation and GSK3 expres-
sion levels (Figs. 1 and 2) is consistent with a decrease in
AICD production and subsequent decreased transactivation
of AICD downstream genes. Hence, we focused on AICD/
Fe65 nuclear targeting and complex formation. The nuclear
targeting of APP C-terminal proteolytic products was
clearly hindered in the presence of AP (Fig. 3a, Texas
Red staining). The APP C-terminal peptides detected in the
nucleus and positive for the APP C-terminal antibody were
negative for the 4G8 antibody, reinforcing the identity of

Fe65 KDa

2] - =

Fe65 levels

Figure 4 Af3 effect on Fe65. Fe65 intracellular levels were evaluated
using both immunoblotting (a) and immunofluorescence (b). Fe65
immunoreactivity was analyzed by confocal microscopy at a focus

the nuclear targeted APP C-terminal peptides as AICD
proteolytic fragments (Fig. 3c). Under our experimental
conditions, A3 exposure decreased not only the intensity of
nuclear APP C-terminal punctuate immunoreactivity
(Fig. 3a, Texas Red staining) but also Fe65 nuclear
intensity and targeting (Fig. 3a, green fluorescein staining).
As a consequence, the co-localization of nuclear AICD-
Fe65 was also compromised. Confocal profiling demon-
strated that both proteins dramatically decreased in the
nucleus (DAPI-positive organelle) following A3 treatment
(Fig. 3b). Hence, the blue trace (denotes the nucleus) is
sustained with A3 exposure, whereas the red and green
traces for AICD and Fe65, respectively, drop similarly. Of
note, this analysis was carried out in non-apoptotic cells, as
denoted by nucleus morphology (DAPI staining).

Detailed co-localization studies of AICD and Fe65
immunoreactivity in the nucleus using Zeiss confocal co-
localization software (Table 1) also confirmed Af{3-induced
alterations in the nuclear targeting of both proteins. The

Control AR

plane above the nucleus and just below the plasma membrane. **P<
0.01, significantly different from control using Dunnett post hoc test.
C control, A3 A treatment for 24 h
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percentage of both AICD and Fe65 positive pixels present
in the nucleus, relative to the total neuronal soma
population, showed a decrease of 42% and 56%, respec-
tively. Focusing on the nuclear population alone, we were
able to determine that the AICD nuclear population co-
localizing with Fe65 dropped from 33% to 21% upon
addition of Af3, which represents a 36% decrease. There
was no significant difference in the percentage of the Fe65
nuclear population that co-localized with AICD (22% and
20%). Additionally we determined that the AICD popula-
tion, as a percentage of the total APP C-terminal immuno-
reactivity, co-localizing to Fe65 in the nucleus decreased
from ~15% (33% of the 46% of the nuclear targeted
population, see Table 1) to ~5% (21% of 27%) upon
exposure to AR. Likewise, we determined the values for
Fe65, and the decrease was from ~7% (22% of 36%) to
~4% (20% of 16%).

Given that the nuclear abundance of both AICD and Fe65
were affected, we also tested the latter directly by immuno-
blotting and immunofluorescence. Our data showed a clear
decrease in Fe65 intracellular levels in response to Af3
(Fig. 4a). This was also evident by confocal microscopy at
a focus plane above the nucleus and just below the plasma
membrane where Fe65 immunoreactivity decreased overall,
being particularly visible along neurites (Fig. 4b).

Taken together, our results suggest that A3 is affecting
AICD production, its nuclear translocation, and nuclear
complex formation with Fe65 whose nuclear targeting is
itself decreased. A decrease in AICD production and in
the formation of AICD/Fe65 transactivation complexes
potentially leads to altered APP nuclear signaling in the
presence of A, leading to impaired gene transcriptional
activation.

In summary, we propose that A3 leads to reduced APP
expression and consequentially diminished A3 production,
which is important for cells exposed to an Af3-saturated
environment. It is attractive to postulate that the aforemen-
tioned mechanisms congregate to reduce intracellular
accumulation of A3 and that exogenous A3 appears to
induce a set of concerted cellular responses to prevent its
own production, including reduced AICD/Fe65 nuclear
targeting. We hypothesize that a physiologically relevant
negative feedback mechanism may be operating, tightly
coordinating the levels of APP expression and AICD and
A production. Further, as APP CTF levels progressively
decrease in AD (Sergeant et al. 2002), this feedback
mechanism may be lost with the progression of the disease.
This would be a physiologically relevant process given that
neurons exhibit higher levels of A production. Nonethe-
less, we cannot exclude that non-physiological A3 concen-
trations may trigger neuronal stress mechanisms which may
in turn affect APP metabolism and A3 production; future
research will address this question.
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