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Abstract

Background

Mechanical ventilation (MV) is a lifesaving therapy used for patients with respiratory failure.

Nevertheless, MV is associated with numerous complications and increased mortality. The

aim of this study is to define the effects of MV on gene expression of direct and peripheral

human tissues.

Methods

Classification models were applied to Genotype-Tissue Expression Project (GTEx) gene

expression data of six representative tissues–liver, adipose, skin, nerve-tibial, muscle and

lung, for performance comparison and feature analysis. We utilized 18 prediction models

using the Random Forest (RF), XGBoost (eXtreme Gradient Boosting) decision tree and

ANN (Artificial Neural Network) methods to classify ventilation and non-ventilation samples

and to compare their prediction performance for the six tissues. In the model comparison,

the AUC (area under receiver operating curve), accuracy, precision, recall, and F1 score

were used to evaluate the predictive performance of each model. We then conducted fea-

ture analysis per each tissue to detect MV marker genes followed by pathway enrichment

analysis for these genes.

Results

XGBoost outperformed the other methods and predicted samples had undergone MV with

an average accuracy for the six tissues of 0.951 and average AUC of 0.945. The feature

analysis detected a combination of MV marker genes per each tested tissue, some common

across several tissues. MV marker genes were mainly related to inflammation and fibrosis

as well as cell development and movement regulation. The MV marker genes were signifi-

cantly enriched in inflammatory and viral pathways.

Conclusion

The XGBoost method demonstrated clear enhanced performance and feature analysis

compared to the other models. XGBoost was helpful in detecting the tissue-specific marker

genes for identifying transcriptomic changes related to MV. Our results show that MV is

associated with reduced development and movement in the tissues and higher inflammation
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and injury not only in direct tissues such as the lungs but also in peripheral tissues and thus

should be carefully considered before being implemented.

Introduction

Mechanical ventilation (MV) is a lifesaving intervention used for patients with respiratory fail-

ure. Although its therapeutic effects are well known, MV is also associated with numerous

complications including significantly higher infection rates and lung injury, which prolong the

duration of time spent on the ventilator and increase mortality [1], which can exceed 24% of

those on ventilators [2]. The 2019 COVID-19 outbreak, resulting in MV treatment for numer-

ous patients, has moved the question regarding invasive ventilation usage [3] to center stage.

Clinical and transcriptomic effects of MV on tissues

The connection between treatment with invasive MV and pulmonary infections is so pervasive

that the terms Ventilator-Associated Pneumonia (VAP) and ventilator-associated events

(VAE) [2] were coined. VAE includes all the complications related to mechanical ventilation,

broadening the horizon of possible consequences beyond those infection-related [4–6]. An

example of VAE is the weaking of the diaphragm muscles [7, 8] that were observed after only

twelve hours on an mechanical ventilator [5]. A large-scale study of 549 patients showed that

samples of patients on MV exhibited increased lung inflammation and injury by testing

inflammatory markers related to lung injury derived from blood samples [9]. MV contributes

to mortality by inducing an inflammatory response in the lungs similar to that observed in

acute respiratory distress syndrome (ARDS) [4], which can lead to multisystem organ failure.

Although the most obvious clinical abnormalities in ALI (acute lung injury)/ARDS are related

to the lungs, the most common cause of death is not due to hypoxia but to multiple organ dys-

function syndrome (MODS) [10]. Indeed, MV has been associated with greater risk of kidney

failure [11], and diminished neurocognitive function in the brain [12]. Pinhu et al. [13] sug-

gested two possible mechanisms through which MV induces multiple organ failure that are

related to VAP and lung injuries that reduce the rate of organ perfusion.

Better understanding of the pathophysiology leading to the development of MODS in

patients on MV should help in the development of approaches to interrupt the cascades lead-

ing to the syndrome [10]. The exact molecular mechanics of how MV affects peripheral organs

is less obvious and the understanding of gene expression alteration in patients on MV may

help. The ramifications of MV on human tissues’ gene expression are poorly explored and

have focused mainly on the lungs [2, 14, 15]. MV was shown to stimulate the expression of the

SARS-Cov-2 receptor ACE2 in the lungs [14] and a large-scale genomic research explored the

effects of MV on the lung transcriptome [2, 14, 15]. The work in [15] used the GTEx gene

expression data to detect several distinct gene expression clusters in the lungs, including a

large cluster of genes associated with type II pneumocytes related to cells that proliferate in

ventilator associated lung injury. Human and animal studies have demonstrated that MV

using large tidal volumes (�12 ml/kg) induces a potent inflammatory response and can cause

acute lung injury [2]. Using a mouse model, [2] showed that non-injurious MV on its own ini-

tiates a proinflammatory transcriptional program in the lung. They compared breathing mice

and mice on non-injurious MV (tidal volume of 10 ml/kg) and undertook an unbiased

approach to partially decipher the complex network of related pathways. They showed that the

low tidal volume still activates a transcription program of severe lung injury. In their previous
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work [16], they showed that the combination of non-injurious MV and low-dose exposure to

bacterial products can cause severe lung injury in mice, implying a comodulatory role for MV

in lungs that are at risk. In another research attempting to decrease lung injury, MV was

shown to affect genes expression of the lung areas [17]. In summary, while MV directly affects

the lungs, investigating specific mechanistic effects on peripheral non-direct tissues has only

been partially explored [10–12]. In addition, a large-scale investigation of MV-related changes

in gene expression and molecular pathways in peripheral tissues is lacking.

Machine learning methods for predicting MV and mortality

Machine learning models have been widely used in medical applications, including to predict

MV and mortality. For example, several machine learning methods were used for predicting

mortality of patients with acute kidney injury hospitalized in the ICU (Intensive Care Unit)

[18]. Artificial Neural Networks (ANNs or NNs) were used on data of breathing patterns to

predict asynchronous breathing (AB) during MV [19]. Machine learning models used clinical

data to predict MV mortality of COVID-19 patients in emergency rooms and in-hospital once

the patient was admitted [3].

Machine learning approaches have been used not only to predict but also to detect the set of

features that drive the prediction, e.g., analysis of gene expression data to discover novel

marker genes, gene signatures and related pathways and networks, to differentiate between

conditions. Machine learning can yield a list of differential genes that combine to drive the

prediction and consider the dependence between the genes. For example, Grunwell et al. [20]

applied machine learning to nanostring transcriptomics on primary airway cells and a neutro-

phil reporter assay to discover gene networks differentiating pediatric acute respiratory distress

syndrome from non-pediatric ARDS. Cai et al. [21] used gene expression data fed into three

modeling methods—logistic regression, random forest and neural network—to develop a

diagnostic gene signature for the diagnosis of VAP.

The Genotype-Tissue Expression (GTEx) [22] Project is a comprehensive public resource

that includes tissue-specific gene expression data from nearly 1000 relatively healthy post-mor-

tem and some material from “normal” surgical specimen human donors. The GTEx data of

several tissues were successfully used in developing a machine learning model to predict the

time since death of the donors [23].

In this study, we analyzed the GTEx [22] RNA-sequencing data to investigate the impact of

MV on the transcriptomes of six representative human tissues. The study objective was to

define gene signatures and pathways differentially expressed in direct and peripheral tissues of

patients on MV. We constructed three machine learning models for each tissue and analyzed

the important features to predict patients who were on MV and those who were not and to

detect the significant MV-related gene signatures, using the analysis of the transcriptomes.

Specifically, our models predict whether the donor was subject to ventilation prior to death.

We trained and evaluated models on gene expression data of hundreds of samples for each tis-

sue and thousands of genes as features.

To the best of our knowledge, ours is the first study to describe an investigation of the geno-

mic effects of MV on multiple peripheral tissues using machine learning algorithms and

enrichment analysis of genes across tissues in human donors using gene expression data.

Methods

Data preprocessing

GTEx RNA-Seq data of 54 human tissues and 17382 RNA-seq samples from nearly 1000

donors was downloaded from the GTEx database (https://www.gtexportal.org/home/datasets,
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v8), and their transcript per million (TPM) values were log2-transformed. 18,680 protein-cod-

ing genes were retained. Outlier samples were filtered and all genes within each tissue were

quantile normalized (to remove background and sample effects). For outlier removal, for each

tissue we removed outlier samples by applying an Isolation Forest algorithm [24], with a

parameter of 0.01. Accordingly, the 1% of the remaining samples that had the highest levels of

variation from the other samples were also removed. Genes with zero variance were excluded

from the calculation (e.g., for adipose–subcutaneous, 262 genes were excluded). For a given tis-

sue, genes having at least 0.1 TPM in 80% or more of the samples were retained. S1 Table in S1

File presents the number of samples and features per tested tissue type after preprocessing and

correcting for confounding factors. For example, for adipose–subcutaneous, there are 544

samples; for each sample, there are 16,052 genes that we use as features in the machine learning

models.

Confounding factor adjustment

Our previous work [25] showed that linear regression-based adjustment of the heterogenous

GTEx data outperforms other methods in preserving the biological signal—which is relevant

here. Thus, we used linear regression models to adjust for the known confounding factors—

experimental batch, ischemic time (time elapsed between actual death and sample extraction),

gender and age. Age covers the 20–80-year range and is partitioned into 10-year intervals

(embedded in the GTEx dataset).

The type of death classification of the samples (DTHHRDY = death circumstances) is based

on a four-point Hardy Scale. 0 represents cases on mechanical ventilator prior to death, 1 and

2 represent non-ventilation deaths (short and intermediate duration prior to death) of healthy

individuals, and 3 and 4 represent non-healthy individuals. As the focus of the research is on

healthy individuals at the time of death, we excluded samples with a DTHHRDY value of 3

“Intermediate death for ill patients” and 4 “Slow death” that represent non-healthy individuals

with a long-term illness (these also comprised a small number of samples).

We aggregated the DTHHRDY into two categories—death type 0 (ventilation), a subject

who was on a ventilation machine prior to death and death type 1 (non-ventilation), a subject

who was not connected to a ventilator at the time of death. Ischemic time is the time in min-

utes that elapsed between death and sample extraction. We found that there was a correlation

between the ischemic time (SMTSISCH) and DTHHRDY (ventilation vs. non-ventilation)

that wrongly skewed the ischemic time coefficient when we used both as predictors in the lin-

ear regression model (see explanations and plots in S4 and S5 Figs in S1 File). This phenome-

non is the result of the fact that individuals on MV were already in the hospital and this

resulted in shorter time (ischemic time) between time of death and sample collection. This

phenomenon was detected previously [23] and dealt with by correcting for only one of these

two confounding factors. Here we developed an improved approach to correct the data for

ischemic time but with minimal harm to the ventilation signal. We performed linear regres-

sion in two steps. We first corrected for age, sex and batch and then for ischemic time, by infer-

ring its coefficient for each group separately; thus, we did not skew by the correlated death

type. We used the averaged coefficients calculated for each group (ventilation/non-ventilation)

independently as explained below. After correcting the data with our linear regression model,

we used the residuals as the expression values for further analysis.

The two-step process of extracting residuals was as follows:

Residual 0j
i ¼ Expji �

XN

n¼1
Coefi;n � Confounderjn ð1Þ
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Expji is the expression level of gene i in sample j. Coefi,n is the multiple linear regression coeffi-

cient gene i in coefficient n. Confounderjn is the phenotype confounding value for sample j and

confounding factor n. Residual 0j
i is the residual level of the value for gene i and sample j. The

confounding factors in the model and their corresponding confounding coefficients were gen-

der, age, and the experimental batch. Then, the ischemic rate coefficient was calculated for

each two ventilation types separately in order to correct independently for ischemic time and

not for ventilation type (which are correlated). We separated the residuals by the two ventila-

tion types (ventilation and non-ventilation). An unweighted average of the coefficients by ven-

tilation type Ischemi per gene, was taken. The residual used was:

Residualji ¼ Residual 0j
i � min 0; Ischemið Þ � Ischemictimej ð2Þ

Ischemi is the average of the factor calculated for ischemic time for death type 0 (ventilator)

and death type 1 (non-ventilator). If the average of the ischemic coefficients was greater than

0, then there was no further adjustment performed for ischemic time. Ischemictimej is the

ischemic time for sample j. Residualji is the residual value once the two-step regression process

was completed for gene i and sample j. Ideally, we would have liked to perform the regression

in one step; however, we found that for the genes with the highest predictive rates for ventila-

tion type, this would have yielded skewed ischemic time coefficients. Further details and

explanatory plots of the correction approaches we tested and the final two-step linear regres-

sion approach we used can be found in S1 File.

Machine learning methods

We selected three different algorithms and six main tissues and built machine learning classi-

fiers for each tissue—resulting in a total of 18 machine learning models. Each model is a

binary classifier designed to predict the ventilation/non-ventilation samples based on the

RNA-seq gene levels per samples, i.e., the features, derived from the specific tissue. The selec-

tion of algorithms was somewhat limited given the nature of the data: since ours was a rela-

tively small sample size (~200–700 items) having a large number of features (~13-16k), not

all machine learning methods were expected to achieve good results. Due to the relatively

small sample size, we decided to experiment with two different decision tree-based algo-

rithms (described bellow): Random Forest (RF), and a boosted decision tree, the eXtreme

Gradient Boosting technique (XGBoost) [26]. We expected that the boosted decision trees

would be very effective in our context. Tree boosting machines are a family of powerful

machine learning techniques that have shown considerable success in a wide range of practi-

cal applications. An additional advantage of tree boosting machines is the explainability capa-

bilities of these models, which can help in validating the correctness of the model, by

checking the relevance of the most significant gene levels to the tested conditions, i.e., ventila-

tion vs. non-ventilation, and learning the biological signs that the model is detecting. In addi-

tion, and given the popularity of using Deep Learning and the extensive usage of it in many

different use cases these days, we also chose to use the Artificial Neural Network (ANN) [27]

as one of our methods, although it may be less effective when working with tabular data and

a relatively small sample size.

Random forest

RF is an ensemble algorithm that combines multiple decorrelated decision tree prediction vari-

ables based on each subset of data samples [28]. RF has been extremely successful as a general-

purpose classification and regression method, proven to be a computationally efficient
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technique that can operate quickly over large datasets, and is easy to implement. RF can also

handle a large number of input variables without overfitting [28]. In general, the RF approach

creates several randomized decision trees, then combines and aggregates their predictions by

averaging.

The RF model was built using the scikit-learn [29] Random Forest Regressor. We used a

model configuration similar to the XGBoost (presented below), i.e., we use 100 estimators with

a maximum depth of 3 and a learning rate of 0.1.

Tree boosting—XGBoost

Boosting [30] is a commonly used machine learning method that attempts to improve the accu-

racy of a given learning algorithm. Boosting is done by creating an ensemble learner from sev-

eral weaker models. The ensemble takes a set of predictors, all aiming to predict the same

target, and combines them together to form a stronger predictor. Friedman [31] was the first

to propose a gradient-descent-based formulation of boosting, a method that improves the

approximation accuracy.

The XGBoost technique [26] method is based on Friedman’s gradient boosting but intro-

duces additional improvements that increase the technique’s performance and the accuracy of

its results. While in the original gradient boosting model, the trees are built in series, XGBoost

does this in a parallel way, similar to the RF method that grows trees in parallel to each other,

and each tree tries to compensate for the areas in which the previous tree was less accurate.

This method also uses regularization terms to control the variance of the fit and control the

flexibility of the learning task, while obtaining models that generalize better to unseen data.

XGBoost has been extensively used recently and shown useful in solving different real-world

problems, for example, pathway analysis of biomedical data [32] and diagnosis of chronic kid-

ney disease [33].

We executed the XGBoost algorithm to create a set of 100 decision trees for each tissue. An

example of one generated XGBoost tree and its branches for muscle-skeletal tissue classifica-

tion is provided in S1 Fig (S1 File). Similarly, S2 Fig in S1 File. provides one of the tree

branches that were generated for the adipose-subcutaneous tissue. After the tree is created, it

can be used for prediction when each tree node, depicted by an ellipse as seen in S1 and S2

Figs (S1 File), that represents a condition on a gene expression value is checked for each pre-

dicted sample. For each tree node from the top of the tree, if the sample’s value equals the tree

node specification, the selected path in the decision tree is the ‘yes’ path. Else the ‘no’ path is

selected. If the value is missing, the ‘missing’ path is selected. For example, for the provided

“Adipose–Subcutaneous” tree in S1 Fig (S1 File), the level of MXRA5 in the sample is com-

pared to 0.32043466. If the value is smaller than 0.32043466, or there is no measurement, the

left path is selected. Eventually the selected sample receives a score (for being ventilation/non-

ventilation) for each tree. The scores of 100 trees will be combined to determine the selected

ventilation/non-ventilation class. Each of the 100 trees may contain different genes and check

different values for these gene levels.

To develop the XGBoost binary classifier we used the XGBoost Python library [34]. To

avoid overfitting, while maintaining high performance predictions, we configured the

XGBoost to use 100 estimators with a maximum depth of 3. We found that a high number of

estimators (100) performed better than lower values (e.g., 30 or 50). A learning rate of 0.1 was

found to be effective in this case (lower values were tested). For the rest of the parameters, the

default values were used.
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Artificial Neural Network (ANN)

ANN [27, 35] is a computational model inspired by biological models, which often exceed the

performance of previous forms of artificial intelligence used in many common machine learn-

ing tasks. It is basically a data processing system composed of a combination of simple, inter-

connected processing elements, in a predesigned architecture. The ANN basic building block

is a simple mathematical function that includes three steps: multiplication, summation and

activation. For the purpose of this research, we created a network with a shallow topology of

one hidden layer, as shown in S6 Fig (S1 File). Additional topologies were tested, but we found

that a single hidden layer network provides the best results. The selected topology includes an

input layer with the dimensions of the number of features (based on the relevant organ), a hid-

den layer of 100 nodes with a Rectified Linear Unit (ReLU) activation function [36], and a sin-

gle output layer with a sigmoid activation function. We use binary cross-entropy as the loss

function, and an adaptive moment estimation optimizer (Adam) [35]. The neural network

model was designed using the Keras [37] network, with TensorFlow [38] as its backend.

To confirm the effectiveness of the XGBoost model in predicting MV, we used ANN and

RF, widely used machine learning models, for comparison and summarized the advantages

and disadvantages of each model in Table 1.

Computation resources and frameworks

The training of the models was conducted on an Intel(R) Core(TM) i9-7920X CPU @

2.90GHz computer with 24 CPUs, with 128GB RAM and an NVIDIA Corporation GV100

[TITAN V] (rev a1) GPU. Training in this setup lasted about five days.

10-fold cross-validation

For model performance evaluations, i.e., to evaluate whether the model is accurate and not

overfitted and due to the relatively low number of samples (~200–700 samples), we used

K-Fold Cross Validation—more precisely, the scikit-learn [39] implementation of Stratified

K-Fold Cross Validation without shuffling. This cross-validation is a variation of K-Fold that

Table 1. Comparison between the machine learning models used in the study.

Model Advantages Disadvantages

XGBoost • Effective for a relatively small number of samples with a

large number of features

• May exhibit overfitting if

hyperparameters are not adjusted

correctly

• Encapsulated explainability capabilities that can help

validate the correctness of the model, e.g., by checking the

relevance of the most significant gene levels to the tested

condition

• Applicable for numeric features only

• Includes improvements to the original gradient boosting

model that increase the performance and the accuracy of the

results

RF • Easy to implement both for classification and regression

tasks

• Lower performance than more modern

methods

• Provides some level of explainability • Nonoptimal performance when classes

are unbalanced• Avoids overfitting

ANN • Excels at cognitive tasks (image/video/text/voice data) • Requires a large number of samples

• Hard to explain and detect the feature

importance

• May be less effective with tabular data

https://doi.org/10.1371/journal.pone.0264919.t001
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returns stratified folds. The folds are made by preserving the percentage of samples for each

class. We chose a split of 10, so each time 90% of the data is used for training, and 10% for vali-

dation. We used the same fold and data when building the ANN, RF and XGBoost models to

assure we compared the models under exactly the same terms.

For each organ we configured each model to use the organ’s gene levels as features, with the

ventilation/non-ventilation types as the predicted target. We performed 18 experiments, each

per distinct model and tissue. Each experiment included a 10-fold cross-validation prediction,

and we saved the results of the 10 executions. We averaged the results of the 10 executions as

well as the feature importance. For each prediction we tracked the average and standard devia-

tion of the Area Under the ROC curve (AUC), accuracy, F1 score, recall and precision of each

experiment.

Feature analysis

Feature analysis was performed using Lundberg’s approach for explaining boosted trees called

SHAP—SHapley Additive exPlanations [40]. SHAP offers a high-speed precise algorithm that

can explain the output of any machine learning model, in particular tree ensemble methods.

SHAP calculates values for each feature, representing how much each feature contributes to

push the model output from the base value (the average model output over the training dataset

we processed) to the model output.

Pathway enrichment analysis

We imported the full list of the marker genes used for the predictions into the web-based

Enricher tool [41] using KEGG (Kyoto Encyclopedia of Genes and Genomes) 2021 pathways.

Results

We used RNA-seq gene expression data from the GTEx project [22] for six representative

human tissues—adipose-subcutaneous, liver, lung, muscle-skeletal, nerve-tibial and skin-sun

exposed (lower leg) (see S1 Table in S1 File for the full number of samples and genes for each

tissue). We aggregated the samples into ventilation and non-ventilation groups as described in

the Methods section. The tissues’ gene expression data was preprocessed and corrected for

confounding factors as described in the Methods section and in the S1 File.

To detect a combination of marker genes signifying MV usage, we created 18 prediction

models using the RF, XGBoost decision tree and ANN methods to classify the ventilation and

non-ventilation samples for the six tissues. To evaluate the predictive performance of each

model, we compared the classifiers using the AUC, accuracy, precision, recall and F1 scores.

We finally conducted feature analysis per each tissue to detect MV marker genes, followed by

pathway enrichment analysis for these genes.

Classification comparison

Tables 1 and 2 provide a detailed comparison between the methods performance in means of

the different metrics: AUC, Accuracy, F1 Score, Recall and Precision. The numbers provided

here are the average of the 10-fold executions across the six tissues. Detailed results including

standard deviation between executions can be found in S2 Table (S1 File). It is easy to see here

and in Fig 1 that XGBoost outperforms the ANN and RF models in all metrics aside from recall,

in which the ANN model outperforms XGBoost but only by a small margin. We added the

AUC metric in our analyses (see Table 2) since the class distribution within the data is propor-

tional but not fully balanced (see S1 Table in S1 File for the number of samples in each class).
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Table 3 provides a comparison of the results of the 18 models’ performance, focusing on the

AUC and providing the average AUC and AUC per organ. Clearly, even when looking at each

tissue individually, XGBoost outperforms ANN and RF, although in some cases the difference

is not significant. Given that XGBoost outperforms the two other methods (see also Fig 1),

while providing good feature analysis capabilities, from this point on we focus on the model-

ing, experiment and results of the XGBoost model.

Tissue-specific MV marker genes

To detect the most predictive and ventilation discriminant genes, for each tissue we performed

feature analysis using SHAP [40] to explain the boosted trees. SHAP calculates values for each

Table 2. Binary classification model evaluations.

Model

Evaluation Average Accuracy Average F1_score Average Recall Average Precision

Neural Net 0.934 0.916 0.931 0.903

Random Forest 0.912 0.880 0.862 0.905

XGBoost 0.951 0.936 0.924 0.951

https://doi.org/10.1371/journal.pone.0264919.t002

Fig 1. AUC comparison of the 18 classifiers. It can be seen that the XGBoost model outperforms the RF and ANN models for the six tested tissues.

https://doi.org/10.1371/journal.pone.0264919.g001
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feature, representing how much each feature contributes to elevate the base value of the model,

the average model output over the training dataset we processed. Fig 2A and 2B demonstrates

the feature analysis results for lung and muscle-skeletal respectively and presents the mean

absolute value of the SHAP values for each feature in our model. The top 20 features’ average

SHAP impact on model output magnitude in absolute values are presented. A summary of

SHAP scores for the top 20 genes in all tested tissues are provided in Table 4.

The SHAP approach can also explain how each feature (gene) contributes to the classifica-

tion per class. Fig 3 provides a plot of genes sorted in descending order by gene importance,

representing the sum of SHAP value magnitudes over all samples and uses SHAP values to

show the distribution of feature impacts on the model output. The horizontal location shows

the impact of each feature, i.e., whether the effect of that value is associated with a higher or

lower prediction. The colour relates to the original values of each gene across samples and

shows whether that variable is high (in red) or low (in blue) for that observation. Red repre-

sents a higher value of the gene for the ventilation samples compared to the average values

across all samples in the measured tissue; blue represents a low measured value. The x-axis in

Fig 3 is the SHAP values of each gene and represents the impact of the gene on model output

Table 3. Binary classification models’ AUCs for the different organs.

Model

AUC per organ Average AUC Adipose-Subcutaneous Liver Lung Muscle-Skeletal Nerve-Tibial Skin-Sun Exposed (Lower leg)

Neural Net 0.934 0.939 0.931 0.941 0.940 0.937 0.913

Random Forest 0.912 0.879 0.953 0.933 0.931 0.913 0.864

XGBoost 0.951 0.950 0.958 0.954 0.949 0.957 0.940

https://doi.org/10.1371/journal.pone.0264919.t003

Fig 2. Top 20 genes and average SHAP impact (absolute values) on the magnitude of model classification output.

(A) Values for the lung tissue. (B) Values for muscle-skeletal tissue. It can be seen that GKN1 gene expression values

have the highest impact on the MV classification.

https://doi.org/10.1371/journal.pone.0264919.g002
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in muscle-skeletal (Fig 3A) and lung (Fig 3B) tissues. A low SHAP value means that this sample

is more likely to be a ventilation sample and a high SHAP value means that this sample is more

likely to be a non-ventilation sample. This approach reveals, for example, that for most cases, a

high value of CLEC3B (the second gene from the top in Fig 3A) has a high and positive impact

on non-ventilation prediction and increases the chances of the sample to be classified as taken

from a non-ventilator group. The high comes from the red color and the positive impact

shown on the x-axis. The CLEC3B gene has been reported to regulate muscle development

[42]. An example of negative correlation is the AGTR2 gene (fourth from the bottom in Fig

3B) that has a high and negative impact on the non-ventilation prediction, i.e., it is lower in

the non-ventilation group and higher in the ventilation group. We note that the angiotensin II

receptor 2 (AGTR2) gene [43] is expressed in lung fibrosis. The diagram also illustrates the

importance of using multiple features and feature combinations for achieving the high accu-

racy. We note that the tree-based method is based on calculating threshold values for a combi-

nation of genes to drive the prediction. An example of such combination, an XGBoost tree

branch, is presented in S1 and S2 Figs (S1 File) and explained in the Methods section. One fea-

ture is not enough to differentiate between the samples and a combination of features is

required. It is easy to see, for example, that for muscle-skeletal, high values of GKN1 correlate

in most cases to the non-ventilator group. This gene’s levels, however, are not good enough to

be used as a single discriminator, since there are several cases of samples in the ventilator

group that have high levels of GKN1. Only by using the combination of gene levels can the

model achieve high accuracy/AUC. Additional histograms illustrating the differences in

CLEC3B and AGTR2 gene values in muscle-skeletal and lung tissues for the ventilation and

non-ventilation types are included in S3 Fig (S1 File).

Table 4. Top 20 genes with highest importance SHAP scores in each tissue.

Adi-pose Score Liver Score Lung Score Muscle Score Nerve Tibial Score Skin Score

1 MXRA5 0.49 MGMT 0.63 PHF13 0.30 GKN1 0.52 FDCSP 0.54 AVP 0.53

2 VENTX 0.42 DNAJB4 0.55 MT4 0.29 CLEC3B 0.34 HSD11B2 0.50 TFF1 0.41

3 EGR1 0.31 C5orf24 0.26 HRG 0.23 TET1 0.26 CRABP1 0.44 ODF3L1 0.24

4 PELO 0.27 TOR1A 0.24 TBC1D22B 0.23 FGF6 0.21 EGR1 0.31 MXRA5 0.23

5 CLEC3B 0.25 GATAD1 0.22 LCE5A 0.20 SMCO1 0.19 SLN 0.22 KRT1 0.23

6 KRT6C 0.22 C12orf60 0.14 ALPK3 0.18 SPSB4 0.18 SLITRK6 0.18 CYS1 0.20

7 CYS1 0.20 GPRIN1 0.13 MXRA5 0.17 ZCCHC24 0.17 KRT20 0.18 NEURL2 0.19

8 MUC21 0.20 KCNJ8 0.13 LCE2C 0.16 KRT6B 0.17 XIRP1 0.15 RP11-676J12.7 0.19

9 C22orf31 0.19 DRD4 0.12 CYP1A2 0.14 CCND1 0.16 HBQ1 0.14 KRTAP5-6 0.17

10 CX3CL1 0.17 ENTPD7 0.12 ADRA1B 0.14 EGR1 0.15 BHLHE40 0.13 NIPSNAP3A 0.15

11 C10orf99 0.15 SLC25A21-AS1 0.11 TERF2IP 0.12 TFF1 0.14 SFRP2 0.13 FLG 0.13

12 DEFA6 0.15 OPN1SW 0.10 LCE2A 0.12 FITM1 0.13 GUCA2A 0.12 RD3 0.11

13 PRND 0.14 PAQR8 0.09 SST 0.11 MRPL16 0.13 CD248 0.12 EGR3 0.10

14 SMCP 0.13 STX11 0.09 B3GNT2 0.10 TLL2 0.12 RP11-10J21.3 0.12 ATP4B 0.10

15 TNFRSF21 0.09 LRRC40 0.08 DYRK2 0.10 SPRR2A 0.12 DKK4.00 0.09 WFDC12 0.10

16 GKN1 0.09 CECR6 0.08 DPRX 0.10 CEACAM6 0.12 RP11-268J15.5 0.09 OCM2 0.10

17 HUS1B 0.09 OMG 0.08 CHP2 0.09 SLN 0.11 DUPD1 0.09 DUSP1 0.10

18 TIFAB 0.09 IFITM10 0.08 AGTR2 0.09 SPATA25 0.10 TAS2R46 0.08 SCNN1G 0.09

19 P2RY13 0.08 TMEM200C 0.07 SPINT3 0.09 SOCS4 0.09 DBX2 0.08 LGALS7B 0.09

20 TCF21 0.08 PSPN 0.07 LSM11 0.09 TBC1D12 0.09 PSD2 0.08 IER2 0.09

Genes that are common to more than two tissues are highlighted in bold.

https://doi.org/10.1371/journal.pone.0264919.t004
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Table 4 summarizes the top 20 most predictive genes for the six tissues. Genes common to

several tissues appear in bold.

We used the web-based Enricher tool [41] for pathway enrichment analysis of all the genes

per tissue that participated in the predictions, using KEGG 2021 Human pathways. We tested

the enrichment of 1005 muscle-skeletal genes, 971 adipose-subcutaneous genes, 883 nerve tib-

ial genes, 1089 skin genes, 665 liver genes and 1057 lung genes. The significantly enriched

pathways (adjusted p-val < 0.05) are presented in Table 5 and S3-S8 Tables (S1 File) (present-

ing the pathways (p-val < 0.05) with their p-values and corresponding marker genes). The

“Cytokine-cytokine receptor interaction” and the “Viral protein interaction with cytokine and

cytokine receptor” pathways were significantly enriched (adjusted p-value < 0.05) in all tis-

sues. In addition, it can be seen from S3-S8 Tables (S1 File) that the “Amoebiasis” pathway is

enriched (p-val < 0.05) in all six tissues. The “Asthma” pathway is enriched in subcutaneous

adipose, liver, nerve tibial and skin. The “Staphylococcus aureus infection” pathway is

enriched in subcutaneous adipose, lung, nerve tibial and skin.

Discussion

In this research we present a large-scale study testing the changes in gene expression and

exploring marker genes of MV vs. non-MV samples from GTEx [22] donors, across six human

tissues—lung, liver, muscle-skeletal, adipose-subcutaneous, skin and nerve-tibial. We devel-

oped 18 machine learning models, three models for each of the six tissues, using the XGBoost,

RF and ANN methods to evaluate their predictive power for MV vs. non-MV samples and for

feature analysis purposes. Our results show that the three methods can distinguish MV from

non-MV samples successfully for these six tissues and that XGBoost outperforms the other

Fig 3. SHAP variable importance plots. (A) SHAP values for muscle-skeletal tissue. (B) SHAP values for the lung tissue. The plot includes all

samples in the training data and the values represent the impact of the gene on model prediction output. SHAP values explain to what extent

the feature (gene) contributes to the prediction of the model.

https://doi.org/10.1371/journal.pone.0264919.g003
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methods, with an average accuracy of 0.951 and average AUC of 0.945 across the six tested tis-

sues. The accuracy and AUC scores for the XGBoost models were higher than the ANN and

RF models in all metrics aside from recall, in which the Neural Network model outperforms

XGBoost but only by a small margin (all metrics> 0.93). Feature analysis showed that most

significant genes affecting the prediction were related to tissue development, movement regu-

lation, fibrosis and inflammation. We furthered explored marker gene convergence across tis-

sues. Enrichment analysis of the marker genes showed significant enrichment of cytokine and

viral signals for the tested tissues.

The importance of this research is not only in the ability to precisely predict the death cir-

cumstances based on the gene levels, but also in the analysis of the features that the machine

learning model finds to be significant. Examining the different genes as part of a feature

importance analysis reveals unexpected results, in the sense that we detect noteworthy genes

or gene combinations with rather distinct value differences between the MV and non-MV

groups. We detected tissue specific MV marker genes and marker genes shared across several

tissues. Among the shared genes we detected CLEC3B, which is one of the most discriminant

genes in both muscle and adipose (see Table 4) and is decreased in the MV group (see Fig 3A

and S3 Fig in S1 File). The CLEC3B gene, which expresses the Tetranectin protein, has been

reported to regulate muscle development [42] and is dysregulated in tumor tissues [44], which

may explain its lower values in the MV group (see Fig 3A) which is assumed to have decreased

muscle development following ventilation. The MXRA5 and EGR1 genes are both strong pre-

dictors of ventilation. MXRA5 is a highly significant (see Table 4) gene in the lungs, adipose-

subcutaneous and skin-sun exposed tissues and EGR1 in muscle, nerve and adipose. Both the

Table 5. Pathway enrichment analysis of the ventilation predictive marker genes across the six tested tissues.

Tissue Top pathways (adjusted p-value < 0.05)

1 Adipose Sub. Viral protein interaction with cytokine and cytokine receptor

Cytokine-cytokine receptor interaction

Amoebiasis

Chemokine signalling pathway

2 Liver Cytokine-cytokine receptor interaction

Viral protein interaction with cytokine and cytokine receptor

Chemokine signalling pathway

Neuroactive ligand-receptor interaction

3 Lung Cytokine-cytokine receptor interaction

Viral protein interaction with cytokine and cytokine receptor

Neuroactive ligand-receptor interaction

Chemokine signalling pathway

Taste transduction

4 Muscle Cytokine-cytokine receptor interaction

Viral protein interaction with cytokine and cytokine receptor

Chemokine signalling pathway

5 Nerve Tibial Viral protein interaction with cytokine and cytokine receptor

Cytokine-cytokine receptor interaction

Neuroactive ligand-receptor interaction

6 Skin Cytokine-cytokine receptor interaction

Viral protein interaction with cytokine and cytokine receptor

Chemokine signalling pathway

Neuroactive ligand-receptor interaction

https://doi.org/10.1371/journal.pone.0264919.t005
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MXRA5 and EGR1 genes were shown to be related to myocardial injury and dysregulated in

on-pump vs. off-pump coronary artery bypass surgery [45]. In addition, MXRA5 is an apopto-

sis and remodeling marker that is associated with the ventilation injury-related response [45]

and is a biomarker of severe respiratory syncytial virus (RSV) infection [46]. The tissue-spe-

cific angiotensin II receptor 2 (AGTR2) gene is expressed in lung fibrosis [43] and is shown by

our analysis to be highly regulated in the lung’s ventilation group (see Fig 3B). HRG is a high

predictor of MV and is upregulated in the non-MV group (see Fig 3B). HRG gene levels are

decreased in advanced lung cancer and the gene is known to have antifibrinolytic properties

[47] that support its detected low levels in MV samples, which may indicate the progression of

lung fibrosis. The TET1 gene, a significant predictor of MV in the muscle, is related to osteo-

genesis and adipogenesis inhibition [48]. The two top ranked liver marker genes are the

TOR1A gene, which is related to smooth physical movements in the brain [49], and DNAJB4,

a tumor suppressor gene [50]. In addition, we detected multiple carcinogenic and cancer

marker genes among the top high predictor genes of ventilation such as VENTX [51], detected

in adipose, MGMT [52] and DNAJB4 [50], detected in the liver, and GKN1 [53], which is an

anti-inflammatory protein [54], detected in muscle and adipose with lower expression levels

for the ventilation group.

Further enrichment analysis of the genes used for the predictions in each tissue indicated

an inflammatory and viral gene signatures (see Table 5). Moreover, the “Amoebiasis“,

“Asthma” and “Staphylococcus aureus infection” pathways were enriched (p-val < 0.05, see

S3-S8 Tables in S1 File) in multiple tissues including in the lungs. These pathways were associ-

ated with MV. For example, staphylococcus aureus is related to ventilator-associated pneumo-

nia (VAP) [55] and amoeba-associated bacteria was suggested to be a cause of VAP in

intensive care units [56]. In support of our results for the lungs, we mention McCall et al. [15]

who, using the lung GTEx gene expression data, detected a large cluster of genes associated

with type II pneumocytes related to cells that proliferate in ventilator associated lung injury.

One explanation for the inflammatory and viral signatures we observed across tissues in our

findings may be that ventilator-induced lung injury initiates non-pulmonary whole-body

organ dysfunction [57].

As research limitations, we detected changes in gene expression between donors that were

connected to MV prior to death and donors that were not. We note that these changes may be

related to any direct and indirect factor related to the MV constellation, the MV machines, the

patient’s extended period of immobility (we indeed detected decreases in gene levels related to

movement and development), and any other factor related to being under MV. In addition,

since the GTEX tissues samples are derived from post-mortem but relatively healthy donors at

time of death, we assume a gene distribution similarity between the deceased and living MV

patients.

It is also worth noting that the GTEx tissue data includes bulk gene expression data com-

posed of various cell types. Some gene expression changes we detected may be related to

changes in the proportions in the cellular composition of the tissues. For example, the inflam-

matory signals may be related to changes in the proportions of immune-related cells in the tis-

sues and not merely changes in the expression of genes within the cells. Nevertheless, these

marker gene levels predicted MV and non-MV samples successfully and are a significant

explanatory tool to understand ventilation induced changes either via gene expression changes

within cells or proportion changes of cells in the tissues.

We note that we may further improve our performance by utilizing various extensions. For

example, Reddy et al. [58] tested four popular machine learning methods and showed that if

the dataset is of a high dimensionality, by performing a Principal Component Analysis (PCA)

as a preprocessing step, it is possible to reach higher accuracy rates for the model. Nevertheless,
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our focus is to detect a signature of single genes and not merely increase the performance. As

further future work, we may use differential network analysis approach to gain further knowl-

edge of the genes networks that changed between the MV and non-MV samples, e.g. Basha

et al. [59] used differential network analysis to detect the changes in gene networks across

human tissues.

In conclusion, we showed that MV induced transcriptomic changes in six tissues, going

beyond the known direct effect on the lungs [21], and related to inflammation, bacterial and

viral infections, fibrosis, tissue development, growth and movement regulation across all tested

tissues. The changes in gene levels that we detected are highly significant and consistent across

direct and peripheral tissues and thus MV should be carefully considered before being given to

patients.
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