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OBJECTIVE—The catabasis of inflammation is an active pro-
cess directed by n-3 derived pro-resolving lipid mediators. We
aimed to determine whether high-fat (HF) diet-induced n-3
deficiency compromises the resolution capacity of obese mice
and thereby contributes to obesity-linked inflammation and
insulin resistance.

RESEARCH DESIGN AND METHODS—We used transgenic
expression of the fat-1 n-3 fatty acid desaturase from C. elegans

to endogenously restore n-3 fatty acids in HF-fed mice. After 8
weeks on HF or chow diets, wild-type and fat-1 transgenic mice
were subjected to insulin and glucose tolerance tests and a
resolution assay was performed. Metabolic tissues were then
harvested for biochemical analyses.

RESULTS—We report that the n-3 docosanoid resolution medi-
ator protectin D1 is lacking in muscle and adipose tissue of
HF-fed wild-type mice. Accordingly, HF-fed wild-type mice have
an impaired capacity to resolve an acute inflammatory response
and display elevated adipose macrophage accrual and chemo-
kine/cytokine expression. This is associated with insulin resis-
tance and higher activation of iNOS and JNK in muscle and liver.
These defects are reversed in HF-fed fat-1 mice, in which the
biosynthesis of this important n-3 docosanoid resolution media-
tor is improved. Importantly, transgenic restoration of n-3 fatty
acids prevented obesity-linked inflammation and insulin resis-
tance in HF-fed mice without altering food intake, weight gain, or
adiposity.

CONCLUSIONS—We conclude that inefficient biosynthesis of
n-3 resolution mediators in muscle and adipose tissue contrib-
utes to the maintenance of chronic inflammation in obesity and
that these novel lipids offer exciting potential for the treatment of
insulin resistance and diabetes. Diabetes 59:3066–3073, 2010

O
besity is linked to chronic inflammation that
plays a key role in the pathogenesis of insulin
resistance, leading the way to type 2 diabetes
and cardiovascular disease (1,2). Efforts to

understand this process have focused on identifying the
many factors that may initiate and promote inflammation.
We took an alternate approach with the view that patho-
logical inflammation in obesity likely represents an im-
paired endogenous capacity to “switch off” or more
precisely counterregulate the natural immune response to
adipose tissue expansion and lipid excess.

The newly identified genus of n-3 derived lipid media-
tors termed resolvins and protectins have been shown to
play an important role in the endogenous regulation of
inflammation (3,4). Interestingly, dietary long-chain n-3
polyunsaturated fatty acid (PUFA) insufficiency has been
linked to the incidence of chronic metabolic disorders,
including type 2 diabetes and cardiovascular disease (5–7).
It is thus conceivable that inefficient biosynthesis of n-3
resolution mediators due to low substrate availability
might inherently contribute to the development of obesity-
linked inflammation.

González-Périz et al. recently showed that acute admin-
istration of n-3 derived Resolvin E1 (RvE1) prevents
hepatic steatosis in genetically obese mice (8). However,
the other main resolution mediator Protectin D1 (PD1)
remains to be investigated, and it is unknown whether
high-fat (HF) feeding per se actually restricts resolution
mediator biosynthesis and whether this might alter the
endogenous resolution capacity of obese mice. Further-
more, it is critical to determine whether n-3 lipid media-
tors regulate key obesity-related inflammatory reactions
such as macrophage accrual in adipose tissue or activation
of inflammatory signaling molecules such as JNK and
iNOS that play a role in the etiology of insulin resistance
(1,2).

Unfortunately, studying the effects of dietary n-3 content
in the context of HF feeding has proven to be rather
complicated because incorporation of n-3 fatty acids in
rodent diets often prevents weight gain (9). As a result, it
is not clear whether it is the lack of weight gain or the n-3
fatty acids themselves that offer the protection from
insulin resistance and type 2 diabetes and what mecha-
nism underlies this protection. Therefore, innovative
models that overcome the requirement for dietary manip-
ulation are needed to help clarify whether or not n-3 fatty
acids act directly to prevent obesity-linked insulin resis-
tance and which mechanisms are involved.

The fat-1 transgenic mouse has been genetically engi-
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neered to ubiquitously express the fat-1 n-3 fatty acid
desaturase from C. elegans (10). This enzyme, not found in
mammals, efficiently converts endogenous n-6 to n-3 fatty
acids such that, in fat-1 mice fed a diet extremely rich in
n-6 and deficient in n-3, the tissue n-6:n-3 ratio is �1:1
compared with �50:1 in wild-type animals. The fat-1

transgenic mouse therefore represents the ideal model to
study the effects of n-3 fatty acids in an environment that
is not confronted by dietary issues.

Herein we show that HF feeding wild-type mice
results in diminished n-3 docosanoid resolution media-
tor synthesis in muscle and adipose tissue and impaired
resolution. Transgenic restoration of n-3 fatty acids in
HF-fed fat-1 mice improved resolution capacity and
prevented the development of obesity-linked inflamma-
tion and insulin resistance. These data uncover a new
role for pro-resolving lipid mediators in the counter-
regulation of obesity-linked inflammation and its asso-
ciated metabolic complications.

RESEARCH DESIGN AND METHODS

Hemizygous fat-1(�/�) mice (10) were bred with wild-type littermates at the
Laval University hospital research center. Six-week-old male mice were fed
standard laboratory chow (diet-2018, Harlan Teklad) or HF diets (diet-9302,
55% Kcal from fat, Harlan Teklad) for 8 weeks. Insulin tolerance tests (ITTs)
and glucose tolerance tests (GTTs) were performed in week 7 in 6-h fasted
mice as previously described (11), and mice were killed in week 8. At sacrifice,
a cohort of mice were used for the air-pouch resolution assay. Remaining mice
were injected via tail vein with either insulin (3.8 U/kg) or saline 5 min prior
to being killed. Tissues were rapidly excised and snap-frozen in liquid
nitrogen. Sections of liver and epididymal adipose were placed in 4% paraform-
aldehyde. Animal procedures were approved and carried out in accordance
with the Laval University and Canadian Councils for Animal Care.
Lipidomics. Fatty acid composition of phospholipid fractions was analyzed
by gas chromatography as per ref (12). Briefly, lipids were extracted along
with internal standards (C:15, Avanti Polar Lipids, Alabaster, AL, USA) in a
chloroform–methanol mixture (2:1, by volume). Extracted lipids were then
weighed and dissolved in a chloroform–methanol mixture (3:1, by volume).
Polar lipids (phospholipids, i.e., phosphatidylcholine, phosphatidylethano-
lamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin) were
separated by thin-layer chromatography (Silica Gel H, 250 �m, Analtech Inc,
Newark, DE, USA) using an isopropyl-ether–acetic acid mixture (96:4, by
volume). Fractions were then recovered in individual glass tubes, and direct
transesterification was performed by adding acetyl chloride. Fatty acid methyl
esters of phospholipids were analyzed by gas chromatography using Hewlett-
Packard 5,890, series II (Hewlett-Packard, Toronto, Canada) equipped with a
fused silica column (DB23; 30 m, 0.25 mm internal diameter, 0.25 �m film,
Agilent Technologies, Mississauga, Canada), helium as carrier gas, a split ratio
of 1:72, a flow of 0.72 ml min�1, and a coupled flame ionization detector. The
fatty acid methyl esters (FAMEs) were identified by comparison with reten-
tion times of a Supelco 37-component FAME mix (Supelco Inc., Bellefonte,
PA, USA) and by using one internal standard (C:15, Avanti Polar Lipids,
Alabaster, AL, USA).

For liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/
MS), lipid mediators were extracted in the presence of deuterated internal
standard (1 ng LTB4-6,7,14,15; Biomol) by solid-phase extraction using
Sep-Pak C18 cartridges (Waters). A triple quadrupole linear ion trap mass
spectrometer (4000Q-TRAP; Applied Biosystems) equipped with an Acquity
ultraperformance LC BEH C18 column (1.7 �m, 1.0 � 150 mm; Waters) was
used. MS/MS analyses were conducted in negative ion mode, and eicosanoids/
docosanoids were identified by multiple reaction monitoring using transitions
for 17-HDoHE (343 � 245m/z), 18-HEPE (317 � 215m/z), PD1 (359 � 153m/z),
and RvE1 (349 � 195m/z). Calibration curves (1–1000 pg) and LC retention
times for each compound were established with synthetic standards.
In vivo resolution assay. The air pouch resolution assay was performed as
described by Levy et al. (13). Dorsal air pouches were raised and maintained
6 and 3 days prior to the assay via subcutaneous injection of sterile air (5 and
3 ml, respectively). On the day of the experiment, 10 ng of recombinant murine
tumor necrosis factor � (TNF�) (R&D Systems Inc.) in 100-�l sterile PBS was
injected into the pouch. At 0, 4, and 6.5 h after injection, mice were killed and
pouches were washed two times with 1 ml of sterile PBS to collect infiltrating
polymorphonuclear leukocytes (PMNs). PMNs were then enumerated. Sterile

PBS was used as a control for TNF� and did not stimulate PMN infiltration
into the pouch (data not shown).
Histology. Adipose and liver sections were embedded and mounted and
hematoxylin and eosin staining of liver was performed by the University Laval
microscopy facility. Immunohistochemistry detection of F4/80� cells was
performed as previously described (14).
Western blotting. Immunoblotting was performed in gastrocnemius muscle
and liver as previously described (15). Fifty ug of protein was loaded onto a
7.5% acrylamide gel, subjected to SDS-PAGE, and then transferred onto
nitrocellulose membranes. Membranes were then blocked and probed with
the appropriate antibodies. Antibodies for p-AKT ser473, p-JNK thr183/tyr185,
and Total JNK were obtained from Cell Signaling Technology (MA, USA).
Antibodies for total AKT and iNOS were from Santa Cruz Biotechnology (CA,
USA) and BD Transduction Laboratories (Canada), respectively.
Analytical methods. Plasma insulin levels were assessed by radioimmuno-
assay (Linco, MI, USA). Chemokines and cytokines were quantified in 25 �l of
adipose tissue lysates (50 ug of protein in PBS containing 1% NP-40) using a
MILLIPLEX MAP kit (Millipore).
Statistical Analysis. LC-MS/MS data were analyzed using Student t test;
air-pouch, ITT, and GTT data were analyzed using two-way ANOVA. For all
other data, one-way ANOVA was used. Bonferonni was the post hoc test.
Results were considered significant when P � 0.05.

RESULTS

HF feeding reduces n-3 availability for resolution
mediator synthesis. We first examined the effect of HF
feeding on n-3 bioavailability in metabolic tissues. The HF
diet mimicked Western diets in terms of n-3 content with
an n-6:n-3 ratio of �18–1. After 8 weeks, HF-fed wild-type
mice displayed an elevated long-chain n-6:n-3 ratio in
skeletal muscle, liver, and adipose tissue membranes
compared with their chow-fed counterparts (Fig. 1A).
Importantly, transgenic expression of the fat-1 n-3 fatty
acid desaturase that converts endogenous n-6 to n-3 fatty
acids restored the membrane long-chain n-6:n-3 ratio of
HF-fed fat-1 mice to levels comparable to chow-fed mice
(Fig. 1A).

Using LC-MS/MS to detect n-3 lipid oxygenation prod-
ucts, we found evidence of both docosanoid and eico-
sanoid biosynthetic activity in metabolic tissues of HF-fed
mice. 17-HDoHE and 18-HEPE, hydroxy-metabolites of
docosahexaenoic and eicosapentaenoic acids and biosyn-
thetic markers of PD1 and RvE1, respectively, were readily
detected in muscle, liver, and adipose tissue (Fig. 1B and
C). Interestingly, the docosanoid biosynthetic route ap-
peared to have greater flux in these tissues, because
17-HDoHE was present in significantly higher concentra-
tions than 18-HEPE and PD1 was readily detected in all
tissues whereas RvE1 was under the detection limit.
Compared with HF-fed wild-type mice, HF-fed fat-1 mice
displayed increased flux through the docosanoid biosyn-
thetic route in muscle and adipose tissues but not in liver
(Fig. 1D). Indeed, 17-HDoHE was increased by �215% in
muscle and 138% in adipose tissue whereas PD1 was
increased by �176% in muscle and 201% in adipose tissue
of fat-1 mice compared with wild-type mice (P � 0.05).
These data suggest that fat-1 mice display increased n-3
bioavailability for pro-resolution mediator synthesis in
these two key metabolic tissues.
HF feeding impairs resolution. We hypothesized that
the HF diet-induced deficit in n-3 resolution mediator
synthesis would impact endogenous counterregulation of
inflammation in wild-type mice. To test this, we subjected
mice to a dorsal air-pouch TNF� challenge, an established
model of self-resolving inflammation (13). The injection of
10 ng of TNF� into the air pouch stimulated an influx of
PMNs that peaked at 4 h and resolved completely 6.5 h
postchallenge. In contrast to their chow-fed counterparts,
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HF-fed wild-type mice only resolved �65% of infiltrating
PMN by this time (Fig. 2A and B). Restoration of n-3 in
HF-fed fat-1 mice was sufficient to completely recover the

deficit in resolution capacity (P � 0.001). This is the first
evidence that HF-diet-induced n-3 deficiency can impede
the normal resolution of inflammation.
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FIG. 1. HF feeding reduces n-3 availability for resolution mediator synthesis. A: 8 weeks of HF feeding raised but fat-1 (F1) transgenesis restored the
long-chain n-6:n-3 ratio in membrane phospholipids of muscle, liver, and epididymal adipose tissue. C, standard laboratory chow; AA, arachidonic acid
(20:4 n-6); EPA, eicosapentaenoic acid (20:5 n-3); DPA, docosapentaenoic acid (22:5 n-3); DHA, docosahexaenoic acid (22:6 n-3). Data are mean � SEM
(n � 3). **P < 0.01 versus WTC; ***P < 0.001 versus WTC; †P < 0.05 versus WTHF; ††P < 0.01 versus WTHF. B: Comparison of n-3 docosanoid and
eicosanoid biosynthetic pathways by LC-MS/MS in muscle, liver, and epididymal adipose tissue of HF-fed mice revealed that the docosanoid biosynthetic
pathway has greater flux in metabolic tissues. Above left schematic diagram of docosanoid biosynthetic pathway showing the biosynthetic marker
17-HDoHE and PD1 (10R,17S-dihydroxydocosa-4Z,7Z,11E,13E,15Z,19Z-hexaenoic acid [28]) as well as the immediate PD1 precursor 17-HpDoHE. At
right, the eicosanoid pathway showing 18-HEPE and RvE1 (5S,12R,18R-trihydroxy-6Z,8E,10E,14Z,16E-EPA [29]). ND indicates not detected. Data are
mean � SEM (n � 9–14). *P < 0.05, **P < 0.01, ***P < 0.001 versus 17-HDoHE. C: Representative LC-MS/MS spectra for 17-HDoHE, PD1, and 18-HEPE;
retention times were 22.6, 18.2, and 20.6 min, respectively. D: Comparison of n-3 docosanoid and eicosanoid biosynthetic pathway activity by LC-MS/MS
in muscle, liver, and epididymal adipose tissue of HF-fed wild-type and F1 mice reveals increased levels of docosanoid resolution mediator synthesis
in muscle and adipose tissue of F1 mice compared with wild-type mice. Data are mean � SEM (n � 6–10). *P < 0.05 versus WTHF. (A high-quality color
representation of this figure is available in the online issue.)
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Transgenic restoration of n-3 prevents adipose in-
flammation. To determine what role the HF diet-induced
deficit in n-3 docosanoid mediators plays in obesity-linked

inflammation, we examined macrophage accrual in adi-
pose tissue. Because PD1 directs tissue phagocyte flux in
inflammatory exudates (16), we hypothesized that trans-
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genic restoration of this n-3 resolution pathway would be
sufficient to limit adipose macrophage accumulation in
HF-fed mice. Immunohistochemical staining for F4/80�
cells revealed that HF-fed wild-type mice have abundant
accumulation of macrophages in adipose tissue compared
with their chow-fed counterparts (Fig. 2C and D). Further-
more, many of the F4/80� cells in HF-fed wild-type fat
clearly formed inflammatory crown-like structures (CLSs)
around adipocytes (Fig. 2C–E), a hallmark of obesity-
linked inflammation (14). In line with the improved reso-
lution capacity, macrophage accrual and CLS formation
were entirely prevented in adipose tissue of HF-fed trans-
genic mice.

To further characterize the impact of n-3 resolution
mediators on obesity-linked inflammation, we also exam-
ined adipose chemokine and cytokine expression. We
detected elevated concentrations of the proinflammatory
chemokines CCL2/MCP-1 and CCL5/RANTES alongside
the cytokines, IL-1	, IL-2, and IL-6, in HF-fed wild-type
mice (Fig. 2F–J). Importantly, these key inflammatory

factors were not significantly raised by HF feeding in
adipose of fat-1 mice.
Transgenic restoration of n-3 protects against obesi-
ty-linked insulin resistance and glucose intolerance.
We next characterized whole-body insulin sensitivity to
determine whether transgenic restoration of n-3 also pre-
vents the development of obesity-linked insulin resistance.
Insulin sensitivity was markedly reduced in HF-fed wild-
type mice, as illustrated by elevated fasting insulin levels
and diminished glucose excursion during the ITT (Fig.
3A–D). Conversely, fat-1 mice were protected from HF-
diet-induced insulin resistance because both fasting insu-
lin values and ITT curves were similar to those observed
for chow-fed mice.

Fat-1 mice were also partially protected from HF-diet-
induced glucose intolerance (Fig. 3E and F). The area
under the glucose tolerance curves of HF-fed wild-type
mice was increased compared with their chow-fed coun-
terparts (Fig. 3F); however, this parameter was not signif-
icantly different between HF-fed fat-1 mice and their
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FIG. 3. Transgenic restoration of long-chain n-3 PUFA protects against obesity-linked insulin resistance and glucose intolerance. A: HF-diet–
induced elevation of fasting plasma insulin was prevented by transgenic restoration of n-3 derived resolution mediators (n � 4–9). B: Glycemic
excursion from 1.5 U/kg i.p. ITT was normalized in HF-fed F1 mice (n � 8–12). C: Glycemic excursion expressed as percent basal glycemia. D:
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develop similar obesity to wild-type mice. Weight gain (n � 16–20). H: Epididymal fat pad weight (n � 9–14). I: Liver weight (n � 9–14). J:
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chow-fed controls. Importantly, the improved metabolic
phenotype of HF-fed fat-1 mice was not related to changes
in food intake (data not shown), body weight gain (Fig.
3G), or adiposity (Fig. 3H). We also found no changes in
hepatic lipid accretion as determined by liver weight (Fig.
3I) and histological examination of liver sections, which
showed similar accumulation of fat vesicles in both HF-fed
wild-type and fat-1 mice (Fig. 3J). Fasting plasma free
fatty acids were not significantly influenced by 8 weeks of
HF feeding or transgenic restoration of n-3 in our study
(data not shown). Although not statistically significant,
circulating adiponectin tended to be reduced by �30% in
HF-fed wild-type mice compared with their chow-fed
counterparts (2,150 
 638 ng/ml vs. 3,345 
 768 ng/ml,
respectively); this was not the case in HF-fed fat-1 mice,
which displayed circulating levels of adiponectin that were
comparable to chow-fed mice (3,420 
 565 ng/ml).

To understand the mechanism underlying the improved
metabolic phenotype of HF-fed fat-1 mice, we examined
insulin signaling to Akt in muscle and liver. As expected,
insulin stimulation induced robust phosphorylation of Akt
on ser473 in muscle and liver of chow-fed wild-type mice,
but this response was impaired in their HF-fed counter-
parts (Fig. 4A–B). Remarkably, this defect was normalized
in both muscle and liver of HF-fed fat-1 mice, despite clear
accumulation of ectopic lipid in the latter tissue.

We next examined whether the improved insulin action
in metabolic tissues of HF-fed fat-1 mice resulted from
decreased inflammatory signaling. As expected, HF feed-
ing wild-type mice led to robust phosphorylation of JNK
on thr183/tyr185 in both muscle and liver; however, this
was not the case for HF-fed fat-1 mice in either tissue (Fig.
4C and D). HF feeding also resulted in significant iNOS
induction in muscle of wild-type mice but not in HF-fed
fat-1 mice (Fig. 4E). These data suggest that prevention
of HF-diet-induced n-3 deficiency and the maintenance of
resolution capacity protects from the development of obesi-
ty-linked insulin resistance not only by limiting inflamma-
tion in the expanding adipose tissue but also by inhibiting
two key inflammatory mediators of insulin resistance, JNK
(17) and iNOS (11), in muscle and liver.

DISCUSSION

In the present study, we took advantage of fat-1 mice to
investigate the role of endogenous n-3 derived resolution
mediators in key metabolic tissues in obesity. We found
that the biosynthetic flux of the n-3 docosanoid resolution
pathway in muscle and adipose tissue is dependent on
long-chain n-3 PUFA bioavailability and that the pro-
resolving lipid mediator, PD1, is lacking in normal mice
chronically fed a typical Western diet (n-6:n-3 ratio �18–
1). HF-fed obese mice exhibited an impaired capacity to
resolve an acute inflammatory response to TNF� and
showed abundant macrophage infiltration in adipose tis-
sue that was linked to heightened chemokine and cytokine
expression, a hallmark of obesity-linked inflammation
(18,19). Remarkably, restoration of PD1 via fat-1 transgen-
esis improved global resolution capacity and prevented
adipose macrophage accrual in HF-fed fat-1 mice. Accord-
ingly, the expression levels of five key proinflammatory
chemokines/cytokines were not found to be significantly
elevated in adipose tissue of HF-fed fat-1 mice compared
their chow-fed controls. To the best of our knowledge,
this is the first demonstration that endogenous biosynthe-

sis of n-3 derived resolution mediators is associated with
obesity-linked inflammation in metabolic tissues.

This is also the first report on the regulation of inflam-
mation and insulin sensitivity in an animal model of
obesity in which n-3 status has been enhanced without
confounding effects of dietary manipulation. Indeed, pre-
vious studies have documented that the anti-inflammatory
and metabolic effects of dietary n-3 supplementation were
associated with concomitant reductions in either food
intake, body weight gain, adiposity, or liver fat accretion
(9,20,21). However, we report herein that transgenic-based
elevation of long-chain n-3 PUFAs protects from obesity-
linked insulin resistance without altering food intake,
weight gain, or lipid deposition in adipose tissue or liver.
We propose instead that endogenous long-chain n-3
PUFAs exert their protective effect through the actions of
their lipid oxygenation products, which resolve inflamma-
tion and limit macrophage accrual in the expanding adi-
pose tissue of obese mice.

The lack of effect of fat-1 expression on hepatic lipid
accretion seems at odds with the recent report that dietary
supplementation of long-chain n-3 PUFAs reversed hepatic
steatosis in genetically obese ob/ob mice possibly through
the action of the EPA-derived eicosanoid RvE1 (8). How-
ever, this may be due in part to the different animal models
used (i.e., diet-induced versus genetic-based obesity) and
the fact that we readily detected the docosanoid PD1 but
not the eicosanoid RvE1 in the liver of our HF-fed fat-1
mice. Although we saw no effect of fat-1 transgenesis on
resolution mediator synthesis in liver, our data suggests
that transgenic restoration of n-3 fatty acids dissociates
insulin resistance from hepatic lipid deposition, and this is
likely due to inhibition of inflammatory signaling, as
revealed by prevention of JNK activation in liver of HF-fed
fat-1 mice. This anti-inflammatory effect in liver may be
the result of reduced inflammatory crosstalk from adipose
tissue with fewer recruited macrophages or may represent
the local actions of another class of bioactive n-3 metab-
olite such as the newly discovered maresins (22) or EFOX
(23), which should be the focus of future investigations.

Our data showing protection from obesity-linked insulin
resistance in HF-fed fat-1 mice in which the levels of
long-chain n-3 PUFAs have been restored are in line with
epidemiological studies in humans, which showed that
native populations traditionally consuming high levels of
long-chain n-3 PUFAs display a lower prevalence of type 2
diabetes (24,25). Interestingly, data from another clinical
study suggests that the positive influence of long-chain n-3
PUFA supplementation on insulin sensitivity is greater in
obese populations that display an inflammatory phenotype
(26). These data lend support to our findings, which
indicate that the anti-inflammatory actions of n-3 derived
resolution mediators in metabolic tissues are key to the
positive impact of long-chain n-3 PUFAs on insulin sensi-
tivity. It will be interesting in future studies to examine
whether direct administration of purified n-3 derived res-
olution mediators is sufficient to prevent the development
of insulin resistance in obese animals and which mediators
carry the greatest antidiabetic potential.

Although our work represents the first study into the
effect of endogenously enhancing tissue n-3 content on
insulin sensitivity in the context of obesity, it is notewor-
thy that another group has recently developed an adipose-
specific fat-1 transgenic line (AP-3 mice) to expressly
study the influence of adipose n-3 content on weight gain,
insulin sensitivity, and glucose tolerance in lean mice (27).
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It was found that 3-month-old male, but not female, AP-3
transgenic mice fed a high carbohydrate diet weigh slightly
less than their wild-type littermates, although this could
not be explained by changes in adiposity. Interestingly,
whereas male AP-3 mice were more glucose tolerant than
wild-type controls, female AP-3 mice exhibited glucose
intolerance as compared with their wild-type littermates.
Insulin sensitivity was not affected in either sex. These

findings differ from those of our study in which we found
that fat-1 transgenesis had no impact on weight gain or
glucose tolerance in lean chow-fed animals. It is of interest
that homozygous expression of the fat-1 transgene in our
mice does not influence viability (10), whereas homozy-
gous expression in the AP-3 mice was found to be lethal
(27).

In conclusion, we propose that endogenous long-chain
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FIG. 4. n-3 resolution mediators improve insulin signaling by blunting
JNK and iNOS in muscle and liver. Transgenic restoration of n-3 resolu-
tion mediators improves insulin signaling to Akt in muscle and liver and
blunts activation of JNK and iNOS in these tissues. A–E: Immunoblots for
pAKTser473, total AKT, pJNKthr183/tyr185, and total JNK in gastrocne-
mius muscle and liver, and iNOS in muscle (n � 5–9). Quantification of
densitometry analyses are shown below the representative gels. Lanes
were run on the same gel but were noncontiguous. All data are mean �
SEM, ND not detected, *P < 0.05, **P < 0.01, ***P < 0.001 versus
respective chow-fed control; †tP < 0.05 versus WTHF.
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n-3 PUFAs exert their protective effects through their lipid
oxygenation products, which reduce macrophage accrual
and inflammation in the expanding adipose tissue of obese
mice. Our data further suggest that restoring long-chain
n-3 PUFAs also prevents obesity-linked insulin resistance
by blunting lipid-induced JNK and iNOS activation in
muscle and liver. Collectively, our findings unravel a novel
mechanism by which endogenous n-3 fatty acids prevent
the development of obesity-linked inflammation and insu-
lin resistance. This work supports the use of long-chain n-3
PUFAs for the prevention of insulin resistance and glucose
intolerance in obese individuals.
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