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Abstract: Intramuscular lipid accumulation has been associated with insulin resistance (IR), aging,
diabetes, dyslipidemia, and obesity. A substantial body of evidence has implicated ceramides, a
sphingolipid intermediate, as potent antagonists of insulin action that drive insulin resistance. Indeed,
genetic mouse studies that lower ceramides are potently insulin sensitizing. Surprisingly less is known
about how physical activity (skeletal muscle contraction) regulates ceramides, especially in light that
muscle contraction regulates insulin sensitivity. The purpose of this review is to critically evaluate
studies (rodent and human) concerning the relationship between skeletal muscle ceramides and IR in
response to increased physical activity. Our review of the literature indicates that chronic exercise reduces
ceramide levels in individuals with obesity, diabetes, or hyperlipidemia. However, metabolically healthy
individuals engaged in increased physical activity can improve insulin sensitivity independent of changes
in skeletal muscle ceramide content. Herein we discuss these studies and provide context regarding the
technical limitations (e.g., difficulty assessing the myriad ceramide species, the challenge of obtaining
information on subcellular compartmentalization, and the paucity of flux measurements) and a lack
of mechanistic studies that prevent a more sophisticated assessment of the ceramide pathway during
increased contractile activity that lead to divergences in skeletal muscle insulin sensitivity.
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1. Introduction

Obesity is a mounting health problem and the percentage of those who meet the classification is
anticipated to double or triple in the next 40 years [1,2]. Obesity predisposes one to develop type 2
diabetes mellitus (T2DM), the prevalence of which is also expanding at an alarming rate [3]. Metabolic
impairments associated with obesity increase the risk of developing other troubling health conditions
(e.g., cardiovascular disease, peripheral vascular disease, and neuropathy), leading to enormous healthcare
cost and decreased quality of life [3,4]. The hallmarks of obesity and T2DM, glucose intolerance and
insulin resistance, can be observed before their respective diagnoses during a state of pre-diabetes.

Of those suffering from these metabolic derangements, older adults make the largest proportion
and as of 2017 ~48% of older adults are considered pre-diabetic [5]. Since insufficient physical activity
is one of the top 10 leading causes of mortality across the globe [6] it is no surprise that inactivity
is also one of the primary causes of metabolic dysfunction [7,8] and that many of the aging-related
declines in health are related to low physical activity levels [9–11]. It is now well understood that older
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adults have the highest prevalence of inactivity both in the United States [12] and across the globe [6].
Physical activity is arguably the most comprehensive prevention and treatment for obesity [11] and its
metabolic comorbidities [7,8,13,14]. Interestingly, the insulin resistance (IR) associated with aging may
share a similar mechanism to that of IR that accompanies physical inactivity [15–18], further indicating
the linkage between aging and physical inactivity.

The focus of this review is to examine the effects of physical activity in aging on a class of lipid
intermediates, ceramides, that have been implicated in obesity and inflammation-induced skeletal
muscle insulin resistance and impair insulin signaling downstream of the receptor [19].

1.1. Skeletal Muscle Ceramides and Physical Inactivity-Induced Insulin Resistance

Can ceramides, a dominant mechanism of diet-induced IR, also be a viable candidate by which
physical activity (exercise) induces major swings in insulin sensitivity? To address this question, we
evaluated the literature comprising rodent and human investigations of chronic exercise in the context
of aging. We considered whether the robust changes in insulin sensitivity tied to exercise habituation
correspond with the levels of skeletal muscle ceramides, as well as with the expression or activity of
enzymes governing ceramide metabolism. Although, we will discuss all phenotypes, for the purpose of
this review, our primary focus was on healthy phenotypes (non-obese, non-diabetic adults), across the
lifespan in order to remove the confounding effects of current metabolic dysfunction and understand
the extent to which the pathways related to overnutrition-induced muscle dysfunction relate to the
pathways resulting from physical activity.

A hallmark of diabetes is obesity and the ectopic deposit of fat in many tissues, including skeletal
muscle [20]. An overabundance of intramuscular lipids leads to an accumulation of lipid intermediates
(diacylglycerol (DAG), acetylcarnitines, and ceramides) as a mass action effect, with some of these
lipid intermediates worsening insulin sensitivity by inhibiting insulin signaling [21]. In addition,
obesity-induced redox stress and inflammation intensify the metabolic dysfunction [22]. Clever genetic
interventions in rodent models indicate with certainty that ceramides drive obesity-induced IR in
pre-clinical models [19,23], but their role in human insulin resistance has been controversial [24].
Additionally, aging skeletal muscle has been associated with greater skeletal muscle ceramide in some
cases [25–27], but not others [28,29] and it is unclear if this is the result of aging per se or due to
a progressive decline in physical activity levels over the years. The dilemma is exacerbated when
examining models of physical activity, which has received far less attention, and no studies using
genetic models to pinpoint mechanisms.

1.2. Source of Substrate for Production and/or Accumulation of Ceramide in Muscle

Ceramide production relies on the availability of fatty acids and serine, and the overabundance of
these nutrient precursors drives accumulation of the sphingolipid in models of overnutrition [20,21,30].
Not all dietary fats are considered equal, as ceramides are highly dependent upon the presence of
saturated fatty acids such as palmitate. Of note, exercise stimulates lipolysis to provide free fatty acids
(FFAs) as energy for contracting muscles. Ceramide content in various tissues may also be regulated
through tissue export and import to and from different tissue types. For example, the liver can
export ceramides on very low density lipoproteins (v-LDL) for delivery to muscle [31]. Additionally,
sphingoid bases can be exported from muscle into the circulation [32,33].

The diversity of ceramide species is a reflection of the activity of the six ceramide synthase (CERS)
enzyme isoforms, which differ by tissue distribution and substrate specificity (for more detailed review
see [34]). CERS1, 4, 5 and 6 have the highest expression in skeletal muscle thus their C-16:0 and C-18:0
ceramide products are the most abundant [34] in the tissue. Coincidentally, these species are also most
commonly related to IR [35–37], specifically in human skeletal muscle [37–41].

1.3. Intracellular Biochemical Pathways and Enzymes Controlling Ceramides

Of the thousands of sphingolipids present in cells, ceramides are a particularly intriguing class of
molecules. In addition to serving as common precursors for all other highly abundant sphingolipids,



Int. J. Mol. Sci. 2020, 21, 1514 3 of 20

they have distinct bioactivities in cellular stress responses [42]. Ceramide production occurs through
three pathways: de novo synthesis from fatty acids and serine; a salvage pathway that occurs through
its degradation and re-formation in lysosomes; or sphingomyelin hydrolysis [42].

De novo biosynthesis of ceramide starts with the rate limiting condensation of palmitoyl-CoA
with L-serine through serine palmitoyltransferase (SPT), producing the transient intermediate
3-ketosphinganine. 3-ketosphinganine is then reduced to sphinganine by 3-ketosphinganine reductase.
The (dihydro)ceramide synthase (CerS 1–6) enzymes acylate sphinganine to generate dihydroceramide,
which is further modified by dihydroceramide desaturase (DEGS 1–2) through the placement of a
4,5-trans-double bond. At this point ceramide can be metabolized to (1) glycosphingolipids through
glucosylceramide synthase, (2) ceramide-1 phosphate with a ceramide kinase, or (3) sphingomyelin
through sphingomyelin synthases.

The salvage and sphingomyelinase pathways also influence ceramide levels. Hydrolysis of the far
more abundant sphingomyelin can occur in plasma membranes or intracellular organelles. The various
SMases, including neutral Mg++ dependent sphingomyelinase (nSMase) or acid sphingomyelinase
(aSMase), transfer the choline residue of SM to DAG to generate phosphatidylcholine. The rate
of ceramide degradation is also controlled by three isoforms of ceramidase: acid (aCDase), neutral
(nCDase) and alkaline (alCDase). These enzymes hydrolyze the lipid to generate sphingosine and a FFA.
Recent studies have found that adiponectin receptors are another class of ceramidases, degrading the
lipid in response to the binding of the insulin-sensitizing adipokine [43–46]. The sphingosine produced
from these ceramidase reactions can, in turn, be phosphorylated to produce sphingosine-1-phosphate
(S1P), which has its own set of biological actions, often opposing those of ceramides.

Theoretically, ceramide accumulation in skeletal muscle could arise through several potential
routes: (1) increased availability of substrate for ceramide biosynthesis through mass increases in
circulating FFA [47]; (2) reduced palmitate oxidation and increased partitioning of palmitate [48]; (3)
increased ceramide de novo synthesis via activation of toll-like receptor 4 (TLR4) [49,50] or tumor
necrosis factor alpha (TNFα) [51]; (4) decreased ceramide turnover [37]; (5) increased sphingomyelinase
activity; (6) increased serum delivery via circulating low density lipoprotein (LDL) [52]; (7) reduced
ceramide clearance; or (8) a combination of the above. These factors could be predicted to promote
ceramide abundance as a result of inactivity to potentially promote muscle IR. However, most of these
routes have not been investigated in the context of physical activity in humans or rodents.

2. Aging and Ceramide

Skeletal muscle IR is a common feature of aging [15,53], but it has yet to be determined if this metabolic
defect is the result of biological aging, ceramides or influenced by the lifestyle changes common in aging
(Table 1). For example, two independent cross-sectional studies have demonstrated that activity levels and
obesity (rather than aging) influence muscle insulin sensitivity [54,55], but ceramides were not measured.
Aging skeletal muscle has been associated with greater skeletal muscle ceramide in some cases [25–27],
but not others [28,29]. The reasons for these discrepancies may stem from the confounding influence of
obesity in aging and differences in the methods to assay ceramides. In the cases were ceramides were
more abundant in aging, the older adults were obese [25–27], but ceramides were similar [29] or even
greater in the young [28] when examining leaner age groups. It is interesting to note that greater fitness
levels appear to disassociate the relationship between increased age and muscle ceramide content and
potentially with insulin sensitivity. In their first study, Søgaard et al. found greater content of ceramides,
including the C:16 and C:18 species in the young compared to the old participants [28], but this may be
due to the lean status or greater fitness level (VO2peak: 30–40 mL·kg−1

·min−1) in both the old and young
groups compared to the cohort in their next report demonstrating a greater content with aging [25]. In
that report their cohort of old and young participants was obese and had a lower fitness level (VO2peak:
20–30 mL·kg−1

·min−1) [25]. Future investigations need to isolate the effect of body composition, fitness
level and aging on skeletal muscle ceramides.
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Table 1. Cross-sectional studies in aging humans at baseline.

Reference Subjects Age (y) Aerobic
Fitness Health/BMI Ceramide

Method
Muscle

Ceramide
Ceramide

Species IS Method IS Associations
with IS Other

Rivas et al.
(2012) [26]

Young
(9 M) 22 ± 1 - Lean

HPLC-MS

- - - -
None

examined

C:16 -
associated with
leg lean mass
and strengthOld (10 M) 74 ± 2 - OW = Young

> C:16, C:20
and Sat vs.

Young
- -

Moro et al.
(2009) [27]

Lean
(10 M/6 F) 24 ± 1 - Lean LC/ESI/MS/MS HE Clamp ˆ 8.3 ± 0.7 Ceramides not

associated
with age

IMTG +
correlated with

ceramidesObese
(14 M/18 F) 41 ± 3 - Obese > vs. Lean

Young
> Sat vs. Lean

Young 6.1 ± 0.4

Søgaard et al.
(2019)
[28]

Young
(11 M) 23 ± 1 VO2peak-Rel:

46 ± 1 * Lean
TLC-HPLC

622 ± 74
> C:16, C:18,
C:22 vs. both

OLD
Insulin

120-min OGTT
(pmol·L−1)

87.9 ± 14.8 In young: No
association in

the old

-

Old (18 M) 66 ± 1 VO2peak-Rel:
31 ± 1 * Lean/OW 410 ± 66 - 97.6 ± 55.3 -

Chee et al.
2016 [29]

Young Lean
(n = 7) 21y ± 1 VO2peak-Rel:

57 ± 2 ‡ Lean

LC/ESI/MS/MS

- - HE Clamp,
(mg·kg

LBM−1
·min−1)

& skeletal
muscle 2-DG
accumulation

65 ± 6.0

Only with
overweight

-

Old Lean
(n = 7) 70 ± 1 VO2peak-Rel:

45 ± 2 ‡ Lean - - 58 ± 6 -

Old
Overweight

(n = 7)
69 ± 1 VO2peak-Rel:

40 ± 2 ‡ OW - C:20: > Young
Lean 42 ± 5

largely driven
by differences

in BW

Søgaard et al.
(2019) [25]

Young
(5 M/9 F) 32 ± 2 VO2max-Rel:

28.3 ± 1.2 Obese

LC/ESI/MS/MS

- -

HOMA-IR

2.14 ± 0.24

Not reported
-

Old
(11 M/11 F) 63 ± 1 VO2max-Rel:

25.2 ± 1.0 Obese
Sat, C:16, C:18,

C:18:1: >
Young Obese

Sat, C:16, C:18,
C:18:1: >

Young Obese
1.88 0.23

>, greater than; BMI, Body Mass Index; BW, Body weight; Cer, Ceramides; F, female; HE, hyperinsulinemic euglycemic; HOMA-IR, Homeostatic Model Assessment of Insulin Resistance,
IMTG, intramuscular trigycerides; IS, insulin sensitivity; M, male; min, minutes; n, number of subjects; OW, overweight; Sat, saturated; VO2peak, peak oxygen uptake; y, years; ˆ, µmol
glucose infused·kg FFM−1

·min; Rel, relative * (milliliters per kilogram per minute ); ‡, (milliliters per kilogram of fat free mass per minute ).
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3. Longitudinal Studies in Rodents

Table 2. Exercise training studies in rodents.

Reference Subjects Age Aerobic
Fitness Health/BMI PA

Modification
Ceramide
Method

Muscle
Ceramide

Ceramide
Species IS Method IS (PRE) IS (Post) Associations Note

Dobrzyń
et al. (2004)

[56]

Rat (Wistar)
(10 M)

250–280
g Sed Lean Control

TLC, GLC

~135 nmol/g - - - - - -

Rat (Wistar)
AET (10 M)

250–280
g Sed Lean

6 wk forced
treadmill
running

~80 nmol/g ↓,
sat in oxidative

muscles

↓ C14,
C16,

C16:1,
C18, 20:4,
22, 24:1

- - - -

↓ SM,
↑ sphinganine

nSMase,
↔ sphingosine

Tsalouhidou
et al. (2009)

[57]

Rat (Wistar)
Sed (15 M) 7 wk Sed Lean Control

one-
dimensional

TLC-GC

0.33 ± 0.16
µmol/g ↔ - - -

None

PC, PE, PI, PS,
CL, SM and LPC

unchanged

Rat (Wistar)
AET (20 M) 7 wk Sed,

Improved Lean

8 wk
voluntary

wheel
running

BL=,
0.27 ± 0.06
µmol/g

↔ - - - 31% ↓ PI

Błachnio-
Zabielska

et al. (2011)
[58]

Rat (Wistar)
Sed (8 M)

200–250
g Sed Lean Control

HPLC
(C17 std)

24.57 ± 3.53
nmol/g wet wt - HOMA-IR - 1.13 ± 0.10 Wrong

direction -

Rat (Wistar)
AET (8 M) 24 h post Sed Lean

5 wk forced
treadmill
running

28.70 ± 3.59
nmol/g wet wt - HOMA-IR - 0.54 ± 0.04 ↓ Wrong

direction

Plasma FFA
>100% lower,

> Sphinganine,
SPA1P, SPT2 and

aSMase.
↓ nCDase and

alCDase

Holloway
et al. (2014)

[59]

Rat (Zucker)
(18 F) ~255 g Sed Lean 6 d e-stim

6 h/d TLC, GLC

↔ Red, ↓
White

↔ Red, ↓
White

3-OMG in
perfused
hindlimb

Lean >
Obese

↑, but Lean >
Obese

+ TAG, lipid
droplet size ↑ lipid droplets

Rat (Zucker)
(18 F) ~350 g Sed Obese 6 d e-stim

6 h/d ↓↓ ↓↓ C18 - ↑
+ TAG, lipid
droplet size ↑↑ lipid droplets

↑, increase; ↑↑, large increase; ↓, decrease; ↓↓, large decrease;↔, no change; 3-OMG, 3-O-methylglucose; AET, aerobic exercise training; alCDase, alkaline ceramidase; aSMase, acid
sphingomyelinase; BMI, Body Mass Index; BL, baseline; CL, cardiolipin; d, days; e-stim, electrical stimulation; F, female; FFA, free fatty acids; g, grams; GC, gas chromatography; GLC,
gas–liquid chromatography; h, hours; HOMA-IR, homeostatic model assessment of insulin resistance; HPLC, high-performance liquid chromatography; IS, insulin sensitivity; LPC,
lysophosphatidyl choline; M, male; n, number of subjects; nCDase, neutral ceramidase; nmol/g, nanomole per gram; nSMase, neutral sphingomyelinase; PC, phosphatidyl choline;
PE, phosphatidyl ethanolamine; PI, phosphatidyl inositol; PS, Phosphatidyl serine; Red, red portion of gastrocnemius; sat, saturated; Sed, sedentary; SM, sphingomyelin; SPA1P,
sphinganine-1-phosphate; SPT2, serine palmitoyltransferase 2; TAG, triglycerides; TLC, thin-layer chromatography; White, white portion of gastrocnemius; wk, weeks; wt, weight.



Int. J. Mol. Sci. 2020, 21, 1514 6 of 20

The literature on exercise training and muscle ceramide content in rodent is varied (Table 2). The
first longitudinal exercise training study (six-weeks forced treadmill running) by Dobrzyn et al. showed
decreased ceramide content in the soleus and red and white gastrocnemius of male rats [60]. Similar,
but less pronounced effects were observed with muscle sphingomyelin with slight differences between
muscle groups. The same study reported that exercise increased muscle sphinganine and nSMase,
but not sphingosine, and suggested that ceramide flux through de novo synthesis rather than the
salvage pathway may have been altered with training [60]. In contrast, a study examining 8-weeks of
voluntary wheel running in male rats, did not reveal any changes in gastrocnemius lipids (phosphatidyl
choline, phosphatidyl ethanolamine, phosphatidyl inositol, phosphatidyl serine, cardiolipin, ceramides,
sphingomyelin, and lysophosphatidyl choline) except for phosphatidyl inositol, which decreased [57].
The divergent results of this current study compared to Dobrzyn et al. [60] may have been due to the
form of exercise (forced treadmill running vs. voluntary wheel running), limited duration of treatment
or more likely that the rats from the Dobrzyn et al. study were larger and older.

A following study from Dr. Jan Gorski’s group using a more robust form of endurance exercise
in male rats (i.e., treadmill running) demonstrated increased insulin sensitivity (HOMA-IR) and
sphinganine in the soleus and red gastrocnemius similar to the previous report [60] but no change
in sphingosine or S1P, dihydroceramide or ceramide [58]. They also showed an increase in SPT2
and aSMase activity (in the soleus) but only an increase in sphinganine-1-phosphate content and
nSMase activity isolated to the gastrocnemius. [58]. Interestingly, enzymes related to the degradation
of ceramide to sphingosine, nCDase and alCDase, were decreased, yet ceramide content was unaltered.
The authors speculated that other pathways of ceramide turnover (ceramide kinase, sphingomyelin
synthase or glucosylceramide synthase) could have offset changes in ceramide abundance with
exercise training. However, Hollaway and colleagues used chronic electrical stimulation to the
hindlimb muscles (6 h/d for 6 d) in lean and obese female (Zucker) rats, which resulted in improved
insulin-stimulated glucose transport to muscle and increased TAG content and composition [59]. These
authors also demonstrated an increase in the size and number of lipid droplets in the subsarcolemal
and intramyofibrillar regions with exercise training as reviewed elsewhere [61]. Ceramide content
and composition (species-specific) only decreased in obese, but not the lean rats [59]. These data
provide further credence to the concept that chronic muscle contraction reduces the level of lipid
intermediates only in conditions of frank IR associated with dyslipidemia, such as obesity and diabetes.
Increased contractile activity increases long chain fatty acids into muscle as they are the necessary
substrate to fuel chronic activity [62]. This increased transport of lipids into muscle is similar to
overfeeding, however chronic activity increases oxidation of lipids and prioritizes lipid storage to
reduce accumulation of lipid intermediates [61]. In fact, palmitate and FFA transport is increased with
contractile activity [62,63] and decreased during denervation (inactivity), a phenomenon that correlates
with the abundance of membrane bound fatty acid transport proteins [62]. Thus, chronic exercise may
reduce lipid intermediates, such as ceramide, only if they are profoundly elevated due to dietary excess
or genetic disposition. Also, this discussion bring up the point that slow-twitch myofibers contain
greater amounts of ceramide [64] and rodents typically have more fast-twitch muscle than humans, a
factor that may explain some of the complexity and variation in the field.
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4. Cross-Sectional Studies in Humans

Table 3. Cross-sectional studies and muscle ceramides in humans.

Reference Subjects Age (y) Aerobic Fitness Health/BMI Muscle Ceramide Ceramide Species IMTG Associations with IS

Helge et al.
(2004) [65]

Untrained (n = 8) 26 ± 1 VO2peak-, Rel: 50.8 * Lean ~200 nmol/g No difference between
groups

- -
Trained (n = 8) 28 ± 2 VO2peak-, Rel: 62.5 * Lean ~200 nmol/g - -

Skovbro
et al. (2008) [66]

T2D (n = 8) 54 ± 2 VO2peak-Rel: 31 ± 3 * T2D/Obese 108 ± 7 nmol/g

Trained > IGT

68.9 ± 21.4 nmol/mg
(r = 0.42, p < 0.05) with IS

and muscle Cer
IGT (n = 9) 54 ± 2 VO2peak-Rel: 37 ± 2 * IGT/Obese 95 ± 6 nmol/g 38.5 ± 6.8 nmol/mg

Controls (n = 8) 53 ± 2 VO2peak-Rel: 43 ± 2 * OW 126 ± 12 nmol/g 35.6 ± 10.0 nmol/mg
Trained (n = 8) 51 ± 2 VO2peak-Rel: 58 ± 2 * Lean 156 ± 25 nmol/g 49.7 ± 12.6 nmol/mg

Amati et al.
(2011) [67]

Obese (11 M/10 F) 67 ± 1 VO2peak-, Rel: 33 * Obese,
pre-diabetes 160 ± 18 nmol/g

Obese >, Athletes, NW
sed (C18:1, 24:0, 24:1)

Ath, Obese > NW sed
for content and
droplet density

Total DAGs (r = 0.57, p =
0.05), total Cer (r = −0.48,

p < 0.05)

NW (3 M/4 F) 67 ± 2 VO2peak-, Rel: 42 * NW 80 ± 27 nmol/g
Athletes

(10 M/4 F) 65 ± 1 VO2peak-, Rel: 53 * Lean/NW 83 ± 21 nmol/g

Chow et al.
(2014) [68]

Trained (8 M/7 F) 24 ± 1 VO2peak-Rel: 49 ± 2 * Lean 42.6 ± 4.6 ng/mg ↑ sat 4.0 ± 0.5 µg/mg
NoSed (7 M/6 F) 2 w ± 0.6 VO2peak-Rel: 39 ± 1 * Lean 30.3 ± 2.7 ng/mg 3.9 ± 0.5 µg/mg

Chow et al.
(2017) [69]

Trained (16M/13F) 26 ± 0.9 VO2peak-Rel: 62–71 ‡ Lean - - T1: ↑↑ -
Sed (15 M/13 F) 23 ± 0.6 VO2peak-Rel: 53–56 ‡ Lean - - T1: ↑ -

Bergman et al.
(2010)
[70]

Athletes (n = 11) 23 ± 0.7 VO2peak-Rel: 68 ± 2 * Lean - - ~21 = IMTG
saturation, DAG% saturation

(curvilinear)Controls (n = 11) 21 ± 0.7 self-reported < 2 h PA
per wk Lean - - >16:0, 16:1, <18:0, 18:2

Baranowski et
al. (2011) [71]

Sed (n = 10) 20 ± 0.7 VO2peak-Rel: 47 ± 3 * Lean Plasma 62.4 ± 16.4 <
in RBCs - - -

Trained
(n = 10) 21 ± 0.9 VO2peak-Rel: 57 ± 6 * Lean Plasma 60.8 ± 11.1 - - -

Bergman
et al. (2012) [72]

Obese (4 M/2 F) 40 ± 2 VO2peak-Rel: 25 ± 4 * Obese - - -
total and Sat DAG in

skeletal muscle
membranes

T2D (6 M) 44 ± 2 VO2peak-Rel: 25 ± 2 * OW/
Obese-T2D - - -

Athletes (8 M/2 F) 35 ± 3 VO2peak-Rel: 56 ± 5 * lean - - -

Bergman
et al. (2015, 2016,
2018) [37,73,74]

Athletes (11 M/4
F) 41 ± 1 VO2peak-Rel: 48 ± 4 * Lean Serum: Not different

in obese - -
C16:0 Cer and C18:0

sphingomyelin correlated
w/ whole body insulin

resistance

T2D (11 M/4 F) 43 ± 1 VO2peak-Rel: 19 ± 3 * Obese-T2D Serum: ↑
↑ C18:0, C20:0, C24:1 to

Ath and Ob,
↑ C16:0, C23:0 to Ath

-

Obese (9 M/5 F) 40 ± 2 VO2peak-Rel: 24 ± 3 * Obese Serum: Not different
in lean - -
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Table 3. Cont.

Reference Subjects Age (y) Aerobic Fitness Health/BMI Muscle Ceramide Ceramide Species IMTG Associations with IS

Bergman
et al. (2016,

2018) [37,74]

Athletes (n = 15) 41 ± 1 VO2peak-Rel: 48 ± 4 * Lean C:24: > T2D and
Obese - -

Not total, but C:18T2D (n = 15) 43 ± 1 VO2peak-Rel: 19 ± 3 * Obese-T2D C:18: > Ath = Obese - -
Obese (n = 14) 40 ± 2 VO2peak-Rel: 24 ± 3 * Obese - - -

Søgaard
et al. (2019)

[28]

Young (11 M) 23 ± 1 VO2peak-Rel: 46 ± 1 * Lean 622 ± 74 > C:16, C:18,C:22 vs.
both OLD In young: HOMA-IR

correlated with C16:0 and
total Cer. No association

in the old.

Young Trained
(16 M) 23 ± 1 VO2peak-Rel: 53 ± 2 * Lean 661 ± 91 -

Old (18 M) 66 ± 1 VO2peak-Rel: 31 ± 1 * Lean/OW 410 ± 66 - -
Old Trained

(15 M) 64 ± 1 VO2peak-Rel: 43 ± 4 * Lean 550 ± 74 - -

Perreault
et al. (2018)

[38]

Lean (8 M/6 F) 43 ± 2 Sed (<2 h/wk PA) Lean - - -

(−) Many sarcolemmal
lipids, Mito/ER, nuclear
C18; (+) mito ER/DAGs

Athletes
(10 M/6 F) 43 ± 1 Masters Athletes Lean - - -

Obese (8 M/7 F) 42 ± 2 Sed (<2 h/wk PA) Obese - - -

T2D (7 M/5 F) 46 ± 2 Sed (<2 h/wk PA) Obese-T2D > all, most in
sarcolemmal

> C16, C18,
sarcolemmal, > C18 in

nuclear fraction
-

↑, increase; ↑↑, large increase; Abs, absolute; Cer, ceramides; DAG, diacylglycerol; ER, endoplasmic reticulum; F, female: h, hour; HOMA-IR, homeostatic model assessment of insulin
resistance; IGT, impaired glucose tolerance; IMTG, intramuscular trigycerides; IS, insulin sensitivity; M, male; Min, minutes; Mito, mitochondrial; n, number of subjects; ng/mg, nanogram
per milligram; nmol/g, nanomole per gram; nmoL/mg, nanomole per milligram; NW, normal weight; OW, overweight; PA, physical Activity; RBCs, red blood Cells; Rel, relative; Sat,
saturated; Sed, sedentary; T1, myosin heavy-chain 1; T2D, persons with type-2 diabetes mellitus; VO2peak, peak oxygen uptake; y, years; µg/mg, micrograms per milligram; Rel, relative *
(milliliters per kilogram body weight per minute ); ‡ (milliliters per kilogram of fat free mass per minute).
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When examining cross-sectional studies of exercise-trained individuals compared to those that are
sedentary, results when evaluating muscle ceramides are fairly ambiguous (Table 3 and Supplementary
Table S1). The variation might be explained by body mass index (BMI) status rather than physical
activity level, since ceramides are linked to IR in extremes of body mass [66]. Of note, cross-sectional
studies between active and sedentary groups involve more than just physical activity level (e.g.,
genetic predisposition and daily nutritional intake), and that several of these studies are potentially
underpowered [23] thus introducing a large source of variability. Nonetheless the use of age and
BMI-matched sedentary controls with exercise-trained participants is a powerful design strategy to
address the initial question of whether physical activity level and insulin sensitivity [75] are related to
skeletal muscle ceramides. In one study, examination of healthy age- and BMI-matched exercise-trained
and sedentary young adults found no difference in skeletal muscle ceramide content or species at
rest, but less sphingomyelin was found in exercise-trained participants [65]. Another more recent
study demonstrated that among relatively lean young and older participants there was no difference in
skeletal muscle ceramide based on training status [28]. In contrast, another study showed greater basal
total ceramide content and insulin sensitivity in trained vs. sedentary BMI-matched young subjects [68].
A possible explanation for these seemingly divergent findings could be that untrained participants in
the former study were of similar aerobic fitness (see VO2 peak data in Table 3) to the trained subjects
from the later study. Another consideration is that the greater ceramide content in the more trained
subjects [68] may be indicative of active lipid delivery in trained individuals, and not necessarily a
predisposition to cause IR. Further, a well-powered cross-sectional comparison of endurance-trained,
sedentary and obese older adults demonstrated pronounced stepwise decreases in insulin sensitivity,
yet only the obese group had elevated skeletal muscle ceramide content [67]. In that study, the difference
in insulin sensitivity between the sedentary and endurance trained older adults was ~20% and the two
groups showed identical ceramide content and composition [67] suggesting a discordant relationship
between insulin sensitivity and ceramides in the absence of obesity. This pattern was also shown in
a cross-sectional comparison of exercise-trained and sedentary middle-aged adults with distinctly
different insulin sensitivity levels [66]. A recent in-depth cross-sectional investigation by the laboratory
of Dr. Brian Bergman compared middle-aged athletes, lean controls, obese controls, and T2DM patients
to demonstrate similar stepwise and distinct group differences in insulin sensitivity and non-oxidative
glucose disposal [38]. There were no differences in skeletal muscle total, mitochondrial/ER, nuclear,
sarcolemmal, or cytosolic ceramide content and composition between age- and BMI-matched athletes
vs. lean controls [38]. Sub-cellular ceramide localization of C18:0 and insulin sensitivity were correlated
with pooled data from all the participants, however this relationship appeared to be driven by inclusion
of the group of persons with T2DM [38] and independent of the physical activity level between athletes
and lean controls. In summary, cross-sectional studies in young and old adult humans demonstrate that
levels of insulin sensitivity due physical activity status are unlikely to be explained by skeletal muscle
ceramide content or ceramide species. By comparison, these data indicate that muscle ceramides are
likely to be elevated and related to insulin sensitivity during metabolic disturbances such as obesity
and T2DM.
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5. Longitudinal Studies in Humans

Table 4. Exercise training studies in humans.

Reference Subjects Age (y) Aerobic Fitness Health/BMI Training Muscle
Ceramide Ceramide Species Muscle Fat or IMTG Associations

Bruce et al. (2004)
[76]

Control
(n = 6) 46 ± 3

Rel: ~30 *
OW 8 wk, AET - - BL <,↔ IMTG

No
T2D (n = 7) 48 ± 2 Obese - - BL >, ↓ IMTG

Bruce et al. (2006)
[77]

Obese
(4 M/5 F) 36 ± 3 Rel: 24 ± 2 * Obese 8 wk, AET BL (734 nmol/g), ↓ C16:0, C16:1, C18:0,

C18:1, C18:2, C20:0 ↓ ↔ No

Dube et al. (2008)
[78]

Old
(9 M/16 F) 66.4 ± 0.8 Rel: 34 ± 7 *, ↑

7% OW/Obese 16 wk, AET ↓ - ↑ ~21% Cer (r2 = 0.46, p = 0.01)

Dube et al. (2011)
[79]

DIWL
(3 M/5 F) 67 ± 2 Rel: 31 ± 2 *,↔ OW-Obese,

NGT-IGT DIWL BL=,↔ ↓ C14:0, C20:0, C24:0;
↑C24:1 BL=, ↓ IMTG BL total and some cer

species, ↓ in C16:0 and
C24:1 with improved ISEx (4 M/4 F) 68 ± 2 Rel: 32 ± 2 *,↔ OW-Obese,

NGT-IGT 16 wk; AET ↓ 30–40%
(>DIWL)

↓ all but C16:0, C18:1
(>DIWL for C18:0, C24:1) BL=, ↑ IMTG

Devrives et al.
(2013) [80]

Lean (12 F) 41 ± 2 Rel: 26 ± 1 *, ↑ Lean 12 wk, AET
~110 nmol/g dw,

↔
- AET localizes IMCs

close to Mito and IMF,
away from SS

-

Obese (11 F) 40 ± 3 Rel: 19 ± 2 *, ↑ Obese ~130 nmol/g dw,
↔

- -

Samjoo et al.
(2013) [81]

Lean (9 M) 38 ± 3 Rel: 47 ± 2 ‡, ↑ Lean 12 wk, AET ↔ - AET localizes IMCs
close to Mito and IMF,

away from SS

No
Obese (9 M) 39 ± 3 Rel:45 ± 2 ‡, ↑ Obese ~100 nmol/g,↔ -

Coen et al. (2015)
[82]

Control
(n = 51) 42.1 ± 9.9 Rel: ~18 ‡, ↑ OW/Obese None, RYGB ↓ ↓ 16,18:1, 24:1 ↓↓ No

Ex (n = 50) 41.6 ± 9.3 OW/Obese post RYGB;
12 wk ↓↓ ↓ 16,18,18:1, 24:1 ↓

Kasumov
et al. (2015) [83]

NGT
(8 M/6 F) 62 ± 2 Absolute: 2 ±

0.1 L/min
Obese

12 wk
Plasma: BL=, ↓ ↓ C14:0, C16:0, C24:0 - Total and C:14 cer

negative with GIR change

T2D (5 M/5 F) 65 ± 2 T2D-Obese Plasma: BL= ↓
↓ C14:0, C16:0, C18:1,

C24:0 -
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Table 4. Cont.

Reference Subjects Age (y) Aerobic Fitness Health/BMI Training Muscle
Ceramide Ceramide Species Muscle Fat or IMTG Associations

Søgaard
et al. (2016) [84]

Control
(10 M/6 F) 31.3 ± 1.5 Rel: 42 * OW 10 wk, AET BL=

No difference at BL, ↓
C22:0 - No

Offspring
(12 M/7 F) 33.1 ± 1.4 Rel: 38 * OW-offspring

of T2D 10 wk, AET BL=
No difference at BL, ↓

C22:0 -

McKenzie et al.
(2017) [85]

HipFx
(3 M/4 F) 78.4 ± 13.3 Low OW 12 wk RE

and RET ~100 nmol/g,↔ ↔ - No

Shepherd
et al. (2017) [86]

Obese (8 M) 24 ± 2
Rel: 34 *; ↑

Obese 4 wk, HIIT ↓ ↓ Cer 18:0 ↔ No
Obese (8 M) 26 ± 2 Obese 4 wk, AET ↓ ↓ Cer 18:0 ↔ No

Søgaard
et al. 2019 [25]

Young
(5 M/9 F) 32 ± 2

Rel: ~27*
Obese 6 wk, HIIT ↔ ↔ ↔

Not reported
Old

(11 M/11 F) 63 ± 1 Obese 6 wk, HIIT ↓ ↓ Cer Sat, 18:0 ↔

>, greater than; <, less than; ↑, increase; ↓, decrease; ↓↓, large decrease;↔, no change; Abs, absolute; AET, aerobic exercise training; BL, baseline; BL=, no difference at baseline between
groups; BMI, Body Mass Index; COX, cyclooxygenase; Cer, Ceramide; DIWL, diet-induced weight loss; Ex, exercise; dw, dry tissue weight; GIR, glucose infusion rate; HIIT, high intensity
interval training; HipFx, hip fracture patients; IGT, impaired glucose tolerance; IMC, intramuscular ceramides; IMF, intramyofibrillar; IMTG, intramuscular triglycerides; IS, insulin
sensitivity; M, men; Mito, mitochondrial; n, number of subjects; NGT, normal glucose tolerance; nmol/g, nanomole per gram; OW, overweight; Rel, relative; RET, resistance exercise
training; RYGB, Roux-en-Y gastric bypass; SS, subsarcollemal; T2D, persons with type-2 diabetes mellitus; wk, week; Rel, relative * (milliliters per kilogram body weight per minute); ‡
(milliliters per kilogram of fat free mass per minute).
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The improved insulin sensitivity following exercise training is well established [75]. Longitudinal
exercise training studies (>8-weeks) increase insulin sensitivity [76,77,86] and this occurs while
decreasing IMTG content in T2DM [76] but not in otherwise healthy obese [76,77,86] humans.
Alternately, IMTG has been shown to increase with exercise training in obese older adults coupled
with a decrease in muscle ceramide content [78,79]. This might suggest a partitioning of triacylglycerol
(TAG) and IMTG to specific cellular locations after chronic exercise training [80,81]. In these
studies, exercise training shifted IMTG storage away from the sarcolemmal fraction and in closer
proximity to the mitochondrial and myofibrils–theoretically for more efficient access of fuel for use
in contraction [61,80,81]. Interestingly, the storage of C18:0 ceramide in the sarcolemmal fraction of
the cell is most associated with IR [38]. One could speculate that with physical inactivity the ectopic
lipid storage in muscle may likely occur in the sarcolemmal regions of the cell where inhibition of
insulin signaling is most likely to occur but this remains to be examined. Although no differences in
cross-sectional studies between lean athletes and lean sedentary controls exist regarding the content,
composition or localization of skeletal muscle ceramide [87] what remains unknown is if the cellular
distribution of ceramide changes after a period of exercise training or physical inactivity to reflect the
associated changes in insulin sensitivity.

Skeletal muscle ceramides decrease in obese [77,78,82,83,86] and T2DM [83] humans following
aerobic exercise training or aerobic interval training [25,86] (Table 4 and Supplementary Table S2).
However, exercise training studies in participants with a wide range of insulin sensitivities, including
normal weight controls [84], normal weight offspring of T2DM [84] and lean men [81] and women [80]
largely result in no changes in skeletal muscle ceramide content or specific ceramide species following
similar aerobic exercise training. One recent study had young and old obese participants complete
6 weeks of aerobic interval training and demonstrated that only the older participants decreased
select ceramide species [25], this was likely driven by a greater initial ceramide content in those older
but obese participants. Eight of the ten training studies reported ceramide composition (i.e., specific
moieties) and the two studies in lean subjects that reported no change of ceramides used a crude DAG
kinase assay to assess ceramide content [80,81]. This latter assay does not distinguish ceramides from
dihydroceramides nor does it resolve ceramides of differing chain lengths. Even though total ceramide
was not changed in normal weight controls and offspring of T2DM, exercise training decreased C22:0,
yet this was not associated with the improvement of insulin sensitivity [84]. A few other studies
in obese subjects depicted a change in several other species after aerobic exercise training [76,82] or
interval training with ceramide C18:0 [86], however these changes were also not related to insulin
sensitivity. A factor for consideration is that some [77,81,85,86], but not all [82,84] of these studies were
underpowered. Alternatively, exercise training studies in obese older adults [78,79] or obese adults
with T2DM [83] display negative associations with total [78,79,83], C14:0 [83], and C-16:0 or C-24:1 [79]
ceramide and insulin sensitivity. However, the mechanism (i.e., de novo, salvage, hydrolysis) for
exercise training-induced changes in ceramides and enzymes of ceramide metabolism in human
skeletal muscle is vastly unexplored. A need exists for a more comprehensive examination of skeletal
muscle ceramide at the level of specific enzymes of ceramide metabolism and most importantly with
the recently developed flux assays [40,88,89]. Interestingly, ceramide metabolism may influence other
functions, such as exercise performance [90].

In summary, changes in ceramide content after exercise training may occur in individuals with
obesity or T2DM, likely do not change in healthy individuals and these factors drive the impact of
age. These improvements following exercise training in metabolically compromised individuals may
occasionally be associated with the improved insulin sensitivity following exercise training. A major
limitation appears to be the reliance on whole cell lysate ceramide content/composition, which may
not be as precise as studies assessing subcellular localization or ceramide flux.
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6. Mechanisms and Considerations

6.1. Are Ceramides Involved in the Development of IR or a Mechanism to Worsen the Severity of
Inactivity-Induced IR in Aging?

A panoply of studies with rodents clearly identifies a role for skeletal muscle ceramides in mediating
insulin sensitivity under conditions with pronounced derangements in metabolic function [23,87,91].
Yet, even under extreme differences in metabolic function the association of skeletal muscle ceramide
content with IR in humans is inconsistent [24,66,92] and not well correlated [93]. Ceramides are not
linked to skeletal muscle IR in aging specifically, but only with extremes of body mass [66], severity of
metabolic dysfunction linked to diet [94], or disease [21,37,92,95]. Collectively, these reports suggest
that skeletal muscle ceramide content may not be involved in the development of IR from physical
inactivity from aging, though they likely worsen the condition during aging-associated obesity and
metabolic dysfunction.

6.2. Subcellular Assessments of Ceramide

If the effect of ceramide on IR in healthy humans is subtle then the assessment of ceramide
content and composition needs to be specific to capture the relationship. More recent reports have
revealed that skeletal muscle subsarcolemma C16:0 [40,89] and sarcolemmal or mitochondrial or
nuclear C18:0 [38] ceramide are more tightly associated with insulin sensitivity. This is an important
point since the majority of studies evaluated in this review article assess the total skeletal muscle
homogenate while some measured the specific ceramide species and only two studies to date have
examined the subcellular localization of muscle ceramide [38,64]. Whether physical inactivity-induced
IR is modulated through a certain lipid intermediate species in a specific myocellular location remains
sparsely examined [64]. Exercise training shifts intramuscular triglycerides from subsarcolemma to
intramyofibrillar and mitochondrial locations [61,80] to more efficiently store fuel for contraction [61].
Therefore, it would be intriguing to extensively test the hypothesis that during the time course of
inactivity there is a gradual shift in lipotoxic ceramides to the subsarcolemal region where their presence
is more likely to inhibit insulin signaling. Indeed, the localization of ceramide or diacylglycerol near
the plasma membrane is a key determinate of the signaling actions to inhibit insulin action. Muscle
cell culture models from divergent species demonstrate differences in the mechanism of ceramide to
inhibit insulin signaling in culture [96] and in vivo [97]. Subcellular localization to the sarcolemmal
region is likely a mechanism where ceramide can inhibit various portions of the insulin signaling
cascade [98]. Saturated ceramides are more prone to alter membrane lipid rafts and are thus able
to manipulate cellular function [99], such as protein and various receptor actions [100]. Ceramides,
such as C18:0, are also known to have more direct actions to inhibit insulin signaling via protein
phosphatase 2 (PP2A) [101]. In addition to plasma membrane localization to inhibit insulin signaling,
accumulation of ceramide in other areas of the cell (mitochondrial, nuclear) may be involved [38] in
the dysregulation of muscle metabolism. When considering muscle ceramides, one cannot exclude the
effects of other non-muscle cell types residing in muscle that could contribute to the ceramide pool.
Immune [102], and endothelial cells are potential sources of ceramide in skeletal muscle and as such it
is difficult to differentiate the sources of ceramide found in skeletal muscle homogenate or even the
subcellular locations.

6.3. Conclusions

Altogether, this review of the literature points to a dynamic response of skeletal muscle ceramide
metabolism to physical activity, the significance of which is not fully understood. Aging itself does not
appear to impact skeletal muscle ceramide content independent of physical inactivity, obesity and
metabolic disruption that typically are associated with the aging process. Cross-sectional comparison
participants by activity level and chronic exercise training does not support a relationship between
skeletal muscle ceramide content and insulin sensitivity in healthy individuals. In agreement with this
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finding, chronic exercise training does not consistently reduce ceramide content linked to improved
insulin sensitivity—a relationship that is occasionally observed in participants with robust metabolic
dysfunction. Future considerations include more frequent assessments and longer durations of physical
activity and inclusion of sex as a biological variable. Thus, the role of ceramide lipotoxicity in the
early development of aging-induced IR is yet to be determined and resolution of this question would
greatly benefit from the modern comprehensive lipidomic assessments of sphingolipids, in specific
myocellular localizations and certainly with addition of ceramide flux assays. The possibility of subtle
subcellular redistribution of skeletal muscle ceramide not detectable in whole muscle homogenate
cannot yet be discounted in the etiology of age-induced skeletal muscle IR. If skeletal muscle ceramide
intramyocelluar distribution and content is not involved in the development of age-induced IR, it
is probable that ceramides may serve as a likely mechanism to worsen the progression of metabolic
dysfunction into metabolic disease during longer durations of inactivity and during aging.

6.4. Future Challenges and Directions

Clearly, a divergence in the rodent [23,103] and human research [24] is present surrounding
the effects of skeletal muscle ceramide on metabolism. These observations could suggest (1)
intrinsic differences between rodents and humans surrounding overall metabolism and ceramide
content/composition [65], (2) differences in the analytical methods to quantify ceramides [91], (3)
imprecise and non-biologically specific assessment of lipid intermediates to capture modest differences
(compared to rodent research) in insulin sensitivity and (4) the reality that we can only sample a
small percentage of human muscle whereas the whole muscle or a larger portion is sampled from the
rodent. Even with these limitations, there is a need to conduct mechanistic mouse studies of ceramide
metabolism examining the interaction between aging, physical activity level and insulin sensitivity.

7. Summary

• Though lipid/obesity induced insulin resistance is well examined, the mechanism(s) linking
activity to insulin sensitivity is largely unknown, particularly in aging.

• Aging is only linked to increased skeletal muscle ceramide content in obese individuals.
• Cross-sectional studies of exercise-trained adults reveal a range of insulin sensitivities related to

physical activity level that are independent of skeletal muscle ceramide content and species. Indeed,
acute exercise in healthy humans may actually increase ceramide content within skeletal muscle.

• By comparison, longitudinal studies indicate that exercise may not impact ceramides in skeletal
muscle of healthy individuals but is rather more likely to decrease skeletal muscle ceramides in
individuals with previously elevated ceramides resulting from obesity or T2D.

• Clarity of the role of skeletal muscle ceramides on insulin sensitivity during physical activity
may be enhanced with improved methodologies to evaluate distinct ceramide species (e.g., with
different acyl-chains), their subcellular distribution, and their turnover. Additionally, there is a
need for mechanistic genetic studies of ceramide metabolism examining the interaction between
physical activity level and insulin sensitivity. Greater attention to these nuances of ceramide
action could unveil relationships which may be masked in prior literature.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/21/4/1514/s1,
Table S1: Methods of cross-sectional studies and muscle ceramides in humans, Table S2: Methods of exercise
training studies in humans.
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